Accornero M, Marini L, Lelli M. 2010.
Prediction of the
thermodynamic properties of metal-chromate aqueous complexes to high
temperatures and pressures and implications for the speciation of
hexavalent chromium in some natural waters.
Applied
Geochemistry 25(2): 242–260. doi:
10.1016/j.apgeochem.2009.11.010
Akilan C, Rohman N, Hefter G, Buchner R. 2006. Temperature effects on
ion association and hydration in
MgSO4 by
dielectric spectroscopy.
ChemPhysChem 7(11):
2319–2330. doi:
10.1002/cphc.200600342
Akinfiev NN, Diamond LW. 2003.
Thermodynamic description of
aqueous nonelectrolytes at infinite dilution over a wide range of state
parameters.
Geochimica et Cosmochimica Acta
67(4): 613–629. doi:
10.1016/S0016-7037(02)01141-9
Akinfiev NN, Korzhinskaya VS, Kotova NP, Redkin AF, Zotov AV. 2020.
Niobium and tantalum in hydrothermal fluids: Thermodynamic description
of hydroxide and hydroxofluoride complexes.
Geochimica et
Cosmochimica Acta 280: 102–115. doi:
10.1016/j.gca.2020.04.009
Akinfiev NN, Plyasunov AV. 2014.
Application of the
Akinfiev-
Diamond equation of state to neutral
hydroxides of metalloids (
B(
OH)
3,
Si(
OH)
4,
As(
OH)
3) at infinite dilution in water
over a wide range of the state parameters, including steam conditions.
Geochimica et Cosmochimica Acta 126: 338–351.
doi:
10.1016/j.gca.2013.11.013
Akinfiev NN, Tagirov BR. 2014.
Zn in hydrothermal systems:
Thermodynamic description of hydroxide, chloride, and
hydrosulfide complexes.
Geochemistry International
52(3): 197–214. doi:
10.1134/S0016702914030021
Akinfiev NN, Voronin MV, Zotov AV, Prokof’ev VYu. 2006.
Experimental investigation of the stability of a
chloroborate complex and thermodynamic description of aqueous species in
the
B-
Na-
Cl-
O-
H
system up to 350°
C.
Geochemistry International
44(9): 867–878. doi:
10.1134/S0016702906090035
Akinfiev NN, Zotov AV. 2001. Thermodynamic description of
chloride, hydrosulfide, and hydroxo complexes of
Ag(I), Cu(I), and
Au(I) at temperatures of 25-500°C
and pressures of 1-2000 bar. Geochemistry International
39(10): 990–1006.
Akinfiev NN, Zotov AV. 2010.
Thermodynamic description of
aqueous species in the system
Cu-
Ag-
Au-
S-
O-
H
at temperatures of 0-600°
C and pressures of 1-3000 bar.
Geochemistry International 48(7): 714–720.
doi:
10.1134/S0016702910070074
Akinfiev NN, Zotov AV. 2023. Copper in hydrothermal systems: A
thermodynamic description of hydroxocomplexes.
Geology of Ore
Deposits 65(1): 1–10. doi:
10.1134/S1075701523010026
Amend JP, Helgeson HC. 1997. Calculation of the standard molal
thermodynamic properties of aqueous biomolecules at elevated
temperatures and pressures.
Part 1.
l-
α-amino acids.
Journal of
the Chemical Society, Faraday Transactions 93(10):
1927–1941. doi:
10.1039/A608126F
Amend JP, Plyasunov AV. 2001. Carbohydrates in thermophile metabolism:
Calculation of the standard molal thermodynamic properties of aqueous
pentoses and hexoses at elevated temperatures and pressures.
Geochimica et Cosmochimica Acta 65(21):
3901–3917. doi:
10.1016/S0016-7037(01)00707-4
Amend JP, Shock EL. 2001.
Energetics of overall metabolic
reactions of thermophilic and hyperthermophilic
Archaea and
Bacteria.
FEMS Microbiology Reviews
25(2): 175–243. doi:
10.1111/j.1574-6976.2001.tb00576.x
Apps J, Spycher N. 2004. Data qualification for
thermodynamic data used to support THC calculations. Las
Vegas, NV: Bechtel SAIC Company, LLC. Report No.: ANL-NBS-HS-000043 REV
00 (DOC.20041118.0004).
Azadi MR, Karrech A, Attar M, Elchalakani M. 2019.
Data
analysis and estimation of thermodynamic properties of aqueous
monovalent metal-glycinate complexes.
Fluid Phase Equilibria
480: 25–40. doi:
10.1016/j.fluid.2018.10.002
Bandura AV, Lvov SN. 2006.
The ionization constant of water
over wide ranges of temperature and density.
Journal of Physical and
Chemical Reference Data 35(1): 15–30. doi:
10.1063/1.1928231
Barin I, Knacke O, Kubaschewski OK. 1977.
Thermochemical Properties
of Inorganic Substances: Supplement. Berlin: Springer-Verlag. doi:
10.1007/978-3-662-02293-1
Bazarkina EF, Zotov AV, Akinfiev NN. 2010. Pressure-dependent stability
of cadmium chloride complexes: Potentiometric measurements at 1-1000 bar
and 25°
C.
Geology of Ore Deposits
52(2): 167–178. doi:
10.1134/S1075701510020054
Bénézeth P, Palmer DA, Anovitz LM, Horita J. 2007.
Dawsonite synthesis and reevaluation of its thermodynamic
properties from solubility measurements:
Implications for
mineral trapping of
CO2.
Geochimica et Cosmochimica
Acta 71(18): 4438–4455. doi:
10.1016/j.gca.2007.07.003
Berman RG. 1988.
Internally-consistent thermodynamic data
for minerals in the system
Na
2O–
K2O–
Ca
O–
Mg
O–
Fe
O–
Fe
2O3–
Al
2O3–
Si
O2–
Ti
O2–
H2O–
CO2.
Journal of Petrology
29(2): 445–522. doi:
10.1093/petrology/29.2.445
Berman RG. 1990. Mixing properties of
Ca-Mg-Fe-Mn garnets.
American Mineralogist 75(3-4): 328–344.
berman.dat. 2017. Data file in SUPCRT92b.zip
on the DEW website. Last updated on 2017-02-03. Accessed on
2017-05-04.
Blanc P. 2017. Thermoddem: Update for the 2017 version. Bureau de
Recherches Géologiques et Minières. Report No.: BRGM/RP-66811-FR.
Available at
https://thermoddem.brgm.fr/page/brgm-reports.
Bowers TS, Helgeson HC. 1983.
Calculation of the
thermodynamic and geochemical consequences of nonideal mixing in the
system
H2O-
CO2-
Na
Cl
on phase relations in geologic systems:
Equation of state
for
H2O-
CO2-
Na
Cl
fluids at high pressures and temperatures.
