Package 'GNE'

Title: Computation of Generalized Nash Equilibria
Description: Compute standard and generalized Nash Equilibria of non-cooperative games. Optimization methods available are nonsmooth reformulation, fixed-point formulation, minimization problem and constrained-equation reformulation. See e.g. Kanzow and Facchinei (2010), <doi:10.1007/s10479-009-0653-x>.
Authors: Christophe Dutang [aut, cre]
Maintainer: Christophe Dutang <[email protected]>
License: GPL (>= 2)
Version: 0.99-7
Built: 2025-01-04 19:17:23 UTC
Source: https://github.com/r-forge/optimizer

Help Index


Benchmark function

Description

Benchmark function to compare GNE computational methods.

Usage

bench.GNE.nseq(xinit, ..., echo=FALSE, control=list())
bench.GNE.ceq(xinit, ..., echo=FALSE, control=list())
bench.GNE.fpeq(xinit, ..., echo=FALSE, control.outer=list(), 
	control.inner=list())
bench.GNE.minpb(xinit, ..., echo=FALSE, control.outer=list(), 
	control.inner=list())

Arguments

xinit

a numeric vector for the initial point.

...

further arguments to be passed to GNE.nseq, GNE.ceq, GNE.fpeq or GNE.minpb. NOT to the functions func1 and func2.

echo

a logical to get some traces of the benchmark computation.

control, control.outer, control.inner

a list with control parameters to be passed to GNE.xxx function.

Details

Computing generalized Nash Equilibrium can be done in three different approaches.

(i) extended KKT system

It consists in solving the non smooth extended Karush-Kuhn-Tucker (KKT) system Φ(z)=0\Phi(z)=0. func1 is PhiPhi and func2 is JacPhiJac Phi.

(ii) fixed point approach

It consists in solving equation y(x)=xy(x)=x. func1 is yy and func2 is ?

(iii) gap function minimization

It consists in minimizing a gap function minV(x)min V(x). func1 is VV and func2 is GradVGrad V.

Value

For GNE.bench.ceq and GNE.bench.nseq, a data.frame is returned with columns:

method

the name of the method.

fctcall

the number of calls of the function.

jaccall

the number of calls of the Jacobian.

comptime

the computation time.

normFx

the norm of the merit function at the final iterate.

code

the exit code.

localmethods

the name of the local method.

globalmethods

the name of the globalization method.

x

the final iterate.

For GNE.bench.minpb, a data.frame is returned with columns:

method

the name of the method.

minfncall.outer

the number of calls of the merit function.

grminfncall.outer

the number of calls of the gradient of the merit function.

gapfncall.inner

the number of calls of the gap function.

grgapfncall.outer

the number of calls of the gradient of the gap function.

comptime

the computation time.

normFx

the norm of the merit function at the final iterate.

code

the exit code.

x

the final iterate.

For GNE.bench.fpeq, a data.frame is returned with columns:

method

the name of the method.

fpfncall.outer

the number of calls of the fixed-point function.

merfncall.outer

the number of calls of the merit function.

gapfncall.inner

the number of calls of the gap function.

grgapfncall.outer

the number of calls of the gradient of the gap function.

comptime

the computation time.

normFx

the norm of the merit function at the final iterate.

code

the exit code.

x

the final iterate.

Author(s)

Christophe Dutang

References

F. Facchinei, A. Fischer & V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.

A. von Heusinger (2009), Numerical Methods for the Solution of the Generalized Nash Equilibrium Problem, Ph. D. Thesis.

A. von Heusinger & J. Kanzow (2009), Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput Optim Appl .

See Also

See GNE.fpeq, GNE.minpb, GNE.ceq and GNE.nseq for other approaches.


Constrained Equation Reformulation

Description

functions of the Constrained Equation Reformulation of the GNEP

Usage

funCER(z, dimx, dimlam, 
	grobj, arggrobj, 
	constr, argconstr,  
	grconstr, arggrconstr, 
	dimmu, joint, argjoint,
	grjoint, arggrjoint,
	echo=FALSE)

jacCER(z, dimx, dimlam,
	heobj, argheobj, 
	constr, argconstr,  
	grconstr, arggrconstr, 
	heconstr, argheconstr,
	dimmu, joint, argjoint,
	grjoint, arggrjoint,
	hejoint, arghejoint,
	echo=FALSE)

Arguments

z

a numeric vector z containing x then lambda values.

dimx

dimension of x.

dimlam

dimension of lambda.

grobj

gradient of the objective function, see details.

arggrobj

a list of additional arguments of the objective gradient.

constr

constraint function, see details.

argconstr

a list of additional arguments of the constraint function.

grconstr

gradient of the constraint function, see details.

arggrconstr

a list of additional arguments of the constraint gradient.

dimmu

a vector of dimension for mumu.

joint

joint function, see details.

argjoint

a list of additional arguments of the joint function.

grjoint

gradient of the joint function, see details.

arggrjoint

a list of additional arguments of the joint gradient.

heobj

Hessian of the objective function, see details.

argheobj

a list of additional arguments of the objective Hessian.

heconstr

Hessian of the constraint function, see details.

argheconstr

a list of additional arguments of the constraint Hessian.

hejoint

Hessian of the joint function, see details.

arghejoint

a list of additional arguments of the joint Hessian.

echo

a logical to show some traces.

Details

Compute the H function or the Jacobian of the H function defined in Dreves et al.(2009).

Arguments of the H function

The arguments which are functions must respect the following features

grobj

The gradient GradObjGrad Obj of an objective function ObjObj (to be minimized) must have 3 arguments for GradObj(z,playnum,ideriv)Grad Obj(z, playnum, ideriv): vector z, player number, derivative index , and optionnally additional arguments in arggrobj.

constr

The constraint function gg must have 2 arguments: vector z, player number, such that g(z,playnum)<=0g(z, playnum) <= 0. Optionnally, gg may have additional arguments in argconstr.

grconstr

The gradient of the constraint function gg must have 3 arguments: vector z, player number, derivative index, and optionnally additional arguments in arggrconstr.

Arguments of the Jacobian of H

The arguments which are functions must respect the following features

heobj

It must have 4 arguments: vector z, player number, two derivative indexes.

heconstr

It must have 4 arguments: vector z, player number, two derivative indexes.

Optionnally, heobj and heconstr can have additional arguments argheobj and argheconstr.

See the example below.

Value

A vector for funCER or a matrix for jacCER.

