OBIGT thermodynamic database

This vignette, produced on 2024-11-17, lists the references for thermodynamic data in the OBIGT database in CHNOSZ version 2.1.0-22. Except for Optional Data, all data are present in the default database, which is loaded when the package is attached, or by running reset() or OBIGT().

Each section below corresponds to one of the CSV data files in the extdata/OBIGT package directory. Clicking on a button opens that section, which contains a list of primary references (from column ref1 in the file) in chronological order. Any secondary references (ref2) are listed with bullet points under the primary reference. Each citation is followed by the number of species, and a note taken from the file extdata/OBIGT/refs.csv. Additional comments (from this vignette) are present for some sections.

Abbreviations: T (temperature), P (pressure), GHS (standard Gibbs energy, enthalpy, entropy), Cp (heat capacity), V (volume), HKF (revised Helgeson-Kirkham-Flowers equations).

Aqueous Species

Solids

Gases    Liquids

Optional Data


Total count of species: References were found for 3570 of 3570 species in the default OBIGT database and 605 optional species.

References

Accornero M, Marini L, Lelli M. 2010. Prediction of the thermodynamic properties of metal-chromate aqueous complexes to high temperatures and pressures and implications for the speciation of hexavalent chromium in some natural waters. Applied Geochemistry 25(2): 242–260. doi: 10.1016/j.apgeochem.2009.11.010
Akilan C, Rohman N, Hefter G, Buchner R. 2006. Temperature effects on ion association and hydration in MgSO4 by dielectric spectroscopy. ChemPhysChem 7(11): 2319–2330. doi: 10.1002/cphc.200600342
Akinfiev NN, Diamond LW. 2003. Thermodynamic description of aqueous nonelectrolytes at infinite dilution over a wide range of state parameters. Geochimica et Cosmochimica Acta 67(4): 613–629. doi: 10.1016/S0016-7037(02)01141-9
Akinfiev NN, Korzhinskaya VS, Kotova NP, Redkin AF, Zotov AV. 2020. Niobium and tantalum in hydrothermal fluids: Thermodynamic description of hydroxide and hydroxofluoride complexes. Geochimica et Cosmochimica Acta 280: 102–115. doi: 10.1016/j.gca.2020.04.009
Akinfiev NN, Plyasunov AV. 2014. Application of the Akinfiev-Diamond equation of state to neutral hydroxides of metalloids (B(OH)3, Si(OH)4, As(OH)3) at infinite dilution in water over a wide range of the state parameters, including steam conditions. Geochimica et Cosmochimica Acta 126: 338–351. doi: 10.1016/j.gca.2013.11.013
Akinfiev NN, Tagirov BR. 2014. Zn in hydrothermal systems: Thermodynamic description of hydroxide, chloride, and hydrosulfide complexes. Geochemistry International 52(3): 197–214. doi: 10.1134/S0016702914030021
Akinfiev NN, Voronin MV, Zotov AV, Prokof’ev VYu. 2006. Experimental investigation of the stability of a chloroborate complex and thermodynamic description of aqueous species in the B-Na-Cl-O-H system up to 350°C. Geochemistry International 44(9): 867–878. doi: 10.1134/S0016702906090035
Akinfiev NN, Zotov AV. 2001. Thermodynamic description of chloride, hydrosulfide, and hydroxo complexes of Ag(I), Cu(I), and Au(I) at temperatures of 25-500°C and pressures of 1-2000 bar. Geochemistry International 39(10): 990–1006.
Akinfiev NN, Zotov AV. 2010. Thermodynamic description of aqueous species in the system Cu-Ag-Au-S-O-H at temperatures of 0-600°C and pressures of 1-3000 bar. Geochemistry International 48(7): 714–720. doi: 10.1134/S0016702910070074
Amend JP, Helgeson HC. 1997. Calculation of the standard molal thermodynamic properties of aqueous biomolecules at elevated temperatures and pressures. Part 1. l-α-amino acids. Journal of the Chemical Society, Faraday Transactions 93(10): 1927–1941. doi: 10.1039/A608126F
Amend JP, Plyasunov AV. 2001. Carbohydrates in thermophile metabolism: Calculation of the standard molal thermodynamic properties of aqueous pentoses and hexoses at elevated temperatures and pressures. Geochimica et Cosmochimica Acta 65(21): 3901–3917. doi: 10.1016/S0016-7037(01)00707-4
Amend JP, Shock EL. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiology Reviews 25(2): 175–243. doi: 10.1111/j.1574-6976.2001.tb00576.x
Apps J, Spycher N. 2004. Data qualification for thermodynamic data used to support THC calculations. Las Vegas, NV: Bechtel SAIC Company, LLC. Report No.: ANL-NBS-HS-000043 REV 00 (DOC.20041118.0004).
Azadi MR, Karrech A, Attar M, Elchalakani M. 2019. Data analysis and estimation of thermodynamic properties of aqueous monovalent metal-glycinate complexes. Fluid Phase Equilibria 480: 25–40. doi: 10.1016/j.fluid.2018.10.002
Bandura AV, Lvov SN. 2006. The ionization constant of water over wide ranges of temperature and density. Journal of Physical and Chemical Reference Data 35(1): 15–30. doi: 10.1063/1.1928231
Barin I, Knacke O, Kubaschewski OK. 1977. Thermochemical Properties of Inorganic Substances: Supplement. Berlin: Springer-Verlag. doi: 10.1007/978-3-662-02293-1
Bénézeth P, Palmer DA, Anovitz LM, Horita J. 2007. Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: Implications for mineral trapping of CO2. Geochimica et Cosmochimica Acta 71(18): 4438–4455. doi: 10.1016/j.gca.2007.07.003
Berman RG. 1988. Internally-consistent thermodynamic data for minerals in the system Na2OK2OCaOMgOFeOFe2O3Al2O3SiO2TiO2H2OCO2. Journal of Petrology 29(2): 445–522. doi: 10.1093/petrology/29.2.445
Berman RG. 1990. Mixing properties of Ca-Mg-Fe-Mn garnets. American Mineralogist 75(3-4): 328–344.
berman.dat. 2017. Data file in SUPCRT92b.zip on the DEW website. Last updated on 2017-02-03. Accessed on 2017-05-04.