Geochimica et
Cosmochimica Acta 47(7): 1247–1275. doi:
10.1016/0016-7037(83)90066-2
Boyer G, Shock E. 2023. The complicator (prototype). Zenodo. doi:
10.5281/zenodo.8206644
Canovas PA III, Shock EL. 2016.
Geobiochemistry of
metabolism:
Standard state thermodynamic properties of the
citric acid cycle.
Geochimica et Cosmochimica Acta
195: 293–322. doi:
10.1016/j.gca.2016.08.028
Cox JD, Wagman DD, Medvedev VA, editors. 1989.
CODATA
Key Values for
Thermodynamics. New York: Hemisphere Publishing
Corporation. Available at
https://www.worldcat.org/oclc/18559968.
Dale JD, Shock EL, MacLoed G, Aplin AC, Larter SR. 1997.
Standard partial molal properties of aqueous alkylphenols
at high pressures and temperatures.
Geochimica et Cosmochimica
Acta 61(19): 4017–4024. doi:
10.1016/S0016-7037(97)00212-3
Delgado Martín J, Soler i Gil A. 2010.
Ilvaite stability in
skarns from the northern contact of the
Maladeta batholith,
Central
Pyrenees (
Spain).
European Journal of Mineralogy 22(3): 363–380.
doi:
10.1127/0935-1221/2010/0022-2021
DEW model. 2017. Dew_model_may_2017.zip (Excel
spreadsheet). Last updated on 2017-05-19. Accessed on 2017-09-26.
DEW model. 2019. Dew_2019.xlsm.zip (Excel spreadsheet).
Last updated on 2019-02-06. Accessed on 2020-06-30.
Diakonov I, Pokrovski G, Schott J, Castet S, Gout R. 1996.
An experimental and computational study of sodium-aluminum
complexing in crustal fluids.
Geochimica et Cosmochimica Acta
60(2): 197–211. doi:
10.1016/0016-7037(95)00403-3
Dick JM. 2007. Calculation of the relative stabilities of
proteins as a function of temperature, pressure, and chemical potentials
in subcellular and geochemical environments [Ph.D. dissertation].
University of California.
Dick JM, Evans KA, Holman AI, Jaraula CMB, Grice K. 2013. Estimation and
application of the thermodynamic properties of aqueous phenanthrene and
isomers of methylphenanthrene at high temperature.
Geochimica et
Cosmochimica Acta 122: 247–266. doi:
10.1016/j.gca.2013.08.020
Dick JM, LaRowe DE, Helgeson HC. 2006. Temperature, pressure, and
electrochemical constraints on protein speciation: Group additivity
calculation of the standard molal thermodynamic properties of ionized
unfolded proteins.
Biogeosciences 3(3):
311–336. doi:
10.5194/bg-3-311-2006
Evans BW. 1990.
Phase relations of epidote-blueschists.
Lithos 25(1): 3–23. doi:
10.1016/0024-4937(90)90003-J
Facq S, Daniel I, Montagnac G, Cardon H, Sverjensky DA. 2014.
In
situ Raman study and thermodynamic model of aqueous
carbonate speciation in equilibrium with aragonite under subduction zone
conditions.
Geochimica et Cosmochimica Acta
132(Supplement C): 375–390. doi:
10.1016/j.gca.2014.01.030
Ferrante MJ, Stuve JM, Richardson DW. 1976.
Thermodynamic Data for
Synthetic Dawsonite. U. S. Bureau of
Mines. (Report of investigations; Vol. 8129). Available at
https://www.worldcat.org/oclc/932914138.
Frantz JD, Dubessy J, Mysen BO. 1994. Ion-pairing in aqueous
MgSO4 solutions along an isochore to
500°
C and 11 kbar using
Raman spectroscopy in
conjunction with the diamond-anvil cell.
Chemical Geology
116(3): 181–188. doi:
10.1016/0009-2541(94)90013-2
Garrels RM, Thompson ME, Siever R. 1961. Control of carbonate solubility
by carbonate complexes.
American Journal of Science
259(1): 24–45. doi:
10.2475/ajs.259.1.24
Goldberg RN, Kishore N, Lennen RM. 2002.
Thermodynamic
quantities for the ionization reactions of buffers.
Journal of
Physical and Chemical Reference Data 31(2):
231–370. doi:
10.1063/1.1416902
Gottschalk M. 2004.
Thermodynamic properties of zoisite,
clinozoisite and epidote.
Reviews in Mineralogy and
Geochemistry 56(1): 83–124. doi:
10.2138/gsrmg.56.1.83
Grenthe I, Gaona X, Plyasunov A, Rao L, Runde W, Grambow B. 2020.
Second Update on the Chemical Thermodynamics of Uranium, Neptunium,
Plutonium, Americium and Technetium, Volume 14. OECD; Nuclear
Energy Agency. doi:
10.1787/bf86a907-en
Grevel K-D, Majzlan J. 2009.
Internally consistent
thermodynamic data for magnesium sulfate hydrates.
Geochimica et
Cosmochimica Acta 73(22): 6805–6815. doi:
10.1016/j.gca.2009.08.005
Haar L, Gallagher JS, Kell GS. 1984.
NBS/NRC Steam
Tables: Thermodynamic and
Transport Properties and Computer
Programs for Vapor and Liquid
States of Water in SI
Units. Washington, D. C.: Hemisphere Publishing
Corporation.
Haas JR, Shock EL. 1999.
Halocarbons in the environment:
Estimates of thermodynamic properties for aqueous
chloroethylene species and their stabilities in natural settings.
Geochimica et Cosmochimica Acta 63(19-20):
3429–3441. doi:
10.1016/S0016-7037(99)00276-8
Haas JR, Shock EL, Sassani DC. 1995.
Rare earth elements in
hydrothermal systems:
Estimates of standard partial molal
thermodynamic properties of aqueous complexes of the rare earth elements
at high pressures and temperatures.
Geochimica et Cosmochimica
Acta 59(21): 4329–4350. doi:
10.1016/0016-7037(95)00314-P
Hakin AW, Duke MM, Marty JL, Preuss KE. 1994.
Some
thermodynamic properties of aqueous amino acid systems at 288.15,
298.15, 313.15 and 328.15
K:
Group additivity
analyses of standard-state volumes and heat capacities.
Journal of
the Chemical Society, Faraday Transactions 90(14):
2027–2035. doi:
10.1039/FT9949002027
Hawrylak B, Palepu R, Tremaine PR. 2006.
Thermodynamics of
aqueous methyldiethanolamine (
MDEA) and
methyldiethanolammonium chloride (
MDEAH+Cl
−) over a wide range of
temperature and pressure:
Apparent molar volumes, heat
capacities, and isothermal compressibilities.
Journal of Chemical
Thermodynamics 38(8): 988–1007. doi:
10.1016/j.jct.2005.10.013
Helgeson HC. 1985.