Author(s)

Christophe Dutang

References

Dreves, A., Facchinei, F., Kanzow, C. and Sagratella, S. (2011), On the solutions of the KKT conditions of generalized Nash equilibrium problems, SIAM Journal on Optimization.

F. Facchinei, A. Fischer and V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.

See Also

See also GNE.ceq.

Examples

#-------------------------------------------------------------------------------
# (1) Example 5 of von Facchinei et al. (2007)
#-------------------------------------------------------------------------------

dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j)
{
	if(i == 1)
		res <- c(2*(x[1]-1), 0)
	if(i == 2)
		res <- c(0, 2*(x[2]-1/2))
	res[j]	
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k)
	2 * (i == j && j == k)

dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
	sum(x[1:2]) - 1
#Gr_x_j g_i(x)
grg <- function(x, i, j)
	1
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
	0


x0 <- rep(0, sum(dimx))
z0 <- c(x0, 2, 2, max(10, 5-g(x0, 1) ), max(10, 5-g(x0, 2) ) )

#true value is (3/4, 1/4, 1/2, 1/2)
funCER(z0, dimx, dimlam, grobj=grobj, 
	constr=g, grconstr=grg)

jacCER(z0, dimx, dimlam, heobj=heobj, 
	constr=g, grconstr=grg, heconstr=heg)



#-------------------------------------------------------------------------------
# (2) Duopoly game of Krawczyk and Stanislav Uryasev (2000)
#-------------------------------------------------------------------------------


#constants
myarg <- list(d= 20, lambda= 4, rho= 1)

dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j, arg)
{
	res <- -arg$rho * x[i]
	if(i == j)
	res <- res + arg$d - arg$lambda - arg$rho*(x[1]+x[2])
	-res
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k, arg)
	arg$rho * (i == j) + arg$rho * (j == k)	


dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
	-x[i]
#Gr_x_j g_i(x)
grg <- function(x, i, j)
	-1*(i == j)
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
	0

#true value is (16/3, 16/3, 0, 0) 

x0 <- rep(0, sum(dimx))
z0 <- c(x0, 2, 2, max(10, 5-g(x0, 1) ), max(10, 5-g(x0, 2) ) )


funCER(z0, dimx, dimlam, grobj=grobj, arggrobj=myarg, 
	constr=g, grconstr=grg)

jacCER(z0, dimx, dimlam, heobj=heobj, 
	argheobj=myarg, constr=g, grconstr=grg, heconstr=heg)

Complementarity functions

Description

Classic Complementarity functions

Usage

phiFB(a, b) 
GrAphiFB(a, b) 
GrBphiFB(a, b) 

phipFB(a, b, p) 
GrAphipFB(a, b, p) 
GrBphipFB(a, b, p) 

phirFB(a, b) 
GrAphirFB(a, b) 
GrBphirFB(a, b) 

phiMin(a, b) 
GrAphiMin(a, b) 
GrBphiMin(a, b)

phiMan(a, b, f, fprime)
GrAphiMan(a, b, f, fprime)
GrBphiMan(a, b, f, fprime)

phiKK(a, b, lambda)
GrAphiKK(a, b, lambda)
GrBphiKK(a, b, lambda)


phiLT(a, b, q)
GrAphiLT(a, b, q)
GrBphiLT(a, b, q)

compl.par(type=c("FB", "pFB", "rFB", "Min", "Man", "LT", "KK"), 
	p, f, fprime, q, lambda)

## S3 method for class 'compl.par'
print(x, ...)

## S3 method for class 'compl.par'
summary(object, ...)

Arguments

a

first parameter.

b

second parameter.

f, fprime

a univariate function and its derivative.

lambda

a parameter in [0, 2[.

q

a parameter >1.

p

a parameter >0.

type

a character string for the complementarity function type: either "FB", "Min", "Man", "LT" or "KK".

x, object

an object of class "compl.par".

...

further arguments to pass to print, or summary.

Details

We implement 5 complementarity functions From Facchinei & Pang (2003).

(i) phiFB

the Fischer-Burmeister complementarity function a2+b2(a+b)\sqrt{a^2+b^2} - (a+b). The penalized version is phiFB(a,b)pmax(a,0)max(b,0)phiFB(a,b) - p*max(a,0)*max(b,0), whereas the regularized version is phiFB(a,b)epsilonphiFB(a,b) - epsilon.

(ii) phiMin

the minimum complementarity function min(a,b)\min(a,b).

(iii) phiMan

the Mangasarian's family of complementarity function f(ab)f(a)f(b)f(|a-b|) - f(a) - f(b), typically f(t)=tf(t)=t or f(t)=t3f(t)=t^3.

(iv) phiKK

the Kanzow-Kleinmichel complementarity function (((ab)2+2λab)(a+b))/(2λ)(\sqrt( (a-b)^2 + 2*\lambda*a*b ) - (a+b) ) / (2-\lambda).

(v) phiLT

the Luo-Tseng complementarity function (aq+bq)(1/q)(a+b)(a^q + b^q)^(1/q) - (a+b).

GrAXXX and GrBXXX implements the derivative of the complementarity function XXX with respect to aa and bb respectively.

compl.par creates an object of class "compl.par" with attributes "type" a character string and "fun","grA","grB" the corresponding functions for a given type. Optional arguments are also available, e.g. lambda for the KK complementarity function.

Value

A numeric or an object of class "compl.par".

Author(s)

Christophe Dutang

References

F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer-Verlag (New York 2003).

See Also

See also GNE.nseq.

Examples

phiFB(1, 2)
phiLT(1, 2, 2)
phiKK(1, 2, 1)

-2*phiMin(1, 2)
phiMan(1, 2, function(t) t)

complFB <- compl.par("FB") 
summary(complFB)

complKK <- compl.par("KK", lambda=1) 
summary(complKK)

complKK$fun(1, 1, complKK$lambda)
complFB$fun(1, 1)

Solving non linear equations

Description

Non linear Solving methods

Usage

eqsolve(xinit, f, jac,
    method=c("Newton", "Levenberg-Marquardt", "Broyden"),
	global=c("line search", "none"), control=list())

Arguments

xinit

initial point.

f

the function for which we search roots.

jac

the Jacobian of the function f.

method

a character string specifying the method to use: either "Newton", "Levenberg-Marquardt", or "Broyden".

global

a character string for the globalization method to be used: either "line search" or "none".

control

a list for the control parameters. See details.