Bowers TS, Helgeson HC. 1983. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochimica et Cosmochimica Acta 47(7): 1247–1275. doi: 10.1016/0016-7037(83)90066-2
Canovas PA III, Shock EL. 2016. Geobiochemistry of metabolism: Standard state thermodynamic properties of the citric acid cycle. Geochimica et Cosmochimica Acta 195: 293–322. doi: 10.1016/j.gca.2016.08.028
Cox JD, Wagman DD, Medvedev VA, editors. 1989. CODATA Key Values for Thermodynamics. New York: Hemisphere Publishing Corporation. Available at https://www.worldcat.org/oclc/18559968.
Dale JD, Shock EL, MacLoed G, Aplin AC, Larter SR. 1997. Standard partial molal properties of aqueous alkylphenols at high pressures and temperatures. Geochimica et Cosmochimica Acta 61(19): 4017–4024. doi: 10.1016/S0016-7037(97)00212-3
Delgado Martín J, Soler i Gil A. 2010. Ilvaite stability in skarns from the northern contact of the Maladeta batholith, Central Pyrenees (Spain). European Journal of Mineralogy 22(3): 363–380. doi: 10.1127/0935-1221/2010/0022-2021
DEW model. 2017. Dew_model_may_2017.zip (Excel spreadsheet). Last updated on 2017-05-19. Accessed on 2017-09-26.
DEW model. 2019. Dew_2019.xlsm.zip (Excel spreadsheet). Last updated on 2019-02-06. Accessed on 2020-06-30.
Diakonov I, Pokrovski G, Schott J, Castet S, Gout R. 1996. An experimental and computational study of sodium-aluminum complexing in crustal fluids. Geochimica et Cosmochimica Acta 60(2): 197–211. doi: 10.1016/0016-7037(95)00403-3
Dick JM. 2007. Calculation of the relative stabilities of proteins as a function of temperature, pressure, and chemical potentials in subcellular and geochemical environments [Ph.D. dissertation]. University of California.
Dick JM, Evans KA, Holman AI, Jaraula CMB, Grice K. 2013. Estimation and application of the thermodynamic properties of aqueous phenanthrene and isomers of methylphenanthrene at high temperature. Geochimica et Cosmochimica Acta 122: 247–266. doi: 10.1016/j.gca.2013.08.020
Dick JM, LaRowe DE, Helgeson HC. 2006. Temperature, pressure, and electrochemical constraints on protein speciation: Group additivity calculation of the standard molal thermodynamic properties of ionized unfolded proteins. Biogeosciences 3(3): 311–336. doi: 10.5194/bg-3-311-2006
Evans BW. 1990. Phase relations of epidote-blueschists. Lithos 25(1): 3–23. doi: 10.1016/0024-4937(90)90003-J
Facq S, Daniel I, Montagnac G, Cardon H, Sverjensky DA. 2014. In situ Raman study and thermodynamic model of aqueous carbonate speciation in equilibrium with aragonite under subduction zone conditions. Geochimica et Cosmochimica Acta 132(Supplement C): 375–390. doi: 10.1016/j.gca.2014.01.030
Ferrante MJ, Stuve JM, Richardson DW. 1976. Thermodynamic Data for Synthetic Dawsonite. U. S. Bureau of Mines. (Report of investigations; Vol. 8129). Available at https://www.worldcat.org/oclc/932914138.
Frantz JD, Dubessy J, Mysen BO. 1994. Ion-pairing in aqueous MgSO4 solutions along an isochore to 500°C and 11 kbar using Raman spectroscopy in conjunction with the diamond-anvil cell. Chemical Geology 116(3): 181–188. doi: 10.1016/0009-2541(94)90013-2
Garrels RM, Thompson ME, Siever R. 1961. Control of carbonate solubility by carbonate complexes. American Journal of Science 259(1): 24–45. doi: 10.2475/ajs.259.1.24
Goldberg RN, Kishore N, Lennen RM. 2002. Thermodynamic quantities for the ionization reactions of buffers. Journal of Physical and Chemical Reference Data 31(2): 231–370. doi: 10.1063/1.1416902
Gottschalk M. 2004. Thermodynamic properties of zoisite, clinozoisite and epidote. Reviews in Mineralogy and Geochemistry 56(1): 83–124. doi: 10.2138/gsrmg.56.1.83
Grenthe I, Gaona X, Plyasunov A, Rao L, Runde W, Grambow B. 2020. Second Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Volume 14. OECD; Nuclear Energy Agency. doi: 10.1787/bf86a907-en
Grevel K-D, Majzlan J. 2009. Internally consistent thermodynamic data for magnesium sulfate hydrates. Geochimica et Cosmochimica Acta 73(22): 6805–6815. doi: 10.1016/j.gca.2009.08.005
Haar L, Gallagher JS, Kell GS. 1984. NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units. Washington, D. C.: Hemisphere Publishing Corporation.