Errata.
II.
Thermodynamics of minerals, reactions, and aqueous
solutions at high pressures and temperatures.
American Journal of
Science 285(9): 845–855. doi:
10.2475/ajs.285.9.845
Helgeson HC, Delany JM, Nesbitt HW, Bird DK. 1978.
Summary
and critique of the thermodynamic properties of rock-forming minerals.
American Journal of Science 278A: 1–229.
Available at
https://www.worldcat.org/oclc/13594862.
Helgeson HC, Kirkham DH, Flowers GC. 1981.
Theoretical
prediction of the thermodynamic behavior of aqueous electrolytes at high
pressures and temperatures:
IV.
Calculation of
activity coefficients, osmotic coefficients, and apparent molal and
standard and relative partial molal properties to 600°
C and
5
Kb.
American Journal of Science
281(10): 1249–1516. doi:
10.2475/ajs.281.10.1249
Helgeson HC, Owens CE, Knox AM, Richard L. 1998. Calculation of the
standard molal thermodynamic properties of crystalline, liquid, and gas
organic molecules at high temperatures and pressures.
Geochimica et
Cosmochimica Acta 62(6): 985–1081. doi:
10.1016/S0016-7037(97)00219-6
Helgeson HC, Richard L, McKenzie WF, Norton DL, Schmitt A. 2009.
A chemical and thermodynamic model of oil generation in
hydrocarbon source rocks.
Geochimica et Cosmochimica Acta
73(3): 594–695. doi:
10.1016/j.gca.2008.03.004
Hemingway BS, Robie RA, Apps JA. 1991.
Revised values for
the thermodynamic properties of boehmite,
Al
O(
OH), and related species and
phases in the system
Al-
H-
O.
American Mineralogist 76(3-4): 445–457.
Available at
https://pubs.usgs.gov/publication/70016664.
Hilairet N, Daniel I, Reynard B. 2006.
Equation of state of
antigorite, stability field of serpentines, and seismicity in subduction
zones.
Geophysical Research Letters 33(2):
L02302. doi:
10.1029/2005GL024728
Ho PC, Palmer DA. 1997.
Ion association of dilute aqueous
potassium chloride and potassium hydroxide solutions to
600°
C and 300
MPa determined by electrical
conductance measurements.
Geochimica et Cosmochimica Acta
61(15): 3027–3040. doi:
10.1016/S0016-7037(97)00146-4
Hu B, Etschmann B, Testemale D, Liu W, Guan Q, Müller H, Brugger J.
2024. Tantalum in hydrothermal fluids.
Geochimica et Cosmochimica
Acta. doi:
10.1016/j.gca.2024.10.019
Huang F, Sverjensky DA. 2019.
Extended
Deep
Earth
Water
Model for predicting
major element mantle metasomatism.
Geochimica et Cosmochimica
Acta 254: 192–230. doi:
10.1016/j.gca.2019.03.027
Huston DL, Bastrakov E. 2024. Germanium, indium, gallium and cadmium in
zinc ores: A mineral system approach.
Australian Journal of Earth
Sciences. doi:
10.1080/08120099.2024.2423772
Jackson KJ, Helgeson HC. 1985.
Chemical and thermodynamic
constraints on the hydrothermal transport and deposition of tin.
II.
Interpretation of phase relations in the
Southeast
Asian tin belt.
Economic
Geology 80(5): 1365–1378. doi:
10.2113/gsecongeo.80.5.1365
Johnson JW. 1992. sprons92.dat data file for
SUPCRT92. Personal calculation, Earth Sciences Dept.,
Lawrence Livermore National Lab, Livermore, CA.
Johnson JW, Oelkers EH, Helgeson HC. 1992.
SUPCRT92:
A software package for calculating the standard molal
thermodynamic properties of minerals, gases, aqueous species, and
reactions from 1 to 5000 bar and 0 to 1000°
C.
Computers
& Geosciences 18(7): 899–947. doi:
10.1016/0098-3004(92)90029-Q
JUN92.bs. 1992.
JUN92.bs database supplied with
Theriak/
Domino software. Last updated on
2017-02-04. Accessed on 2017-10-01. Available at
https://titan.minpet.unibas.ch/minpet/theriak/prog170204/.
Kelley KK. 1960.
Contributions to the Data in Theoretical Metallurgy
XIII: High Temperature Heat Content, Heat Capacities and
Entropy Data for the Elements and Inorganic Compounds. U. S. Bureau
of Mines. (Bulletin 584). Available at
https://www.worldcat.org/oclc/693388901.
Kitadai N. 2014.
Thermodynamic prediction of glycine
polymerization as a function of temperature and p
H
consistent with experimentally obtained results.
Journal of
Molecular Evolution 78(3-4): 171–187. doi:
10.1007/s00239-014-9616-1
Kitadai N. 2015. Energetics of amino acid synthesis in alkaline
hydrothermal environments.
Origins of Life and Evolution of
Biospheres 45(4): 377–409. doi:
10.1007/s11084-015-9428-3
Knight AW, Bryan CR, Jové-Colón CF. 2024. Development of a consistent
geochemical model of the
Mg(OH)2–
MgCl2–
H2O
system from 25º
C to 120º
C.
Applied
Geochemistry 169: 106032. doi:
10.1016/j.apgeochem.2024.106032
Kulik DA. 2006.
Dual-thermodynamic estimation of
stoichiometry and stability of solid solution end members in
aqueous–solid solution systems.
Chemical Geology
225(3): 189–212. doi:
10.1016/j.chemgeo.2005.08.014
Langmuir D, Mahoney J, Rowson J. 2006.
Solubility products
of amorphous ferric arsenate and crystalline scorodite
(
Fe
As
O4·2
H2O) and their
application to arsenic behavior in buried mine tailings.
Geochimica
et Cosmochimica Acta 70(12): 2942–2956. doi:
10.1016/j.gca.2006.03.006
LaRowe DE, Amend JP. 2016. The energetics of anabolism in natural
settings.
The ISME Journal 10(6): 1285–1295.
doi:
10.1038/ismej.2015.227
LaRowe DE, Amend JP. 2019.
The energetics of fermentation
in natural settings.
Geomicrobiology Journal
36(6): 492–505. doi:
10.1080/01490451.2019.1573278
LaRowe DE, Dick JM. 2012. Calculation of the standard molal
thermodynamic properties of crystalline peptides.
Geochimica et
Cosmochimica Acta 80: 70–91. doi:
10.1016/j.gca.2011.11.041
LaRowe DE, Helgeson HC. 2006 a. Biomolecules in hydrothermal systems:
Calculation of the standard molal thermodynamic properties of
nucleic-acid bases, nucleosides, and nucleotides at elevated
temperatures and pressures.