Details

The control argument is a list that can supply any of the following components:

tol

The absolute convergence tolerance. Default to 1e-6.

maxit

The maximum number of iterations. Default to 100.

echo

A logical or an integer (0, 1, 2, 3, 4) to print traces. Default to FALSE, i.e. 0.

echofile

A character string to store the traces in that file. Default to NULL.

echograph

A character string to plot iter-by-iter information. Either "NULL" (default), or "line" for line search plot or "trust" for trust region plots.

sigma

Reduction factor for the geometric linesearch. Default to 0.5.

btol

The backtracking tolerance. Default to 0.01.

delta

The exponent parameter for the LM parameter, should in [1,2][1,2]. Default to 2.

initlnsrch

The initial integer for starting the line search. Default to 0.

minstep

The minimal step. Default to 0.001.

Value

A list with components:

par

The best set of parameters found.

counts

A two-element integer vector giving the number of calls to phi and jacphi respectively.

iter

The iteration number.

code

0 if convergence, 1 if maxit is reached, 10 if tol is not reached and 11 for both.

Author(s)

Christophe Dutang

See Also

See nleqslv from the package of the same name.


GNE package

Description

Generalized Nash Equilibrium computational methods.

Usage

GNE(approach = 
	c("non smooth", "fixed point", "minimization", "constrained equation"), 
	method = "default", xinit, control=list(), ...)

Arguments

approach

a character string for the approach: either "non smooth", "fixed point", "minimization" or "constrained equation".

method

a character string for the computation method: either "default" or the name of the method.

xinit

a numeric vector for the initial point.

...

further arguments to be passed to GNE.nseq, GNE.fpeq or GNE.minpb.

control

a list with control parameters.

Details

Computing generalized Nash Equilibrium can be done in three different approaches.

(i) extended KKT system

It consists in solving the non smooth extended Karush-Kuhn-Tucker (KKT) system Φ(z)=0\Phi(z)=0.

(ii) fixed point approach

It consists in solving equation y(x)=xy(x)=x.

(iii) gap function minimization

It consists in minimizing a gap function minV(x)min V(x).

(iv) constrained equation

It consists in solving F(x)F(x) such that xx belongs to a specific set.

The GNE function is a global function calling the appropriate function GNE.nseq, GNE.fpeq, GNE.ceq or GNE.minpb. Benchmark functions comparing all methods for a given reformulation are available: see bench.GNE.

Additionnal utitilty functions are also available: rejection, projector, stepfunc, complementarity and funSSR.

Value

A list with components:

par

The best set of parameters found.

value

The value of the merit function.

counts

A two-element integer vector giving the number of calls to phi and jacphi respectively.

iter

The outer iteration number.

code

The values returned are

1

Function criterion is near zero. Convergence of function values has been achieved.

2

x-values within tolerance. This means that the relative distance between two consecutive x-values is smaller than xtol.

3

No better point found. This means that the algorithm has stalled and cannot find an acceptable new point. This may or may not indicate acceptably small function values.

4

Iteration limit maxit exceeded.

5

Jacobian is too ill-conditioned.

6

Jacobian is singular.

100

an error in the execution.

message

a string describing the termination code

fvec

a vector with function values.

approach

the name of the approach.

Author(s)

Christophe Dutang

References

F. Facchinei, A. Fischer and V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.

A. von Heusinger (2009), Numerical Methods for the Solution of the Generalized Nash Equilibrium Problem, Ph. D. Thesis.

A. von Heusinger and C. Kanzow (2009), Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput Optim Appl .

F. Facchinei and C. Kanzow (2009), Generalized Nash Equilibrium problems. Preprint 290.

C. Dutang (2013), A survey of GNE computation methods: theory and algorithms, preprint on HAL, https://hal.science/hal-00813531.

See Also

See GNE.fpeq, GNE.minpb, GNE.ceq and GNE.nseq for other approaches.


Constrained equation reformulation of the GNE problem.

Description

Constrained equation reformulation via the extended KKT system of the GNE problem.

Usage

GNE.ceq(init, dimx, dimlam, grobj, arggrobj, heobj, argheobj, 
	constr, argconstr, grconstr, arggrconstr, heconstr, argheconstr,
	dimmu, joint, argjoint, grjoint, arggrjoint, hejoint, arghejoint, 
	method="PR", control=list(), silent=TRUE, ...)

Arguments

init

Initial values for the parameters to be optimized over: z=(x,lambda,mu)z=(x, lambda, mu).

dimx

a vector of dimension for xx.

dimlam

a vector of dimension for lambdalambda.

grobj

gradient of the objective function (to be minimized), see details.

arggrobj

a list of additional arguments of the objective gradient.

heobj

Hessian of the objective function, see details.

argheobj

a list of additional arguments of the objective Hessian.

constr

constraint function (gi(x)<=0g^i(x)<=0), see details.

argconstr

a list of additional arguments of the constraint function.

grconstr

gradient of the constraint function, see details.

arggrconstr

a list of additional arguments of the constraint gradient.

heconstr

Hessian of the constraint function, see details.

argheconstr

a list of additional arguments of the constraint Hessian.

dimmu

a vector of dimension for mumu.

joint

joint function (h(x)<=0h(x)<=0), see details.

argjoint

a list of additional arguments of the joint function.

grjoint

gradient of the joint function, see details.

arggrjoint

a list of additional arguments of the joint gradient.

hejoint

Hessian of the joint function, see details.

arghejoint

a list of additional arguments of the joint Hessian.

method

a character string specifying the method "PR" or "AS".

control

a list with control parameters.

...

further arguments to be passed to the optimization routine. NOT to the functions H and jacH.

silent

a logical to get some traces. Default to FALSE.

Details

GNE.ceq solves the GNE problem via a constrained equation reformulation of the KKT system.

This approach consists in solving the extended Karush-Kuhn-Tucker (KKT) system denoted by H(z)=0H(z)=0, for zΩz \in \Omega where zz is formed by the players strategy xx, the Lagrange multiplier λ\lambda and the slate variable ww. The root problem H(z)=0H(z)=0 is solved by an iterative scheme zn+1=zn+dnz_{n+1} = z_n + d_n, where the direction dnd_n is computed in two different ways. Let J(x)=JacH(x)J(x)=Jac H(x). There are two possible methods either "PR" for potential reduction algorithm or "AS" for affine scaled trust reduction algorithm.