Haas JR, Shock EL. 1999. Halocarbons in the environment: Estimates of thermodynamic properties for aqueous chloroethylene species and their stabilities in natural settings. Geochimica et Cosmochimica Acta 63(19-20): 3429–3441. doi: 10.1016/S0016-7037(99)00276-8
Haas JR, Shock EL, Sassani DC. 1995. Rare earth elements in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta 59(21): 4329–4350. doi: 10.1016/0016-7037(95)00314-P
Hakin AW, Duke MM, Marty JL, Preuss KE. 1994. Some thermodynamic properties of aqueous amino acid systems at 288.15, 298.15, 313.15 and 328.15 K: Group additivity analyses of standard-state volumes and heat capacities. Journal of the Chemical Society, Faraday Transactions 90(14): 2027–2035. doi: 10.1039/FT9949002027
Hawrylak B, Palepu R, Tremaine PR. 2006. Thermodynamics of aqueous methyldiethanolamine (MDEA) and methyldiethanolammonium chloride (MDEAH+Cl) over a wide range of temperature and pressure: Apparent molar volumes, heat capacities, and isothermal compressibilities. Journal of Chemical Thermodynamics 38(8): 988–1007. doi: 10.1016/j.jct.2005.10.013
Helgeson HC. 1985. Errata. II. Thermodynamics of minerals, reactions, and aqueous solutions at high pressures and temperatures. American Journal of Science 285(9): 845–855. doi: 10.2475/ajs.285.9.845
Helgeson HC, Delany JM, Nesbitt HW, Bird DK. 1978. Summary and critique of the thermodynamic properties of rock-forming minerals. American Journal of Science 278A: 1–229. Available at https://www.worldcat.org/oclc/13594862.
Helgeson HC, Kirkham DH, Flowers GC. 1981. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 Kb. American Journal of Science 281(10): 1249–1516. doi: 10.2475/ajs.281.10.1249
Helgeson HC, Owens CE, Knox AM, Richard L. 1998. Calculation of the standard molal thermodynamic properties of crystalline, liquid, and gas organic molecules at high temperatures and pressures. Geochimica et Cosmochimica Acta 62(6): 985–1081. doi: 10.1016/S0016-7037(97)00219-6
Helgeson HC, Richard L, McKenzie WF, Norton DL, Schmitt A. 2009. A chemical and thermodynamic model of oil generation in hydrocarbon source rocks. Geochimica et Cosmochimica Acta 73(3): 594–695. doi: 10.1016/j.gca.2008.03.004
Hemingway BS, Robie RA, Apps JA. 1991. Revised values for the thermodynamic properties of boehmite, AlO(OH), and related species and phases in the system Al-H-O. American Mineralogist 76(3-4): 445–457. Available at https://pubs.usgs.gov/publication/70016664.
Hilairet N, Daniel I, Reynard B. 2006. Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zones. Geophysical Research Letters 33(2): L02302. doi: 10.1029/2005GL024728
Ho PC, Palmer DA. 1997. Ion association of dilute aqueous potassium chloride and potassium hydroxide solutions to 600°C and 300 MPa determined by electrical conductance measurements. Geochimica et Cosmochimica Acta 61(15): 3027–3040. doi: 10.1016/S0016-7037(97)00146-4
Huang F, Sverjensky DA. 2019. Extended Deep Earth Water Model for predicting major element mantle metasomatism. Geochimica et Cosmochimica Acta 254: 192–230. doi: 10.1016/j.gca.2019.03.027
Jackson KJ, Helgeson HC. 1985. Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin. II. Interpretation of phase relations in the Southeast Asian tin belt. Economic Geology 80(5): 1365–1378. doi: 10.2113/gsecongeo.80.5.1365
Johnson JW. 1992. sprons92.dat data file for SUPCRT92. Personal calculation, Earth Sciences Dept., Lawrence Livermore National Lab, Livermore, CA.
Johnson JW, Oelkers EH, Helgeson HC. 1992. SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C. Computers & Geosciences 18(7): 899–947. doi: 10.1016/0098-3004(92)90029-Q
JUN92.bs. 1992. JUN92.bs database supplied with Theriak/Domino software. Last updated on 2017-02-04. Accessed on 2017-10-01. Available at https://titan.minpet.unibas.ch/minpet/theriak/prog170204/.
Kelley KK. 1960. Contributions to the Data in Theoretical Metallurgy XIII: High Temperature Heat Content, Heat Capacities and Entropy Data for the Elements and Inorganic Compounds. U. S. Bureau of Mines. (Bulletin 584). Available at https://www.worldcat.org/oclc/693388901.