Geochimica et Cosmochimica Acta
70(18): 4680–4724. doi:
10.1016/j.gca.2006.04.010
LaRowe DE, Helgeson HC. 2006 b.
The energetics of
metabolism in hydrothermal systems:
Calculation of the
standard molal thermodynamic properties of magnesium-complexed adenosine
nucleotides and
NAD and
NADP at elevated
temperatures and pressures.
Thermochimica Acta
448(2): 82–106. doi:
10.1016/j.tca.2006.06.008
Lemke KH, Rosenbauer RJ, Bird DK. 2009. Peptide synthesis in early earth
hydrothermal systems.
Astrobiology 9(2):
141–146. doi:
10.1089/ast.2008.0166
Liu W, Borg SJ, Testemale D, Etschmann B, Hazemann J-L, Brugger J. 2011.
Speciation and thermodynamic properties for cobalt chloride
complexes in hydrothermal fluids at 35–440 °
C and 600 bar:
An
in-situ XAS study.
Geochimica
et Cosmochimica Acta 75(5): 1227–1248. doi:
10.1016/j.gca.2010.12.002
Liu W, Etschmann B, Brugger J, Spiccia L, Foran G, McInnes B. 2006.
UV–Vis spectrophotometric and
XAFS studies of
ferric chloride complexes in hyper-saline
LiCl solutions at
25–90 °
C.
Chemical Geology
231(4): 326–349. doi:
10.1016/j.chemgeo.2006.02.005
Liu X, Xiao C. 2020.
Wolframite solubility and
precipitation in hydrothermal fluids: Insight from thermodynamic
modeling.
Ore Geology Reviews 117: 103289.
doi:
10.1016/j.oregeorev.2019.103289
Liu X, Xiao C, Wang Y. 2021. The relative solubilities of wolframite and
scheelite in hydrothermal fluids: Insights from thermodynamic modeling.
Chemical Geology 584: 120488. doi:
10.1016/j.chemgeo.2021.120488
Liu X, Yu P, Xiao C. 2023. Tin transport and cassiterite precipitation
from hydrothermal fluids.
Geoscience Frontiers
14(6): 101624. doi:
10.1016/j.gsf.2023.101624
Lowe AR, Cox JS, Tremaine PR. 2017.
Thermodynamics of
aqueous adenine:
Standard partial molar volumes and heat
capacities of adenine, adeninium chloride, and sodium adeninate from
T = 278.15
K to
393.15
K.
Journal of Chemical Thermodynamics
112: 129–145. doi:
10.1016/j.jct.2017.04.005
Lyon WG, Westrum EF. 1974.
Heat capacities of zinc
tungstate and ferrous tungstate from 5 to 550
K.
Journal of Chemical Thermodynamics 6(8):
763–780. doi:
10.1016/0021-9614(74)90141-4
Majzlan J, Grevel K-D, Navrotsky A. 2003 a.
Thermodynamics
of
Fe oxides:
Part
II.
Enthalpies of formation and relative stability of goethite
(
α-
Fe
OOH),
lepidocrocite (
γ-
Fe
OOH),
and maghemite (
γ-
Fe
2O3).
American Mineralogist
88(5-6): 855–859. doi:
10.2138/am-2003-5-614
Majzlan J, Lang BE, Stevens R, Navrotsky A, Woodfield BF, Boerio-Goates
J. 2003 b.
Thermodynamics of
Fe oxides:
Part
I.
Entropy at standard
temperature and pressure and heat capacity of goethite (
α-
Fe
OOH),
lepidocrocite (
γ-
Fe
OOH),
and maghemite (
γ-
Fe
2O3).
American Mineralogist
88(5-6): 846–854. doi:
10.2138/am-2003-5-613
Majzlan J, Navrotsky A, McCleskey RB, Alpers CN. 2006.
Thermodynamic properties and crystal structure refinement
of ferricopiapite, coquimbite, rhomboclase, and
Fe
2(
SO4)
3(
H2O)
5.
European Journal of
Mineralogy 18(2): 175–186. doi:
10.1127/0935-1221/2006/0018-0175
Majzlan J, Stevens R, Boerio-Goates J, Woodfield BF, Navrotsky A, Burns
PC, Crawford MK, Amos TG. 2004.
Thermodynamic properties,
low-temperature heat-capacity anomalies, and single-crystal
X-ray refinement of hydronium jarosite,
(
H3O)
Fe
3(
SO4)
2(
OH)
6.
Physics and Chemistry of
Minerals 31(8): 518–531. doi:
10.1007/s00269-004-0405-z
Málek J, Mitsuhashi T, Ohashi N, Taniguchi Y, Kawaji H, Atake T. 2011.
Heat capacity and thermodynamic properties of germanium disulfide at
temperatures from
T = (2 to 1240)
K.
The Journal of Chemical Thermodynamics 43(3):
405–409. doi:
10.1016/j.jct.2010.10.011
Marini L, Accornero M. 2007.
Prediction of the
thermodynamic properties of metal-arsenate and metal-arsenite aqueous
complexes to high temperatures and pressures and some geological
consequences.
Environmental Geology 52(7):
1343–1363. doi:
10.1007/s00254-006-0578-5
Marini L, Accornero M. 2010.
Prediction of the
thermodynamic properties of metal-arsenate and metal-arsenite aqueous
complexes to high temperatures and pressures and some geological
consequences (vol 52, pg 1343, 2007).
Environmental Earth
Sciences 59(7): 1601–1606. doi:
10.1007/s12665-009-0369-x
McCollom TM, Shock EL. 1997.
Geochemical constraints on
chemolithoautotrophic metabolism by microorganisms in seafloor
hydrothermal systems.
Geochimica et Cosmochimica Acta
61(20): 4375–4391. doi:
10.1016/S0016-7037(97)00241-X
Mercury L, Vieillard P, Tardy Y. 2001.
Thermodynamics of
ice polymorphs and
‘ice-like
’ water in
hydrates and hydroxides.
Applied Geochemistry
16(2): 161–181. doi:
10.1016/S0883-2927(00)00025-1
Migdisov A, Bastrakov E, Alcorn C, Reece M, Boukhalfa H, Caporuscio FA,
Jove-Colon C. 2024. A spectroscopic study of the stability of
uranyl-carbonate complexes at 25–150 °
C and re-visiting the
data available for uranyl-chloride, uranyl-sulfate, and uranyl-hydroxide
species.
Geochimica et Cosmochimica Acta. doi:
10.1016/j.gca.2024.04.023
Migdisov ArtA, Williams-Jones AE, Wagner T. 2009. An experimental study
of the solubility and speciation of the
Rare
Earth
Elements (
III) in fluoride-
and chloride-bearing aqueous solutions at temperatures up to 300
°
C.
Geochimica et Cosmochimica Acta
73(23): 7087–7109. doi:
10.1016/j.gca.2009.08.023
Miron GD, Wagner T, Kulik DA, Heinrich CA. 2016.