(a) potential reduction algorithm:

The direction solves the system H(zn)+J(zn)d=sigmanaTH(zn)/a22aH(z_n) + J(z_n) d = sigma_n a^T H(z_n) / ||a||_2^2 a.

(b) bound-constrained trust region algorithm:

The direction solves the system minpJ(zn)Tp+H(zn)2\min_p ||J(z_n)^T p + H(z_n)||^2, for pp such that p<=Deltan||p|| <= Delta_n||.

... are further arguments to be passed to the optimization routine, that is global, xscalm, silent. A globalization scheme can be choosed using the global argument. Available schemes are

(1) Line search:

if global is set to "qline" or "gline", a line search is used with the merit function being half of the L2 norm of PhiPhi, respectively with a quadratic or a geometric implementation.

(3) Trust-region:

if global is set to "pwldog", the Powell dogleg method is used.

(2) None:

if global is set to "none", no globalization is done.

The default value of global is "gline" when method="PR" and "pwldog" when method="AS". The xscalm is a scaling parameter to used, either "fixed" (default) or "auto", for which scaling factors are calculated from the euclidean norms of the columns of the jacobian matrix. The silent argument is a logical to report or not the optimization process, default to FALSE.

The control argument is a list that can supply any of the following components:

xtol

The relative steplength tolerance. When the relative steplength of all scaled x values is smaller than this value convergence is declared. The default value is 10810^{-8}.

ftol

The function value tolerance. Convergence is declared when the largest absolute function value is smaller than ftol. The default value is 10810^{-8}.

btol

The backtracking tolerance. The default value is 10210^{-2}.

maxit

The maximum number of major iterations. The default value is 100 if a global strategy has been specified.

trace

Non-negative integer. A value of 1 will give a detailed report of the progress of the iteration, default 0.

sigma, delta, zeta

Parameters initialized to 1/2, 1, length(init)/2, respectively, when method="PR".

forcingpar

Forcing parameter set to 0.1, when method="PR".

theta, radiusmin, reducmin, radiusmax, radiusred, reducred, radiusexp, reducexp

Parameters initialized to 0.99995, 1, 0.1, 1e10, 1/2, 1/4, 2, 3/4, when method="AS".

Value

GNE.ceq returns a list with components:

par

The best set of parameters found.

value

The value of the merit function.

counts

A two-element integer vector giving the number of calls to H and jacH respectively.

iter

The outer iteration number.

code

The values returned are

1

Function criterion is near zero. Convergence of function values has been achieved.

2

x-values within tolerance. This means that the relative distance between two consecutive x-values is smaller than xtol.

3

No better point found. This means that the algorithm has stalled and cannot find an acceptable new point. This may or may not indicate acceptably small function values.

4

Iteration limit maxit exceeded.

5

Jacobian is too ill-conditioned.

6

Jacobian is singular.

100

an error in the execution.

message

a string describing the termination code.

fvec

a vector with function values.

Author(s)

Christophe Dutang

References

J.E. Dennis and J.J. Moree (1977), Quasi-Newton methods, Motivation and Theory, SIAM review.

Monteiro, R. and Pang, J.-S. (1999), A Potential Reduction Newton Method for Constrained equations, SIAM Journal on Optimization 9(3), 729-754.

S. Bellavia, M. Macconi and B. Morini (2003), An affine scaling trust-region approach to bound-constrained nonlinear systems, Applied Numerical Mathematics 44, 257-280

A. Dreves, F. Facchinei, C. Kanzow and S. Sagratella (2011), On the solutions of the KKT conditions of generalized Nash equilibrium problems, SIAM Journal on Optimization 21(3), 1082-1108.

See Also

See GNE.fpeq, GNE.minpb and GNE.nseq for other approaches; funCER and jacCER for template functions of HH and JacHJac H.

Examples

#-------------------------------------------------------------------------------
# (1) Example 5 of von Facchinei et al. (2007)
#-------------------------------------------------------------------------------

dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j)
{
	if(i == 1)
		res <- c(2*(x[1]-1), 0)
	if(i == 2)
		res <- c(0, 2*(x[2]-1/2))
	res[j]	
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k)
	2 * (i == j && j == k)

dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
	sum(x[1:2]) - 1
#Gr_x_j g_i(x)
grg <- function(x, i, j)
	1
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
	0


x0 <- rep(0, sum(dimx))
z0 <- c(x0, 2, 2, max(10, 5-g(x0, 1) ), max(10, 5-g(x0, 2) ) )

#true value is (3/4, 1/4, 1/2, 1/2)
GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj, 
	constr=g, grconstr=grg, heconstr=heg, method="PR", 
	control=list(trace=0, maxit=10))


GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj, 
	constr=g, grconstr=grg, heconstr=heg, method="AS", global="pwldog", 
	xscalm="auto", control=list(trace=0, maxit=100))


#-------------------------------------------------------------------------------
# (2) Duopoly game of Krawczyk and Stanislav Uryasev (2000)
#-------------------------------------------------------------------------------


#constants
myarg <- list(d= 20, lambda= 4, rho= 1)

dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j, arg)
{
	res <- -arg$rho * x[i]
	if(i == j)
	res <- res + arg$d - arg$lambda - arg$rho*(x[1]+x[2])
	-res
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k, arg)
	arg$rho * (i == j) + arg$rho * (j == k)	


dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
	-x[i]
#Gr_x_j g_i(x)
grg <- function(x, i, j)
	-1*(i == j)
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
	0

#true value is (16/3, 16/3, 0, 0) 

x0 <- rep(0, sum(dimx))
z0 <- c(x0, 2, 2, max(10, 5-g(x0, 1) ), max(10, 5-g(x0, 2) ) )


GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj, arggrobj=myarg, 
	argheobj=myarg, constr=g, grconstr=grg, heconstr=heg,
	method="PR", control=list(trace=0, maxit=10))

GNE.ceq(z0, dimx, dimlam, grobj=grobj, heobj=heobj, arggrobj=myarg, 
	argheobj=myarg, constr=g, grconstr=grg, heconstr=heg, 
	method="AS", global="pwldog", xscalm="auto", control=list(trace=0, maxit=100))

Fixed point equation reformulation of the GNE problem.

Description

Fixed point equation reformulation via the NI function of the GNE problem.

Usage

GNE.fpeq(init, dimx, obj, argobj, grobj, arggrobj, 
	heobj, argheobj, joint, argjoint, jacjoint, argjacjoint, 
	method = "default", problem = c("NIR", "VIR"), 
	merit = c("NI", "VI", "FP"), order.method=1, control.outer=list(), 
	control.inner=list(), silent=TRUE, param=list(), stepfunc, argstep, ...)