Kitadai N. 2014. Thermodynamic prediction of glycine polymerization as a function of temperature and pH consistent with experimentally obtained results. Journal of Molecular Evolution 78(3-4): 171–187. doi: 10.1007/s00239-014-9616-1
Kitadai N. 2015. Energetics of amino acid synthesis in alkaline hydrothermal environments. Origins of Life and Evolution of Biospheres 45(4): 377–409. doi: 10.1007/s11084-015-9428-3
Kulik DA. 2006. Dual-thermodynamic estimation of stoichiometry and stability of solid solution end members in aqueous–solid solution systems. Chemical Geology 225(3): 189–212. doi: 10.1016/j.chemgeo.2005.08.014
Langmuir D, Mahoney J, Rowson J. 2006. Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings. Geochimica et Cosmochimica Acta 70(12): 2942–2956. doi: 10.1016/j.gca.2006.03.006
LaRowe DE, Amend JP. 2016. The energetics of anabolism in natural settings. The ISME Journal 10(6): 1285–1295. doi: 10.1038/ismej.2015.227
LaRowe DE, Amend JP. 2019. The energetics of fermentation in natural settings. Geomicrobiology Journal 36(6): 492–505. doi: 10.1080/01490451.2019.1573278
LaRowe DE, Dick JM. 2012. Calculation of the standard molal thermodynamic properties of crystalline peptides. Geochimica et Cosmochimica Acta 80: 70–91. doi: 10.1016/j.gca.2011.11.041
LaRowe DE, Helgeson HC. 2006 a. Biomolecules in hydrothermal systems: Calculation of the standard molal thermodynamic properties of nucleic-acid bases, nucleosides, and nucleotides at elevated temperatures and pressures. Geochimica et Cosmochimica Acta 70(18): 4680–4724. doi: 10.1016/j.gca.2006.04.010
LaRowe DE, Helgeson HC. 2006 b. The energetics of metabolism in hydrothermal systems: Calculation of the standard molal thermodynamic properties of magnesium-complexed adenosine nucleotides and NAD and NADP at elevated temperatures and pressures. Thermochimica Acta 448(2): 82–106. doi: 10.1016/j.tca.2006.06.008
Lemke KH, Rosenbauer RJ, Bird DK. 2009. Peptide synthesis in early earth hydrothermal systems. Astrobiology 9(2): 141–146. doi: 10.1089/ast.2008.0166
Liu W, Borg SJ, Testemale D, Etschmann B, Hazemann J-L, Brugger J. 2011. Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35–440 °C and 600 bar: An in-situ XAS study. Geochimica et Cosmochimica Acta 75(5): 1227–1248. doi: 10.1016/j.gca.2010.12.002
Liu W, Etschmann B, Brugger J, Spiccia L, Foran G, McInnes B. 2006. UV–Vis spectrophotometric and XAFS studies of ferric chloride complexes in hyper-saline LiCl solutions at 25–90 °C. Chemical Geology 231(4): 326–349. doi: 10.1016/j.chemgeo.2006.02.005
Liu X, Xiao C. 2020. Wolframite solubility and precipitation in hydrothermal fluids: Insight from thermodynamic modeling. Ore Geology Reviews 117: 103289. doi: 10.1016/j.oregeorev.2019.103289
Liu X, Xiao C, Wang Y. 2021. The relative solubilities of wolframite and scheelite in hydrothermal fluids: Insights from thermodynamic modeling. Chemical Geology 584: 120488. doi: 10.1016/j.chemgeo.2021.120488
Lowe AR, Cox JS, Tremaine PR. 2017. Thermodynamics of aqueous adenine: Standard partial molar volumes and heat capacities of adenine, adeninium chloride, and sodium adeninate from T = 278.15 K to 393.15 K. Journal of Chemical Thermodynamics 112: 129–145. doi: 10.1016/j.jct.2017.04.005
Lyon WG, Westrum EF. 1974. Heat capacities of zinc tungstate and ferrous tungstate from 5 to 550 K. Journal of Chemical Thermodynamics 6(8): 763–780. doi: 10.1016/0021-9614(74)90141-4
Majzlan J, Grevel K-D, Navrotsky A. 2003 a. Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). American Mineralogist 88(5-6): 855–859. doi: 10.2138/am-2003-5-614
Majzlan J, Lang BE, Stevens R, Navrotsky A, Woodfield BF, Boerio-Goates J. 2003 b. Thermodynamics of Fe oxides: Part I. Entropy at standard temperature and pressure and heat capacity of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). American Mineralogist 88(5-6): 846–854. doi: 10.2138/am-2003-5-613
Majzlan J, Navrotsky A, McCleskey RB, Alpers CN. 2006. Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5. European Journal of Mineralogy 18(2): 175–186. doi: 10.1127/0935-1221/2006/0018-0175
Majzlan J, Stevens R, Boerio-Goates J, Woodfield BF, Navrotsky A, Burns PC, Crawford MK, Amos TG. 2004. Thermodynamic properties, low-temperature heat-capacity anomalies, and single-crystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6. Physics and Chemistry of Minerals 31(8): 518–531. doi: 10.1007/s00269-004-0405-z
Marini L, Accornero M. 2007. Prediction of the thermodynamic properties of metal-arsenate and metal-arsenite aqueous complexes to high temperatures and pressures and some geological consequences. Environmental Geology 52(7): 1343–1363. doi: 10.1007/s00254-006-0578-5
Marini L, Accornero M. 2010. Prediction of the thermodynamic properties of metal-arsenate and metal-arsenite aqueous complexes to high temperatures and pressures and some geological consequences (vol 52, pg 1343, 2007). Environmental Earth Sciences 59(7): 1601–1606. doi: 10.1007/s12665-009-0369-x
McCollom TM, Shock EL. 1997. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochimica et Cosmochimica Acta 61(20): 4375–4391. doi: 10.1016/S0016-7037(97)00241-X
Mercury L, Vieillard P, Tardy Y. 2001. Thermodynamics of ice polymorphs and ice-like water in hydrates and hydroxides. Applied Geochemistry 16(2): 161–181. doi: 10.1016/S0883-2927(00)00025-1
Migdisov A, Bastrakov E, Alcorn C, Reece M, Boukhalfa H, Caporuscio FA, Jove-Colon C. 2024. A spectroscopic study of the stability of uranyl-carbonate complexes at 25–150 °C and re-visiting the data available for uranyl-chloride, uranyl-sulfate, and uranyl-hydroxide species. Geochimica et Cosmochimica Acta. doi: 10.1016/j.gca.2024.04.023
Miron GD, Wagner T, Kulik DA, Heinrich CA. 2016. Internally consistent thermodynamic data for aqueous species in the system Na–KAl–Si–OHCl. Geochimica et Cosmochimica Acta 187: 41–78. doi: 10.1016/j.gca.2016.04.026
Miron GD, Wagner T, Kulik DA, Lothenbach B. 2017. An internally consistent thermodynamic dataset for aqueous species in the system Ca-Mg-Na-K-Al-Si-O-H-C-Cl to 800 °C and 5 kbar. American Journal of Science 317(7): 755–806. doi: 10.2475/07.2017.01
Murphy WM, Shock EL. 1999. Environmental aqueous geochemistry of actinides. Reviews in Mineralogy and Geochemistry 38(1): 221–253.