Internally
consistent thermodynamic data for aqueous species in the system
Na–
K–
Al–
Si–
O–
H–
Cl.
Geochimica et Cosmochimica Acta 187: 41–78.
doi:
10.1016/j.gca.2016.04.026
Miron GD, Wagner T, Kulik DA, Lothenbach B. 2017. An internally
consistent thermodynamic dataset for aqueous species in the system
Ca-Mg-Na-K-Al-Si-O-H-C-Cl to 800 °
C and 5
kbar.
American Journal of Science 317(7):
755–806. doi:
10.2475/07.2017.01
Murphy WM, Shock EL. 1999. Environmental aqueous
geochemistry of actinides. Reviews in Mineralogy and
Geochemistry 38(1): 221–253.
Naumov GB, Ryzhenko BN, Khodakovsky IL. 1974.
Handbook of
Thermodynamic Data. Reston, VA: U. S. Geol. Surv. Available at
https://www.worldcat.org/oclc/8139446.
Nordstrom DK, Archer DG. 2003.
Arsenic thermodynamic data
and environmental geochemistry. In: Welch AH, Stollenwerk KG, editors.
Arsenic in Groundwater. New York: Springer. p. 1–25. doi:
10.1007/0-306-47956-7_1
Noyes AA. 1907. The Electrical Conductivity of Aqueous Solutions:
A Report. Carnegie Inst. of Wash. (Vol. 63).
O’Hare PAG, Curtiss LA. 1995. Thermochemistry of (germanium + sulfur):
IV. Critical evaluation of the thermodynamic properties of
solid and gaseous germanium(
II) sulfide
GeS
and germanium(
IV) disulfide
GeS2,
and digermanium disulfide
Ge2S2(g).
Enthalpies of dissociation of bonds in
GeS(g),
GeS2(g), and
Ge2S2(g).
The Journal of Chemical
Thermodynamics 27(6): 643–662. doi:
10.1006/jcht.1995.0066
OBIGT. 1997. Hydrogen-ion convention. OBIGT database in CHNOSZ.
OBIGT. 2006. Non-zero entropy of the electron based on the hydrogen-ion
convention. OBIGT database in CHNOSZ.
Oelkers EH, Helgeson HC. 1988.
Calculation of the
thermodynamic and transport properties of aqueous species at high
pressures and temperatures:
Dissociation constants for
supercritical alkali metal halides at temperatures from 400 to
800°
C and pressures from 500 to 4000 bars.
Journal of
Physical Chemistry 92(6): 1631–1639. doi:
10.1021/j100317a049
Oelkers EH, Helgeson HC. 1990.
Triple-ion anions and
polynuclear complexing in supercritical electrolyte solutions.
Geochimica et Cosmochimica Acta 54(3):
727–738. doi:
10.1016/0016-7037(90)90368-U
Pankratz LB. 1970.
Thermodynamic Data for
Silver Chloride and Silver
Bromide. U. S. Bureau of Mines. (Report of
investigations; Vol. 7430). Available at
https://www.worldcat.org/oclc/14154245.
Pankratz LB. 1982.
Thermodynamic Properties of Elements and
Oxides. Bureau of Mines. (Bulletin; Vol. 672). Available at
https://catalog.hathitrust.org/Record/102119912.
Pankratz LB, King EG. 1970.
High-Temperature Enthalpies
and Entropies of Chalcopyrite and
Bornite. U. S. Bureau of Mines. (Report of
investigations; Vol. 7435). Available at
https://hdl.handle.net/2027/mdp.39015078533158.
Pankratz LB, Mah AD, Watson SW. 1987.
Thermodynamic Properties of
Sulfides. United States Department of the Interior, Bureau of
Mines. (Bulletin; Vol. 689). Available at
https://www.worldcat.org/oclc/16131757.
Parker VB, Khodakovskii IL. 1995.
Thermodynamic properties
of the aqueous ions (2+ and 3+) of iron and the key compounds of iron.
Journal of Physical and Chemical Reference Data
24(5): 1699–1745. doi:
10.1063/1.555964
Perfetti E, Pokrovski GS, Ballerat-Busserolles K, Majer V, Gilbert F.
2008.
Densities and heat capacities of aqueous arsenious
and arsenic acid solutions to 350 °
C and 300 bar, and
revised thermodynamic properties of
As(
OH)
3°(aq),
As
O(
OH)
3°(aq) and iron
sulfarsenide minerals.
Geochimica et Cosmochimica Acta
72(3): 713–731. doi:
10.1016/j.gca.2007.11.017
Plummer LN, Busenberg E. 1982.
The solubilities of calcite,
aragonite and vaterite in
CO2-
H2O solutions between
0 and 90°
C, and an evaluation of the aqueous model for the
system
Ca
CO3-
CO2-
H2O.
Geochimica et
Cosmochimica Acta 46(6): 1011–1040. doi:
10.1016/0016-7037(82)90056-4
Plyasunov AV, Shock EL. 2001. Correlation strategy for determining the
parameters of the revised
Helgeson-
Kirkham-
Flowers model
for aqueous nonelectrolytes.
Geochimica et Cosmochimica Acta
65(21): 3879–3900. doi:
10.1016/S0016-7037(01)00678-0
Pokrovski GS, Akinfiev NN, Borisova AY, Zotov AV, Kouzmanov K. 2014.
Gold speciation and transport in geological fluids:
Insights from experiments and physical-chemical modelling.
Geological Society, London, Special Publications
402(1): 9–70. doi:
10.1144/SP402.4
Pokrovski GS, Dubessy J. 2015.
Stability and abundance of
the trisulfur radical ion in hydrothermal fluids.
Earth and
Planetary Science Letters 411: 298–309. doi:
10.1016/j.epsl.2014.11.035
Pokrovski GS, Schott J. 1998.
Thermodynamic properties of
aqueous
Ge(
IV) hydroxide complexes from 25 to
350°
C:
Implications for the behavior of
germanium and the
Ge/
Si ratio in hydrothermal
fluids.
Geochimica et Cosmochimica Acta 62(9):
1631–1642. doi:
10.1016/S0016-7037(98)00081-7
Pokrovskii VA, Helgeson HC. 1995.
Thermodynamic properties
of aqueous species and the solubilities of minerals at high pressures
and temperatures:
The system
Al
2O3-
H2O-
Na
Cl.
American Journal of Science 295(10):
1255–1342. doi:
10.2475/ajs.295.10.1255
Pokrovskii VA, Helgeson HC. 1997. Thermodynamic properties of aqueous
species and the solubilities of minerals at high pressures and
temperatures: The system
Al
2O3-
H2O-
KOH.