Arguments

init

Initial values for the parameters to be optimized over: z=(x,lambda,mu)z=(x, lambda, mu).

dimx

a vector of dimension for xx.

obj

objective function (to be minimized), see details.

argobj

a list of additional arguments.

grobj

gradient of the objective function, see details.

arggrobj

a list of additional arguments of the objective gradient.

heobj

Hessian of the objective function, see details.

argheobj

a list of additional arguments of the objective Hessian.

joint

joint function (h(x)<=0h(x)<=0), see details.

argjoint

a list of additional arguments of the joint function.

jacjoint

Jacobian of the joint function, see details.

argjacjoint

a list of additional arguments of the Jacobian.

method

either "pure", "UR", "vH", "RRE", "MPE", "SqRRE" or "SqMPE" method, see details. "default" corresponds to "MPE".

problem

either "NIR", "VIP", see details.

merit

either "NI", "VI", "FP", see details.

order.method

the order of the extrapolation method.

control.outer

a list with control parameters for the fixed point algorithm.

control.inner

a list with control parameters for the fixed point function.

silent

a logical to show some traces.

param

a list of parameters for the computation of the fixed point function.

stepfunc

the step function, only needed when method="UR".

argstep

additional arguments for the step function.

...

further arguments to be passed to the optimization routine. NOT to the functions.

Details

Functions in argument must respect the following template:

  • obj must have arguments the current iterate z, the player number i and optionnally additional arguments given in a list.

  • grobj must have arguments the current iterate z, the player number i, the derivative index j and optionnally additional arguments given in a list.

  • heobj must have arguments the current iterate z, the player number i, the derivative indexes j, k and optionnally additional arguments given in a list.

  • joint must have arguments the current iterate z and optionnally additional arguments given in a list.

  • jacjoint must have arguments the current iterate z, the derivative index j and optionnally additional arguments given in a list.

The fixed point approach consists in solving equation y(x)=xy(x)=x.

(a) Crude or pure fixed point method:

It simply consists in iterations xn+1=y(xn)x_{n+1} = y(x_n).

(b) Polynomial methods:
- relaxation algorithm (linear extrapolation):

The next iterate is computed as

xn+1=(1αn)xn+αny(xn).x_{n+1} = (1-\alpha_n) x_n + \alpha_n y(x_n).

The step αn\alpha_n can be computed in different ways: constant, decreasing serie or a line search method. In the literature of game theory, the decreasing serie refers to the method of Ursayev and Rubinstein (method="UR") while the line search method refers to the method of von Heusinger (method="vH"). Note that the constant step can be done using the UR method.

- RRE and MPE method:

Reduced Rank Extrapolation and Minimal Polynomial Extrapolation methods are polynomial extrapolation methods, where the monomials are functional “powers” of the y function, i.e. function composition of y. Of order 1, RRE and MPE consists of

xn+1=xn+tn(y(xn)xn),x_{n+1} = x_n + t_n (y(x_n) - x_n),

where tnt_n equals to <vn,rn>/<vn,vn><v_n, r_n> / <v_n, v_n> for RRE1 and <rn,rn>/<vn,rn><r_n, r_n> / <v_n, r_n> for MPE1, where rn=y(xn)xnr_n =y(x_n) - x_n and vn=y(y(xn))2y(xn)+xnv_n = y(y(x_n)) - 2y(x_n) + x_n. To use RRE/MPE methods, set method = "RRE" or method = "MPE".

- squaring method:

It consists in using an extrapolation method (such as RRE and MPE) after two iteration of the linear extrapolation, i.e.

xn+1=xn2tnrn+tn2vn.x_{n+1} = x_n -2 t_n r_n + t_n^2 v_n.

The squared version of RRE/MPE methods are available via setting method = "SqRRE" or method = "SqMPE".

(c) Epsilon algorithms:

Not implemented.

For details on fixed point methods, see Varadhan & Roland (2004).

The control.outer argument is a list that can supply any of the following components:

merit="FP" and method="pure"

see fpiter. the default parameters are list(tol=1e-6, maxiter=100, trace=TRUE).

merit="FP" and method!="pure"

see squarem. the default parameters are list(tol=1e-6, maxiter=100, trace=TRUE).

merit!="FP"

parameters are

tol

The absolute convergence tolerance. Default to 1e-6.

maxit

The maximum number of iterations. Default to 100.

echo

A logical or an integer (0, 1, 2, 3) to print traces. Default to FALSE, i.e. 0.

sigma, beta

parameters for von Heusinger algorithm. Default to 9/10 and 1/2 respectively.

Value

A list with components:

par

The best set of parameters found.

value

The value of the merit function.

outer.counts

A two-element integer vector giving the number of calls to fixed-point and merit functions respectively.

outer.iter

The outer iteration number.

code

The values returned are

1

Function criterion is near zero. Convergence of function values has been achieved.

4

Iteration limit maxit exceeded.

100

an error in the execution.

inner.iter

The iteration number when computing the fixed-point function.

inner.counts

A two-element integer vector giving the number of calls to the gap function and its gradient when computing the fixed-point function.

message

a string describing the termination code

Author(s)

Christophe Dutang

References

A. von Heusinger (2009), Numerical Methods for the Solution of the Generalized Nash Equilibrium Problem, Ph. D. Thesis.

A. von Heusinger and C. Kanzow (2009), Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput Optim Appl .

S. Uryasev and R.Y. Rubinstein (1994), On relaxation algorithms in computation of noncooperative equilibria, IEEE Transactions on Automatic Control.

R. Varadhan and C. Roland (2004), Squared Extrapolation Methods (SQUAREM): A New Class of Simple and Efficient Numerical Schemes for Accelerating the Convergence of the EM Algorithm, Johns Hopkins University, Dept. of Biostatistics Working Papers.

See Also

See GNE.ceq, GNE.minpb and GNE.nseq for other approaches.


Non smooth equation reformulation of the GNE problem.

Description

Non smooth equation reformulation via the extended KKT system of the GNE problem.

Usage

GNE.minpb(init, dimx, obj, argobj, grobj, arggrobj, 
	heobj, argheobj, joint, argjoint, jacjoint, argjacjoint, 
	method="default", problem = c("NIR", "VIR"), control.outer=list(), 
	control.inner=list(), silent=TRUE, param=list(), 
	optim.type=c("free","constr"), ...)