Nordstrom DK, Archer DG. 2003. Arsenic thermodynamic data and environmental geochemistry. In: Welch AH, Stollenwerk KG, editors. Arsenic in Groundwater. New York: Springer. p. 1–25. doi: 10.1007/0-306-47956-7_1
Noyes AA. 1907. The Electrical Conductivity of Aqueous Solutions: A Report. Carnegie Inst. of Wash. (Vol. 63).
OBIGT. 1997. Hydrogen-ion convention. OBIGT database in CHNOSZ.
OBIGT. 2006. Non-zero entropy of the electron based on the hydrogen-ion convention. OBIGT database in CHNOSZ.
Oelkers EH, Helgeson HC. 1988. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Dissociation constants for supercritical alkali metal halides at temperatures from 400 to 800°C and pressures from 500 to 4000 bars. Journal of Physical Chemistry 92(6): 1631–1639. doi: 10.1021/j100317a049
Oelkers EH, Helgeson HC. 1990. Triple-ion anions and polynuclear complexing in supercritical electrolyte solutions. Geochimica et Cosmochimica Acta 54(3): 727–738. doi: 10.1016/0016-7037(90)90368-U
Pankratz LB. 1970. Thermodynamic Data for Silver Chloride and Silver Bromide. U. S. Bureau of Mines. (Report of investigations; Vol. 7430). Available at https://www.worldcat.org/oclc/14154245.
Pankratz LB, King EG. 1970. High-Temperature Enthalpies and Entropies of Chalcopyrite and Bornite. U. S. Bureau of Mines. (Report of investigations; Vol. 7435). Available at https://hdl.handle.net/2027/mdp.39015078533158.
Pankratz LB, Mah AD, Watson SW. 1987. Thermodynamic Properties of Sulfides. United States Department of the Interior, Bureau of Mines. (Bulletin; Vol. 689). Available at https://www.worldcat.org/oclc/16131757.
Parker VB, Khodakovskii IL. 1995. Thermodynamic properties of the aqueous ions (2+ and 3+) of iron and the key compounds of iron. Journal of Physical and Chemical Reference Data 24(5): 1699–1745. doi: 10.1063/1.555964
Perfetti E, Pokrovski GS, Ballerat-Busserolles K, Majer V, Gilbert F. 2008. Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 °C and 300 bar, and revised thermodynamic properties of As(OH)3°(aq), AsO(OH)3°(aq) and iron sulfarsenide minerals. Geochimica et Cosmochimica Acta 72(3): 713–731. doi: 10.1016/j.gca.2007.11.017
Plummer LN, Busenberg E. 1982. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochimica et Cosmochimica Acta 46(6): 1011–1040. doi: 10.1016/0016-7037(82)90056-4
Plyasunov AV, Shock EL. 2001. Correlation strategy for determining the parameters of the revised Helgeson-Kirkham-Flowers model for aqueous nonelectrolytes. Geochimica et Cosmochimica Acta 65(21): 3879–3900. doi: 10.1016/S0016-7037(01)00678-0
Pokrovski GS, Akinfiev NN, Borisova AY, Zotov AV, Kouzmanov K. 2014. Gold speciation and transport in geological fluids: Insights from experiments and physical-chemical modelling. Geological Society, London, Special Publications 402(1): 9–70. doi: 10.1144/SP402.4
Pokrovski GS, Dubessy J. 2015. Stability and abundance of the trisulfur radical ion in hydrothermal fluids. Earth and Planetary Science Letters 411: 298–309. doi: 10.1016/j.epsl.2014.11.035
Pokrovskii VA, Helgeson HC. 1995. Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: The system Al2O3-H2O-NaCl. American Journal of Science 295(10): 1255–1342. doi: 10.2475/ajs.295.10.1255
Pokrovskii VA, Helgeson HC. 1997. Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: The system Al2O3-H2O-KOH. Chemical Geology 137(3-4): 221–242. doi: 10.1016/S0009-2541(96)00167-2
Polya DA. 1990. Pressure-dependence of wolframite solubility for hydrothermal vein formation. Trans Inst Min Metall, Sect B 99: B120–B124.
Prapaipong P, Shock EL, Koretsky CM. 1999. Metal-organic complexes in geochemical processes: Temperature dependence of the standard thermodynamic properties of aqueous complexes between metal cations and dicarboxylate ligands. Geochimica et Cosmochimica Acta 63(17): 2547–2577. doi: 10.1016/S0016-7037(99)00146-5
Puigdomenech I, Rard JA, Plyasunov AV, Grenthe I. 1997. Temperature corrections to thermodynamic data and enthalpy calculations. In: Grenthe I, Puigdomenech I, editors. Modelling in Aquatic Chemistry. OECD Nuclear Energy Data Bank. p. 427–493.