Chemical Geology 137(3-4): 221–242. doi:
10.1016/S0009-2541(96)00167-2
Polya DA. 1990. Pressure-dependence of wolframite
solubility for hydrothermal vein formation. Trans Inst Min Metall,
Sect B 99: B120–B124.
Prapaipong P, Shock EL, Koretsky CM. 1999.
Metal-organic
complexes in geochemical processes:
Temperature dependence
of the standard thermodynamic properties of aqueous complexes between
metal cations and dicarboxylate ligands.
Geochimica et Cosmochimica
Acta 63(17): 2547–2577. doi:
10.1016/S0016-7037(99)00146-5
Puigdomenech I, Rard JA, Plyasunov AV, Grenthe I. 1997.
Temperature corrections to thermodynamic data and enthalpy
calculations. In: Grenthe I, Puigdomenech I, editors. Modelling in
Aquatic Chemistry. OECD Nuclear Energy Data Bank. p. 427–493.
Reardon EJ, Armstrong DK. 1987.
Celestite
(
Sr
SO4(s)) solubility in
water, seawater and
Na
Cl solution.
Geochimica et Cosmochimica Acta 51(1): 63–72.
doi:
10.1016/0016-7037(87)90007-X
Richard L. 2001.
Calculation of the standard molal
thermodynamic properties as a function of temperature and pressure of
some geochemically important organic sulfur compounds.
Geochimica et
Cosmochimica Acta 65(21): 3827–3877. doi:
10.1016/S0016-7037(01)00761-X
Richard L. 2008. Personal communication.
Richard L, Gaona X. 2011.
Thermodynamic properties of
organic iodine compounds.
Geochimica et Cosmochimica Acta
75(22): 7304–7350. doi:
10.1016/j.gca.2011.07.030
Richard L, Helgeson HC. 1998.
Calculation of the
thermodynamic properties at elevated temperatures and pressures of
saturated and aromatic high molecular weight solid and liquid
hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of
biogeochemical interest.
Geochimica et Cosmochimica Acta
62(23-24): 3591–3636. doi:
10.1016/S0016-7037(97)00345-1
Robie RA, Hemingway BS. 1972. The heat capacities at low temperatures
and entropies at 298.15 K of nesquehonite,
MgCO3·3H2O, and hydromagnesite.
American Mineralogist 57: 1768–1781.
Robie RA, Hemingway BS. 1995.
Thermodynamic
Properties of Minerals and
Related Substances at 298.15 K
and 1 Bar (105 Pascals)
Pressure and at Higher
Temperatures. Washington, D.C.: U.S. Geological
Survey. (Bulletin 2131). doi:
10.3133/b2131
Robie RA, Hemingway BS, Fisher JR. 1978.
Thermodynamic
Properties of Minerals and
Related Substances at 298.15 K
and 1 Bar (105
Pascals) Pressure and at Higher
Temperatures. U. S. Geological Surv. (Bulletin 1452).
doi:
10.3133/b1452
Ruaya JR, Seward TM. 1987. The ion-pair constant and other thermodynamic
properties of
HCl up to 350°
C.
Geochimica
et Cosmochimica Acta 51(1): 121–130. doi:
10.1016/0016-7037(87)90013-5
Saccocia PJ, Seyfried WE. 1993. A resolution of discrepant
thermodynamic properties for chamosite retrieved from experimental and
empirical techniques. American Mineralogist
78(5-6): 607–611.
Sassani DC, Shock EL. 1998.
Solubility and transport of
platinum-group elements in supercritical fluids:
Summary
and estimates of thermodynamic properties for ruthenium, rhodium,
palladium, and platinum solids, aqueous ions, and complexes to
1000°
C and 5 kbar.
Geochimica et Cosmochimica Acta
62(15): 2643–2671. doi:
10.1016/S0016-7037(98)00049-0
Schulte M. 2010.
Organic sulfides in hydrothermal solution:
Standard partial molal properties and role in organic
geochemistry of hydrothermal environments.
Aquatic Geochemistry
16(4): 621–637. doi:
10.1007/s10498-010-9102-3
Schulte MD, Rogers KL. 2004.
Thiols in hydrothermal
solution: Standard partial molal properties and their role in the
organic geochemistry of hydrothermal environments.
Geochimica et
Cosmochimica Acta 68(5): 1087–1097. doi:
10.1016/j.gca.2003.06.001
Schulte MD, Shock EL. 1993. Aldehydes in hydrothermal solution: Standard
partial molal thermodynamic properties and relative stabilities at high
temperatures and pressures.
Geochimica et Cosmochimica Acta
57(16): 3835–3846. doi:
10.1016/0016-7037(93)90337-V
Schulte MD, Shock EL, Wood RH. 2001.
The temperature
dependence of the standard-state thermodynamic properties of aqueous
nonelectrolytes.
Geochimica et Cosmochimica Acta
65(21): 3919–3930. doi:
10.1016/S0016-7037(01)00717-7
Senoh H, Ueda M, Furukawa N, Inoue H, Iwakura C. 1998. Theoretical
evaluation for thermodynamic stability of constituents of
Mm-based hydrogen storage alloy in 6
M
KOH solution at relatively high temperatures.
Journal
of Alloys and Compounds 280(1): 114–124. doi:
10.1016/S0925-8388(98)00739-7
Sharygin AV, Grafton BK, Xiao C, Wood RH, Balashov VN. 2006.
Dissociation constants and speciation in aqueous
Li2SO4 and
K2SO4 from measurements
of electrical conductance to 673
K and 29
MPa.
Geochimica et Cosmochimica Acta 70(20):
5169–5182. doi:
10.1016/j.gca.2006.07.034
Shock EL. 1992.
Stability of peptides in high-temperature
aqueous solutions.
Geochimica et Cosmochimica Acta
56(9): 3481–3491. doi:
10.1016/0016-7037(92)90392-V
Shock EL. 1993.
Hydrothermal dehydration of aqueous organic
compounds.
Geochimica et Cosmochimica Acta
57(14): 3341–3349. doi:
10.1016/0016-7037(93)90542-5
Shock EL. 1995. Organic acids in hydrothermal solutions: Standard molal
thermodynamic properties of carboxylic acids and estimates of
dissociation constants at high temperatures and pressures.
American
Journal of Science 295(5): 496–580. doi:
10.2475/ajs.295.5.496
Shock EL. 2009.
Minerals as energy sources for
microorganisms.
Economic Geology 104(8):
1235–1248. doi:
10.2113/gsecongeo.104.8.1235
Shock EL, Helgeson HC. 1988. Calculation of the thermodynamic and
transport properties of aqueous species at high pressures and
temperatures: Correlation algorithms for ionic species and equation of
state predictions to 5 kb and 1000°
C.
Geochimica et
Cosmochimica Acta 52(8): 2009–2036. doi:
10.1016/0016-7037(88)90181-0
Shock EL, Helgeson HC. 1990. Calculation of the thermodynamic and
transport properties of aqueous species at high pressures and
temperatures: Standard partial molal properties of organic species.