Arguments

init

Initial values for the parameters to be optimized over: z=(x,lambda,mu)z=(x, lambda, mu).

dimx

a vector of dimension for xx.

obj

objective function (to be minimized), see details.

argobj

a list of additional arguments.

grobj

gradient of the objective function, see details.

arggrobj

a list of additional arguments of the objective gradient.

heobj

Hessian of the objective function, see details.

argheobj

a list of additional arguments of the objective Hessian.

joint

joint function (h(x)<=0h(x)<=0), see details.

argjoint

a list of additional arguments of the joint function.

jacjoint

Jacobian of the joint function, see details.

argjacjoint

a list of additional arguments of the Jacobian.

method

either "BB", "CG" or "BFGS", see details.

problem

either "NIR", "VIP", see details.

optim.type

either "free", "constr", see details.

control.outer

a list with control parameters for the minimization algorithm.

control.inner

a list with control parameters for the minimization function.

...

further arguments to be passed to the optimization routine. NOT to the functions phi and jacphi.

silent

a logical to show some traces.

param

a list of parameters for the computation of the minimization function.

Details

Functions in argument must respect the following template:

  • obj must have arguments the current iterate z, the player number i and optionnally additional arguments given in a list.

  • grobj must have arguments the current iterate z, the player number i, the derivative index j and optionnally additional arguments given in a list.

  • heobj must have arguments the current iterate z, the player number i, the derivative indexes j, k and optionnally additional arguments given in a list.

  • joint must have arguments the current iterate z and optionnally additional arguments given in a list.

  • jacjoint must have arguments the current iterate z, the derivative index j and optionnally additional arguments given in a list.

The gap function minimization consists in minimizing a gap function minV(x)min V(x). The function minGap provides two optimization methods to solve this minimization problem.

Barzilai-Borwein algorithm

when method = "BB", we use Barzilai-Borwein iterative scheme to find the minimum.

Conjugate gradient algorithm

when method = "CG", we use the CG iterative scheme implemented in R, an Hessian-free method.

Broyden-Fletcher-Goldfarb-Shanno algorithm

when method = "BFGS", we use the BFGS iterative scheme implemented in R, a quasi-Newton method with line search.

In the game theory literature, there are two main gap functions: the regularized Nikaido-Isoda (NI) function and the regularized QVI gap function. This correspond to type="NI" and type="VI", respectively. See von Heusinger & Kanzow (2009) for details on the NI function and Kubota & Fukushima (2009) for the QVI regularized gap function.

The control.outer argument is a list that can supply any of the following components:

tol

The absolute convergence tolerance. Default to 1e-6.

maxit

The maximum number of iterations. Default to 100.

echo

A logical or an integer (0, 1, 2, 3) to print traces. Default to FALSE, i.e. 0.

stepinit

Initial step size for the BB method (should be small if gradient is “big”). Default to 1.

Note that the Gap function can return a numeric or a list with computation details. In the latter case, the object return must be a list with the following components value, counts, iter, see the example below.

Value

A list with components:

par

The best set of parameters found.

value

The value of the merit function.

outer.counts

A two-element integer vector giving the number of calls to Gap and gradGap respectively.

outer.iter

The outer iteration number.

code

The values returned are

1

Function criterion is near zero. Convergence of function values has been achieved.

2

x-values within tolerance. This means that the relative distance between two consecutive x-values is smaller than xtol.

3

No better point found. This means that the algorithm has stalled and cannot find an acceptable new point. This may or may not indicate acceptably small function values.

4

Iteration limit maxit exceeded.

5

Jacobian is too ill-conditioned.

6

Jacobian is singular.

100

an error in the execution.

inner.iter

The iteration number when computing the minimization function.

inner.counts

A two-element integer vector giving the number of calls to the gap function and its gradient when computing the minimization function.

message

a string describing the termination code

Author(s)

Christophe Dutang

References

A. von Heusinger (2009), Numerical Methods for the Solution of the Generalized Nash Equilibrium Problem, Ph. D. Thesis.

A. von Heusinger and C. Kanzow (2009), Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput Optim Appl .

K. Kubota and M. Fukushima (2009), Gap function approach to the generalized Nash Equilibrium problem, Journal of Optimization theory and applications.

See Also

See GNE.fpeq, GNE.ceq and GNE.nseq for other approaches.


Non smooth equation reformulation of the GNE problem.

Description

Non smooth equation reformulation via the extended KKT system of the GNE problem.

Usage

GNE.nseq(init, dimx, dimlam, grobj, arggrobj, heobj, argheobj, 
	constr, argconstr, grconstr, arggrconstr, heconstr, argheconstr,
	compl, gcompla, gcomplb, argcompl, 
	dimmu, joint, argjoint, grjoint, arggrjoint, hejoint, arghejoint, 
	method="default", control=list(), silent=TRUE, ...)

Arguments

init

Initial values for the parameters to be optimized over: z=(x,lambda,mu)z=(x, lambda, mu).

dimx

a vector of dimension for xx.

dimlam

a vector of dimension for lambdalambda.

grobj

gradient of the objective function (to be minimized), see details.

arggrobj

a list of additional arguments of the objective gradient.

heobj

Hessian of the objective function, see details.

argheobj

a list of additional arguments of the objective Hessian.

constr

constraint function (gi(x)<=0g^i(x)<=0), see details.

argconstr

a list of additional arguments of the constraint function.

grconstr

gradient of the constraint function, see details.

arggrconstr

a list of additional arguments of the constraint gradient.

heconstr

Hessian of the constraint function, see details.

argheconstr

a list of additional arguments of the constraint Hessian.

compl

the complementarity function with (at least) two arguments: compl(a,b).

argcompl

list of possible additional arguments for compl.

gcompla

derivative of the complementarity function w.r.t. the first argument.

gcomplb

derivative of the complementarity function w.r.t. the second argument.

dimmu

a vector of dimension for mumu.

joint

joint function (h(x)<=0h(x)<=0), see details.

argjoint

a list of additional arguments of the joint function.

grjoint

gradient of the joint function, see details.

arggrjoint

a list of additional arguments of the joint gradient.

hejoint

Hessian of the joint function, see details.

arghejoint

a list of additional arguments of the joint Hessian.

method

a character string specifying the method "Newton", "Broyden", "Levenberg-Marquardt" or "default" which is "Newton".

control

a list with control parameters.