Reardon EJ, Armstrong DK. 1987. Celestite (SrSO4(s)) solubility in water, seawater and NaCl solution. Geochimica et Cosmochimica Acta 51(1): 63–72. doi: 10.1016/0016-7037(87)90007-X
Richard L. 2001. Calculation of the standard molal thermodynamic properties as a function of temperature and pressure of some geochemically important organic sulfur compounds. Geochimica et Cosmochimica Acta 65(21): 3827–3877. doi: 10.1016/S0016-7037(01)00761-X
Richard L. 2008. Personal communication.
Richard L, Gaona X. 2011. Thermodynamic properties of organic iodine compounds. Geochimica et Cosmochimica Acta 75(22): 7304–7350. doi: 10.1016/j.gca.2011.07.030
Richard L, Helgeson HC. 1998. Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest. Geochimica et Cosmochimica Acta 62(23-24): 3591–3636. doi: 10.1016/S0016-7037(97)00345-1
Robie RA, Hemingway BS. 1972. The heat capacities at low temperatures and entropies at 298.15 K of nesquehonite, MgCO3·3H2O, and hydromagnesite. American Mineralogist 57: 1768–1781.
Robie RA, Hemingway BS. 1995. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. Washington, D.C.: U.S. Geological Survey. (Bulletin 2131). doi: 10.3133/b2131
Robie RA, Hemingway BS, Fisher JR. 1978. Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures. U. S. Geological Surv. (Bulletin 1452). doi: 10.3133/b1452
Robinson KJ, Seewald JS, Sylva SP, Fecteau KM, Shock EL. 2024. Thermodynamic property estimations for aqueous primary, secondary, and tertiary alkylamines, benzylamines, and their corresponding aminiums across temperature and pressure are validated by measurements from experiments. Geochimica et Cosmochimica Acta 372: 62–80. doi: 10.1016/j.gca.2024.03.013
Ruaya JR, Seward TM. 1987. The ion-pair constant and other thermodynamic properties of HCl up to 350°C. Geochimica et Cosmochimica Acta 51(1): 121–130. doi: 10.1016/0016-7037(87)90013-5
Saccocia PJ, Seyfried WE. 1993. A resolution of discrepant thermodynamic properties for chamosite retrieved from experimental and empirical techniques. American Mineralogist 78(5-6): 607–611.
Sassani DC, Shock EL. 1998. Solubility and transport of platinum-group elements in supercritical fluids: Summary and estimates of thermodynamic properties for ruthenium, rhodium, palladium, and platinum solids, aqueous ions, and complexes to 1000°C and 5 kbar. Geochimica et Cosmochimica Acta 62(15): 2643–2671. doi: 10.1016/S0016-7037(98)00049-0
Schulte M. 2010. Organic sulfides in hydrothermal solution: Standard partial molal properties and role in organic geochemistry of hydrothermal environments. Aquatic Geochemistry 16(4): 621–637. doi: 10.1007/s10498-010-9102-3
Schulte MD, Rogers KL. 2004. Thiols in hydrothermal solution: Standard partial molal properties and their role in the organic geochemistry of hydrothermal environments. Geochimica et Cosmochimica Acta 68(5): 1087–1097. doi: 10.1016/j.gca.2003.06.001
Schulte MD, Shock EL. 1993. Aldehydes in hydrothermal solution: Standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures. Geochimica et Cosmochimica Acta 57(16): 3835–3846. doi: 10.1016/0016-7037(93)90337-V
Schulte MD, Shock EL, Wood RH. 2001. The temperature dependence of the standard-state thermodynamic properties of aqueous nonelectrolytes. Geochimica et Cosmochimica Acta 65(21): 3919–3930. doi: 10.1016/S0016-7037(01)00717-7
Senoh H, Ueda M, Furukawa N, Inoue H, Iwakura C. 1998. Theoretical evaluation for thermodynamic stability of constituents of Mm-based hydrogen storage alloy in 6 M KOH solution at relatively high temperatures. Journal of Alloys and Compounds 280(1): 114–124. doi: 10.1016/S0925-8388(98)00739-7
Sharygin AV, Grafton BK, Xiao C, Wood RH, Balashov VN. 2006. Dissociation constants and speciation in aqueous Li2SO4 and K2SO4 from measurements of electrical conductance to 673K and 29MPa. Geochimica et Cosmochimica Acta 70(20): 5169–5182. doi: 10.1016/j.gca.2006.07.034
Shock EL. 1992. Stability of peptides in high-temperature aqueous solutions. Geochimica et Cosmochimica Acta 56(9): 3481–3491. doi: 10.1016/0016-7037(92)90392-V
Shock EL. 1993. Hydrothermal dehydration of aqueous organic compounds. Geochimica et Cosmochimica Acta 57(14): 3341–3349. doi: 10.1016/0016-7037(93)90542-5
Shock EL. 1995. Organic acids in hydrothermal solutions: Standard molal thermodynamic properties of carboxylic acids and estimates of dissociation constants at high temperatures and pressures. American Journal of Science 295(5): 496–580. doi: 10.2475/ajs.295.5.496
Shock EL. 2009. Minerals as energy sources for microorganisms. Economic Geology 104(8): 1235–1248. doi: 10.2113/gsecongeo.104.8.1235
Shock EL, Helgeson HC. 1988. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C. Geochimica et Cosmochimica Acta 52(8): 2009–2036. doi: 10.1016/0016-7037(88)90181-0
Shock EL, Helgeson HC. 1990. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of organic species. Geochimica et Cosmochimica Acta 54(4): 915–945. doi: 10.1016/0016-7037(90)90429-O