Geochimica et Cosmochimica Acta 54(4):
915–945. doi:
10.1016/0016-7037(90)90429-O
Shock EL, Helgeson HC, Sverjensky DA. 1989.
Calculation of
the thermodynamic and transport properties of aqueous species at high
pressures and temperatures:
Standard partial molal
properties of inorganic neutral species.
Geochimica et Cosmochimica
Acta 53(9): 2157–2183. doi:
10.1016/0016-7037(89)90341-4
Shock EL, Koretsky CM. 1993.
Metal-organic complexes in
geochemical processes:
Calculation of standard partial
molal thermodynamic properties of aqueous acetate complexes at high
pressures and temperatures.
Geochimica et Cosmochimica Acta
57(20): 4899–4922. doi:
10.1016/0016-7037(93)90128-J
Shock EL, Koretsky CM. 1995.
Metal-organic complexes in
geochemical processes:
Estimation of standard partial molal
thermodynamic properties of aqueous complexes between metal cations and
monovalent organic acid ligands at high pressures and temperatures.
Geochimica et Cosmochimica Acta 59(8):
1497–1532. doi:
10.1016/0016-7037(95)00058-8
Shock EL, McKinnon WB. 1993. Hydrothermal processing of cometary
volatiles—
Applications to
Triton.
Icarus 106(2): 464–477. doi:
10.1006/icar.1993.1185
Shock EL, Sassani DC, Betz H. 1997 a.
Uranium in geologic
fluids:
Estimates of standard partial molal properties,
oxidation potentials, and hydrolysis constants at high temperatures and
pressures.
Geochimica et Cosmochimica Acta
61(20): 4245–4266. doi:
10.1016/S0016-7037(97)00240-8
Shock EL, Sassani DC, Willis M, Sverjensky DA. 1997 b.
Inorganic species in geologic fluids:
Correlations among standard molal thermodynamic properties
of aqueous ions and hydroxide complexes.
Geochimica et Cosmochimica
Acta 61(5): 907–950. doi:
10.1016/S0016-7037(96)00339-0
Shvedov D, Tremaine PR. 1997.
Thermodynamic properties of
aqueous dimethylamine and dimethylammonium chloride at temperatures from
283
K to 523
K:
Apparent molar
volumes, heat capacities, and temperature dependence of ionization.
Journal of Solution Chemistry 26(12):
1113–1143. doi:
10.1023/A:1022977006327
Siebert RM, Hostetler PB. 1977. The stability of the magnesium
bicarbonate ion pair from 10° to 90°
C.
American Journal
of Science 277(6): 697–715. doi:
10.2475/ajs.277.6.697
slop16.dat. 2016.
Sequential-access thermodynamic datafile
used by
PROGRAM supcrt92. Last updated on 2019-03-12.
Accessed on 2019-04-08. doi:
10.5281/zenodo.2630820
sprons92.dat. 1992. S[equential-access] pro[perties of] n[atural]
s[ubstances].dat; datafile used by PROGRAM supcrt91.
Included with the SUPCRT92 package (Johnson et al., 1992). Last updated
on 1991-02-15.
St Clair B, Pottenger J, Debes R, Hanselmann K, Shock EL. 2019.
Distinguishing biotic and abiotic iron oxidation at low
temperatures.
ACS Earth and Space Chemistry
3(6): 905–921. doi:
10.1021/acsearthspacechem.9b00016
Stefánsson A. 2001.
Dissolution of primary minerals of
basalt in natural waters.
I.
Calculation of
mineral solubilities from 0°
C to 350°
C.
Chemical Geology 172: 225–250. doi:
10.1016/S0009-2541(00)00263-1
Stefánsson A, Bénézeth P, Schott J. 2013. Carbonic acid ionization and
the stability of sodium bicarbonate and carbonate ion pairs to
200°
C –
A potentiometric and
spectrophotometric study.
Geochimica et Cosmochimica Acta
120(Supplement C): 600–611. doi:
10.1016/j.gca.2013.04.023
Stefánsson A, Bénézeth P, Schott J. 2014. Potentiometric and
spectrophotometric study of the stability of magnesium carbonate and
bicarbonate ion pairs to 150°
C and aqueous inorganic carbon
speciation and magnesite solubility.
Geochimica et Cosmochimica
Acta 138(Supplement C): 21–31. doi:
10.1016/j.gca.2014.04.008
Stoffregen RE, Alpers CN, Jambor JL. 2000.
Alunite-jarosite
crystallography, thermodynamics, and geochronology. In:
Sulfate
Minerals: Crystallography, Geochemistry and Environmental
Significance. Mineralogical Society of America. p. 453–479. doi:
10.2138/rmg.2000.40.9
Sverjensky DA, Harrison B, Azzolini D. 2014.
Water in the
deep
Earth:
The dielectric constant and the
solubilities of quartz and corundum to 60 kb and 1,200 °
C.
Geochimica et Cosmochimica Acta 129: 125–145.
doi:
10.1016/j.gca.2013.12.019
Sverjensky DA, Hemley JJ, D’Angelo WM. 1991.
Thermodynamic
assessment of hydrothermal alkali feldspar-mica-aluminosilicate
equilibria.
Geochimica et Cosmochimica Acta
55(4): 989–1004. doi:
10.1016/0016-7037(91)90157-Z
Sverjensky DA, Shock EL, Helgeson HC. 1997.
Prediction of
the thermodynamic properties of aqueous metal complexes to
1000°
C and 5 kb.
Geochimica et Cosmochimica Acta
61(7): 1359–1412. doi:
10.1016/S0016-7037(97)00009-4
Tagirov BR, Akinfiev NN, Tarnopolskaia ME, Nikolaeva IYu, Zlivko IYu,
Volchenkova VA, Koroleva LA, Zotov AV. 2024 a. Gold in sulfide fluids
revisited.
Geochimica et Cosmochimica Acta. doi:
10.1016/j.gca.2024.08.022
Tagirov BR, Akinfiev NN, Zotov AV. 2024 b. Gold(
I)
complexation in chloride hydrothermal fluids.
Geology of Ore
Deposits 66(5): 581–597. doi:
10.1134/S1075701524600403
Tagirov BR, Baranova NN, Bychkova YaV. 2015.
Thermodynamic
properties of platinum chloride complexes in aqueous solutions:
Derivation of consistent parameters from literature data
and experiments on
Pt
(cr) solubility at
400–475°
C and 1 kbar.
Geochemistry International
53(4): 327–340. doi:
10.1134/S0016702915040084
Tagirov BR, Baranova NN, Zotov AV, Akinfiev NN, Polotnyanko NA, Shikina
ND, Koroleva LA, Shvarov YV, Bastrakov EN. 2013.