...

further arguments to be passed to the optimization routine. NOT to the functions phi and jacphi.

silent

a logical to get some traces. Default to FALSE.

Details

Functions in argument must respect the following template:

  • constr must have arguments the current iterate z, the player number i and optionnally additional arguments given in a list.

  • grobj, grconstr must have arguments the current iterate z, the player number i, the derivative index j and optionnally additional arguments given in a list.

  • heobj, heconstr must have arguments the current iterate z, the player number i, the derivative indexes j, k and optionnally additional arguments given in a list.

  • compl, gcompla, gcomplb must have two arguments a, b and optionnally additional arguments given in a list.

  • joint must have arguments the current iterate z and optionnally additional arguments given in a list.

  • grjoint must have arguments the current iterate z, the derivative index j and optionnally additional arguments given in a list.

  • hejoint must have arguments the current iterate z, the derivative indexes j, k and optionnally additional arguments given in a list.

GNE.nseq solves the GNE problem via a non smooth reformulation of the KKT system. bench.GNE.nseq carries out a benchmark of the computation methods (Newton and Broyden direction with all possible global schemes) for a given initial point. bench.GNE.nseq.LM carries out a benchmark of the Levenberg-Marquardt computation method.

This approach consists in solving the extended Karush-Kuhn-Tucker (KKT) system denoted by Φ(z)=0\Phi(z)=0, where zz is formed by the players strategy xx and the Lagrange multiplier λ\lambda. The root problem Φ(z)=0\Phi(z)=0 is solved by an iterative scheme zn+1=zn+dnz_{n+1} = z_n + d_n, where the direction dnd_n is computed in three different ways. Let J(x)=JacΦ(x)J(x)=Jac\Phi(x).

(a) Newton:

The direction solves the system J(zn)d=Φ(zn)J(z_n) d = - \Phi(z_n), generally called the Newton equation.

(b) Broyden:

It is a quasi-Newton method aiming to solve an approximate version of the Newton equation d=Φ(zn)Wnd = -\Phi(z_n) W_n where WnW_n is computed by an iterative scheme. In the current implementation, WnW_n is updated by the Broyden method.

(c) Levenberg-Marquardt:

The direction solves the system

[J(zn)TJ(zn)+λnδI]d=J(zn)TΦ(xn)\left[ J(z_n)^T J(z_n) + \lambda_n^\delta I \right] d = - J(z_n)^T\Phi(x_n)

where II denotes the identity matrix, δ\delta is a parameter in [1,2] and λn=Φ(zn)\lambda_n = ||\Phi(z_n)|| if LM.param="merit", J(zn)TΦ(zn)||J(z_n)^T \Phi(z_n)|| if LM.param="jacmerit", the minimum of both preceding quantities if LM.param="min", or an adatpive parameter according to Fan(2003) if LM.param="adaptive".

In addition to the computation method, a globalization scheme can be choosed using the global argument, via the ... argument. Available schemes are

(1) Line search:

if global is set to "qline" or "gline", a line search is used with the merit function being half of the L2 norm of PhiPhi, respectively with a quadratic or a geometric implementation.

(2) Trust region:

if global is set to "dbldog" or "pwldog", a trust region is used respectively with a double dogleg or a Powell (simple) dogleg implementation. This global scheme is not available for the Levenberg-Marquardt direction.

(3) None:

if global is set to "none", no globalization is done.

The default value of global is "gline". Note that in the special case of the Levenberg-Marquardt direction with adaptive parameter, the global scheme must be "none".

In the GNEP context, details on the methods can be found in Facchinei, Fischer & Piccialli (2009), "Newton" corresponds to method 1 and "Levenberg-Marquardt" to method 3. In a general nonlinear equation framework, see Dennis & Moree (1977), Dennis & Schnabel (1996) or Nocedal & Wright (2006),

The implementation relies heavily on the nleqslv function of the package of the same name. So full details on the control parameters are to be found in the help page of this function. We briefly recall here the main parameters. The control argument is a list that can supply any of the following components:

xtol

The relative steplength tolerance. When the relative steplength of all scaled x values is smaller than this value convergence is declared. The default value is 10810^{-8}.

ftol

The function value tolerance. Convergence is declared when the largest absolute function value is smaller than ftol. The default value is 10810^{-8}.

delta

A numeric delta in [1, 2], default to 2, for the Levenberg-Marquardt method only.

LM.param

A character string, default to "merit", for the Levenberg-Marquardt method only.

maxit

The maximum number of major iterations. The default value is 150 if a global strategy has been specified.

trace

Non-negative integer. A value of 1 will give a detailed report of the progress of the iteration, default 0.

... are further arguments to be passed to the optimization routine, that is global, xscalm, silent. See above for the globalization scheme. The xscalm is a scaling parameter to used, either "fixed" (default) or "auto", for which scaling factors are calculated from the euclidean norms of the columns of the jacobian matrix. See nleqslv for details. The silent argument is a logical to report or not the optimization process, default to FALSE.

Value

GNE.nseq returns a list with components:

par

The best set of parameters found.

value

The value of the merit function.

counts

A two-element integer vector giving the number of calls to phi and jacphi respectively.

iter

The outer iteration number.

code

The values returned are

1

Function criterion is near zero. Convergence of function values has been achieved.

2

x-values within tolerance. This means that the relative distance between two consecutive x-values is smaller than xtol.

3

No better point found. This means that the algorithm has stalled and cannot find an acceptable new point. This may or may not indicate acceptably small function values.

4

Iteration limit maxit exceeded.

5

Jacobian is too ill-conditioned.

6

Jacobian is singular.

100

an error in the execution.

message

a string describing the termination code.

fvec

a vector with function values.

bench.GNE.nseq returns a list with components:

compres

a data.frame summarizing the different computations.

reslist

a list with the different results from GNE.nseq.

Author(s)

Christophe Dutang

References

J.E. Dennis and J.J. Moree (1977), Quasi-Newton methods, Motivation and Theory, SIAM review.

J.E. Dennis and R.B. Schnabel (1996), Numerical methods for unconstrained optimization and nonlinear equations, SIAM.

F. Facchinei, A. Fischer and V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.

J.-Y. Fan (2003), A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations, Journal of Computational Mathematics.