Shock EL, Helgeson HC, Sverjensky DA. 1989. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochimica et Cosmochimica Acta 53(9): 2157–2183. doi: 10.1016/0016-7037(89)90341-4
Shock EL, Koretsky CM. 1993. Metal-organic complexes in geochemical processes: Calculation of standard partial molal thermodynamic properties of aqueous acetate complexes at high pressures and temperatures. Geochimica et Cosmochimica Acta 57(20): 4899–4922. doi: 10.1016/0016-7037(93)90128-J
Shock EL, Koretsky CM. 1995. Metal-organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures. Geochimica et Cosmochimica Acta 59(8): 1497–1532. doi: 10.1016/0016-7037(95)00058-8
Shock EL, McKinnon WB. 1993. Hydrothermal processing of cometary volatiles—Applications to Triton. Icarus 106(2): 464–477. doi: 10.1006/icar.1993.1185
Shock EL, Sassani DC, Betz H. 1997 a. Uranium in geologic fluids: Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures. Geochimica et Cosmochimica Acta 61(20): 4245–4266. doi: 10.1016/S0016-7037(97)00240-8
Shock EL, Sassani DC, Willis M, Sverjensky DA. 1997 b. Inorganic species in geologic fluids: Correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. Geochimica et Cosmochimica Acta 61(5): 907–950. doi: 10.1016/S0016-7037(96)00339-0
Shvedov D, Tremaine PR. 1997. Thermodynamic properties of aqueous dimethylamine and dimethylammonium chloride at temperatures from 283 K to 523 K: Apparent molar volumes, heat capacities, and temperature dependence of ionization. Journal of Solution Chemistry 26(12): 1113–1143. doi: 10.1023/A:1022977006327
Siebert RM, Hostetler PB. 1977. The stability of the magnesium bicarbonate ion pair from 10° to 90°C. American Journal of Science 277(6): 697–715. doi: 10.2475/ajs.277.6.697
slop07.dat. 2007. Sequential-access thermodynamic datafile used by PROGRAM supcrt92. Last updated on 2008-04-17. Accessed on 2019-04-08. doi: 10.5281/zenodo.2630820
slop16.dat. 2016. Sequential-access thermodynamic datafile used by PROGRAM supcrt92. Last updated on 2019-03-12. Accessed on 2019-04-08. doi: 10.5281/zenodo.2630820
slop98.dat. 1998. Sequential-access thermodynamic datafile used by PROGRAM supcrt92. Last updated on 1998-08-20. Accessed on 2019-04-08. doi: 10.5281/zenodo.2630820
sprons92.dat. 1992. S[equential-access] pro[perties of] n[atural] s[ubstances].dat; datafile used by PROGRAM supcrt91. Included with the SUPCRT92 package (Johnson et al., 1992). Last updated on 1991-02-15.
St Clair B, Pottenger J, Debes R, Hanselmann K, Shock EL. 2019. Distinguishing biotic and abiotic iron oxidation at low temperatures. ACS Earth and Space Chemistry 3(6): 905–921. doi: 10.1021/acsearthspacechem.9b00016
Stefánsson A. 2001. Dissolution of primary minerals of basalt in natural waters. I. Calculation of mineral solubilities from 0°C to 350°C. Chemical Geology 172: 225–250. doi: 10.1016/S0009-2541(00)00263-1
Stefánsson A, Bénézeth P, Schott J. 2013. Carbonic acid ionization and the stability of sodium bicarbonate and carbonate ion pairs to 200°CA potentiometric and spectrophotometric study. Geochimica et Cosmochimica Acta 120(Supplement C): 600–611. doi: 10.1016/j.gca.2013.04.023
Stefánsson A, Bénézeth P, Schott J. 2014. Potentiometric and spectrophotometric study of the stability of magnesium carbonate and bicarbonate ion pairs to 150°C and aqueous inorganic carbon speciation and magnesite solubility. Geochimica et Cosmochimica Acta 138(Supplement C): 21–31. doi: 10.1016/j.gca.2014.04.008
Stoffregen RE, Alpers CN, Jambor JL. 2000. Alunite-jarosite crystallography, thermodynamics, and geochronology. In: Sulfate Minerals: Crystallography, Geochemistry and Environmental Significance. Mineralogical Society of America. p. 453–479. doi: 10.2138/rmg.2000.40.9
Sverjensky DA, Harrison B, Azzolini D. 2014. Water in the deep Earth: The dielectric constant and the solubilities of quartz and corundum to 60 kb and 1,200 °C. Geochimica et Cosmochimica Acta 129: 125–145. doi: 10.1016/j.gca.2013.12.019
Sverjensky DA, Hemley JJ, D’Angelo WM. 1991. Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria. Geochimica et Cosmochimica Acta 55(4): 989–1004. doi: 10.1016/0016-7037(91)90157-Z
Sverjensky DA, Shock EL, Helgeson HC. 1997. Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. Geochimica et Cosmochimica Acta 61(7): 1359–1412. doi: 10.1016/S0016-7037(97)00009-4
Tagirov BR, Baranova NN, Bychkova YaV. 2015. Thermodynamic properties of platinum chloride complexes in aqueous solutions: Derivation of consistent parameters from literature data and experiments on Pt(cr) solubility at 400–475°C and 1 kbar. Geochemistry International 53(4): 327–340. doi: 10.1134/S0016702915040084
Tagirov BR, Baranova NN, Zotov AV, Akinfiev NN, Polotnyanko NA, Shikina ND, Koroleva LA, Shvarov YV, Bastrakov EN. 2013. The speciation and transport of palladium in hydrothermal fluids: Experimental modeling and thermodynamic constraints. Geochimica et Cosmochimica Acta 117: 348–373. doi: 10.1016/j.gca.2013.03.047