The
speciation and transport of palladium in hydrothermal fluids:
Experimental modeling and thermodynamic constraints.
Geochimica et Cosmochimica Acta 117: 348–373.
doi:
10.1016/j.gca.2013.03.047
Tagirov BR, Diakonov II, Devina OA, Zotov AV. 2000. Standard
ferric–ferrous potential and stability of
FeCl2+
to 90°
C.
Thermodynamic properties of
Fe(aq)3+ and ferric-chloride species.
Chemical Geology 162(3): 193–219. doi:
10.1016/S0009-2541(99)00150-3
Tagirov BR, Zotov AV, Akinfiev NN. 1997.
Experimental study
of dissociation of
HCl from 350 to 500°
C and
from 500 to 2500 bars:
Thermodynamic properties of
HCl°
(aq).
Geochimica et Cosmochimica
Acta 61(20): 4267–4280. doi:
10.1016/S0016-7037(97)00274-3
Tagirov B, Schott J. 2001.
Aluminum speciation in crustal
fluids revisited.
Geochimica et Cosmochimica Acta
65(21): 3965–3992. doi:
10.1016/S0016-7037(01)00705-0
Tanger JC IV, Helgeson HC. 1988.
Calculation of the
thermodynamic and transport properties of aqueous species at high
pressures and temperatures:
Revised equations of state for
the standard partial molal properties of ions and electrolytes.
American Journal of Science 288(1): 19–98.
doi:
10.2475/ajs.288.1.19
Tardy Y, Schaul R, Duplay J. 1997.
Domaines de stabilité
thermodynamiques des humus, de la microflore et des plantes.
Comptes
Rendus de l’Academie des Sciences, Serie IIa: Sciences de la Terre et
des Planetes 324(12): 969–976. doi:
10.1016/S1251-8050(97)83981-X
Trofimov ND, Tagirov BR, Akinfiev NN, Reukov VL, Nickolsky MS, Nikolaeva
IYu, Tarnopolskaya ME, Afanasyev AA. 2023. Chalcocite
Cu2S solubility in aqueous sulfide and chloride
fluids. Thermodynamic properties of copper(
I) aqueous
species and copper transport in hydrothermal systems.
Chemical
Geology 625: 121413. doi:
10.1016/j.chemgeo.2023.121413
Tutolo BM, Kong X-Z, Seyfried Jr William E., Saar MO. 2014.
Internal consistency in aqueous geochemical data revisited:
Applications to the aluminum system.
Geochimica et
Cosmochimica Acta 133: 216–234. doi:
10.1016/j.gca.2014.02.036
Vidal O, Goffé B, Theye T. 1992.
Experimental study of the
stability of sudoite and magnesiocarpholite and calculation of a new
petrogenetic grid for the system
Fe
O–
Mg
O–
Al
2O3–
Si
O2–
H2O.
Journal of
Metamorphic Geology 10(5): 603–614. doi:
10.1111/j.1525-1314.1992.tb00109.x
Vidal O, Parra T, Trotet F. 2001.
A thermodynamic model for
Fe-
Mg aluminous chlorite using data from phase
equilibrium experiments and natural pelitic assemblages in the 100° to
600°
C, 1 to 25 kb range.
American Journal of
Science 301(6): 557–592. doi:
10.2475/ajs.301.6.557
Vidal O, Parra T, Viellard P. 2005.
Thermodynamic
properties of the
Tschermak solid solution in
Fe-chlorite:
Application to natural examples
and possible role of oxidation.
American Mineralogist
90(2-3): 347–358. doi:
10.2138/am.2005.1554
von der Heyden BP, Dick J, Rosenfels RC, Carlton L, Lilova K, Navrotsky
A, Subramani T, Woodfield BF, Gibson A. 2024. Growth and stability of
stratiform carrollite (
CuCo2S4) in
the
Tenke-
Fungurume ore district,
Central
African
Copperbelt.
The Canadian Journal of Mineralogy and Petrology
62(1): 77–93. doi:
10.3749/2300028
Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney
KL, Nuttall RL. 1982.
The
NBS tables of
chemical thermodynamic properties.
Selected values for
inorganic and
C1 and
C2
organic substances in
SI units.
Journal of Physical and
Chemical Reference Data 11(Suppl. 2): 1–392.
Available at
https://srd.nist.gov/JPCRD/jpcrdS2Vol11.pdf.
Wagner W, Pruß A. 2002.
The
IAPWS formulation
1995 for the thermodynamic properties of ordinary water substance for
general and scientific use.
Journal of Physical and Chemical
Reference Data 31(2): 387–535. doi:
10.1063/1.1461829
Williams-Jones AE, Vasyukova OV. 2022. Constraints on the genesis of
cobalt deposits:
Part
I.
Theoretical considerations.
Economic Geology
117(3): 513–528. doi:
10.5382/econgeo.4895
Wood SA, Samson IM. 2000.
The hydrothermal geochemistry of
tungsten in granitoid environments:
I.
Relative solubilities of ferberite and scheelite as a
function of
T,
P, p
H, and
mNaCl.
Economic
Geology 95(1): 143–182. doi:
10.2113/gsecongeo.95.1.143
Yang C, Inoue T, Yamada A, Kikegawa T, Ando J. 2014.
Equation of state and phase transition of antigorite under
high pressure and high temperature.
Physics of the Earth and
Planetary Interiors 228(Supplement C): 56–62. doi:
10.1016/j.pepi.2013.07.008
Zhu C, Sverjensky DA. 1992.
F-
Cl-
OH partitioning between
biotite and apatite.
Geochimica et Cosmochimica Acta
56(9): 3435–3467. doi:
10.1016/0016-7037(92)90390-5
Zhu Y, Zhang X, Xie Q, Chen Y, Wang D, Liang Y, Lu J. 2005.
Solubility and stability of barium arsenate and barium
hydrogen arsenate at 25 °
C.
Journal of Hazardous
Materials 120(1): 37–44. doi:
10.1016/j.jhazmat.2004.12.025
Ziemer SP, Woolley EM. 2007. Thermodynamics of the first and second
proton dissociations from aqueous l-aspartic acid and l-glutamic acid at
temperatures from (278.15 to 393.15)
K and at the pressure
0.35
MPa:
Apparent molar heat capacities and
apparent molar volumes of zwitterionic, protonated cationic, and
deprotonated anionic forms at molalities from (0.002 to 1.0) mol ·
kg
−1.
Journal of Chemical Thermodynamics
39(4): 645–666. doi:
10.1016/j.jct.2006.08.008
Zimmer K, Zhang Y, Lu P, Chen Y, Zhang G, Dalkilic M, Zhu C. 2016.
SUPCRTBL:
A revised and extended thermodynamic
dataset and software package of
SUPCRT92.
Computers
& Geosciences 90: 97–111. doi:
10.1016/j.cageo.2016.02.013