Tagirov BR, Diakonov II, Devina OA, Zotov AV. 2000. Standard ferric–ferrous potential and stability of FeCl2+ to 90°C. Thermodynamic properties of Fe(aq)3+ and ferric-chloride species. Chemical Geology 162(3): 193–219. doi: 10.1016/S0009-2541(99)00150-3
Tagirov BR, Zotov AV, Akinfiev NN. 1997. Experimental study of dissociation of HCl from 350 to 500°C and from 500 to 2500 bars: Thermodynamic properties of HC(aq). Geochimica et Cosmochimica Acta 61(20): 4267–4280. doi: 10.1016/S0016-7037(97)00274-3
Tagirov B, Schott J. 2001. Aluminum speciation in crustal fluids revisited. Geochimica et Cosmochimica Acta 65(21): 3965–3992. doi: 10.1016/S0016-7037(01)00705-0
Tanger JC IV, Helgeson HC. 1988. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Revised equations of state for the standard partial molal properties of ions and electrolytes. American Journal of Science 288(1): 19–98. doi: 10.2475/ajs.288.1.19
Tardy Y, Schaul R, Duplay J. 1997. Domaines de stabilité thermodynamiques des humus, de la microflore et des plantes. Comptes Rendus de l’Academie des Sciences, Serie IIa: Sciences de la Terre et des Planetes 324(12): 969–976. doi: 10.1016/S1251-8050(97)83981-X
Tutolo BM, Kong X-Z, Seyfried Jr William E., Saar MO. 2014. Internal consistency in aqueous geochemical data revisited: Applications to the aluminum system. Geochimica et Cosmochimica Acta 133: 216–234. doi: 10.1016/j.gca.2014.02.036
Vidal O, Goffé B, Theye T. 1992. Experimental study of the stability of sudoite and magnesiocarpholite and calculation of a new petrogenetic grid for the system FeOMgOAl2O3SiO2H2O. Journal of Metamorphic Geology 10(5): 603–614. doi: 10.1111/j.1525-1314.1992.tb00109.x
Vidal O, Parra T, Trotet F. 2001. A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100° to 600°C, 1 to 25 kb range. American Journal of Science 301(6): 557–592. doi: 10.2475/ajs.301.6.557
Vidal O, Parra T, Viellard P. 2005. Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: Application to natural examples and possible role of oxidation. American Mineralogist 90(2-3): 347–358. doi: 10.2138/am.2005.1554
von der Heyden BP, Dick J, Rosenfels RC, Carlton L, Lilova K, Navrotsky A, Subramani T, Woodfield BF, Gibson A. 2024. Growth and stability of stratiform carrollite (CuCo2S4) in the Tenke-Fungurume ore district, Central African Copperbelt. The Canadian Journal of Mineralogy and Petrology 62(1): 77–93. doi: 10.3749/2300028
Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL. 1982. The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. Journal of Physical and Chemical Reference Data 11(Suppl. 2): 1–392. Available at https://srd.nist.gov/JPCRD/jpcrdS2Vol11.pdf.
Wagner W, Pruß A. 2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data 31(2): 387–535. doi: 10.1063/1.1461829
Williams-Jones AE, Vasyukova OV. 2022. Constraints on the genesis of cobalt deposits: Part I. Theoretical considerations. Economic Geology 117(3): 513–528. doi: 10.5382/econgeo.4895
Wood SA, Samson IM. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Economic Geology 95(1): 143–182. doi: 10.2113/gsecongeo.95.1.143
Yang C, Inoue T, Yamada A, Kikegawa T, Ando J. 2014. Equation of state and phase transition of antigorite under high pressure and high temperature. Physics of the Earth and Planetary Interiors 228(Supplement C): 56–62. doi: 10.1016/j.pepi.2013.07.008
Zhu C, Sverjensky DA. 1992. F-Cl-OH partitioning between biotite and apatite. Geochimica et Cosmochimica Acta 56(9): 3435–3467. doi: 10.1016/0016-7037(92)90390-5
Zhu Y, Zhang X, Xie Q, Chen Y, Wang D, Liang Y, Lu J. 2005. Solubility and stability of barium arsenate and barium hydrogen arsenate at 25 °C. Journal of Hazardous Materials 120(1): 37–44. doi: 10.1016/j.jhazmat.2004.12.025
Ziemer SP, Woolley EM. 2007. Thermodynamics of the first and second proton dissociations from aqueous l-aspartic acid and l-glutamic acid at temperatures from (278.15 to 393.15) K and at the pressure 0.35 MPa: Apparent molar heat capacities and apparent molar volumes of zwitterionic, protonated cationic, and deprotonated anionic forms at molalities from (0.002 to 1.0) mol · kg−1. Journal of Chemical Thermodynamics 39(4): 645–666. doi: 10.1016/j.jct.2006.08.008
Zimmer K, Zhang Y, Lu P, Chen Y, Zhang G, Dalkilic M, Zhu C. 2016. SUPCRTBL: A revised and extended thermodynamic dataset and software package of SUPCRT92. Computers & Geosciences 90: 97–111. doi: 10.1016/j.cageo.2016.02.013
    • Aqueous H2O (3 species)
    • Aqueous Inorganic (913 species)
    • Aqueous Organic (1103 species)
    • Solid Inorganic (161 species)
    • Solid Organic (480 species)
    • Solid Berman (92 species)
    • Gas Inorganic (19 species)
    • Gas Organic (267 species)
    • Liquid Organic (532 species)
    • Optional SUPCRT92 (177 species)
    • Optional SLOP98 (149 species)
    • Optional AD (24 species)
    • Optional AS04 (3 species)
    • Optional DEW (210 species)
    • Optional GEMSFIT (42 species)
    • References