B. Hasselman (2011), nleqslv: Solve systems of non linear equations, R package.

A. von Heusinger and C. Kanzow (2009), Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput Optim Appl .

J. Nocedal and S.J. Wright (2006), Numerical Optimization, Springer Science+Business Media

See Also

See GNE.fpeq, GNE.ceq and GNE.minpb for other approaches; funSSR and jacSSR for template functions of Φ\Phi and JacΦJac\Phi and complementarity for complementarity functions.

See also nleqslv for some optimization details.

Examples

#-------------------------------------------------------------------------------
# (1) Example 5 of von Facchinei et al. (2007)
#-------------------------------------------------------------------------------

dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j)
{
	if(i == 1)
		res <- c(2*(x[1]-1), 0)
	if(i == 2)
		res <- c(0, 2*(x[2]-1/2))
	res[j]	
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k)
	2 * (i == j && j == k)

dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
	sum(x[1:2]) - 1
#Gr_x_j g_i(x)
grg <- function(x, i, j)
	1
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
	0



#true value is (3/4, 1/4, 1/2, 1/2)

z0 <- rep(0, sum(dimx)+sum(dimlam))

funSSR(z0, dimx, dimlam, grobj=grobj, constr=g, grconstr=grg, compl=phiFB, echo=FALSE)

	
jacSSR(z0, dimx, dimlam, heobj=heobj, constr=g, grconstr=grg, 
	heconstr=heg, gcompla=GrAphiFB, gcomplb=GrBphiFB)


GNE.nseq(z0, dimx, dimlam, grobj=grobj, NULL, heobj=heobj, NULL, 
	constr=g, NULL, grconstr=grg, NULL, heconstr=heg, NULL, 
	compl=phiFB, gcompla=GrAphiFB, gcomplb=GrBphiFB, method="Newton", 
	control=list(trace=1))

GNE.nseq(z0, dimx, dimlam, grobj=grobj, NULL, heobj=heobj, NULL, 
	constr=g, NULL, grconstr=grg, NULL, heconstr=heg, NULL, 
	compl=phiFB, gcompla=GrAphiFB, gcomplb=GrBphiFB, method="Broyden", 
	control=list(trace=1))



#-------------------------------------------------------------------------------
# (2) Duopoly game of Krawczyk and Stanislav Uryasev (2000)
#-------------------------------------------------------------------------------


#constants
myarg <- list(d= 20, lambda= 4, rho= 1)

dimx <- c(1, 1)
#Gr_x_j O_i(x)
grobj <- function(x, i, j, arg)
{
	res <- -arg$rho * x[i]
	if(i == j)
		res <- res + arg$d - arg$lambda - arg$rho*(x[1]+x[2])
	-res
}
#Gr_x_k Gr_x_j O_i(x)
heobj <- function(x, i, j, k, arg)
	arg$rho * (i == j) + arg$rho * (j == k)	


dimlam <- c(1, 1)
#constraint function g_i(x)
g <- function(x, i)
	-x[i]
#Gr_x_j g_i(x)
grg <- function(x, i, j)
	-1*(i == j)
#Gr_x_k Gr_x_j g_i(x)
heg <- function(x, i, j, k)
	0

#true value is (16/3, 16/3, 0, 0) 

z0 <- rep(0, sum(dimx)+sum(dimlam))

funSSR(z0, dimx, dimlam, grobj=grobj, myarg, constr=g, grconstr=grg, compl=phiFB, echo=FALSE)

jacSSR(z0, dimx, dimlam, heobj=heobj, myarg, constr=g, grconstr=grg, 
	heconstr=heg, gcompla=GrAphiFB, gcomplb=GrBphiFB)


GNE.nseq(z0, dimx, dimlam, grobj=grobj, myarg, heobj=heobj, myarg, 
	constr=g, NULL, grconstr=grg, NULL, heconstr=heg, NULL, 
	compl=phiFB, gcompla=GrAphiFB, gcomplb=GrBphiFB, method="Newton", 
	control=list(trace=1))

GNE.nseq(z0, dimx, dimlam, grobj=grobj, myarg, heobj=heobj, myarg, 
	constr=g, NULL, grconstr=grg, NULL, heconstr=heg, NULL, 
	compl=phiFB, gcompla=GrAphiFB, gcomplb=GrBphiFB, method="Broyden", 
	control=list(trace=1))

Nikaido Isoda Reformulation

Description

functions of the Nikaido Isoda Reformulation of the GNEP

Usage

gapNIR(x, y, dimx, obj, argobj, param=list(), echo=FALSE)
gradxgapNIR(x, y, dimx, grobj, arggrobj, param=list(), echo=FALSE)
gradygapNIR(x, y, dimx, grobj, arggrobj, param=list(), echo=FALSE)
fpNIR(x, dimx, obj, argobj, joint, argjoint,  
	grobj, arggrobj, jacjoint, argjacjoint, param=list(), 
	echo=FALSE, control=list(), yinit=NULL, optim.method="default")

Arguments

x, y

a numeric vector.

dimx

a vector of dimension for x.

obj

objective function (to be minimized), see details.

argobj

a list of additional arguments.

grobj

gradient of the objective function, see details.

arggrobj

a list of additional arguments of the objective gradient.

joint

joint function, see details.

argjoint

a list of additional arguments of the joint function.

jacjoint

gradient of the joint function, see details.

argjacjoint

a list of additional arguments of the joint Jacobian.

param

a list of parameters.

control

a list with control parameters for the fixed point algorithm.

yinit

initial point when computing the fixed-point function.

optim.method

optimization method when computing the fixed-point function.

echo

a logical to show some traces.

Details

gapNIR computes the Nikaido Isoda function of the GNEP, while gradxgapNIR and gradygapNIR give its gradient with respect to xx and yy. fpNIR computes the fixed-point function.

Value

A vector for funSSR or a matrix for jacSSR.

Author(s)

Christophe Dutang

References

A. von Heusinger & J. Kanzow (2009), Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput Optim Appl .

F. Facchinei, A. Fischer and V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.

See Also

See also GNE.fpeq.


Potential reduction algorithm utility functions

Description

Functions for the potential reduction algorithm

Usage

potential.ce(u, n, zeta)

gradpotential.ce(u, n, zeta)	

psi.ce(z, dimx, dimlam, Hfinal, argfun, zeta)

gradpsi.ce(z, dimx, dimlam, Hfinal, jacHfinal, argfun, argjac, zeta)

Arguments

u

a numeric vector : u=(u1,u2)u=(u_1, u_2) where u1u_1 is of size n.

n

a numeric for the size of u1u_1.

zeta

a positive parameter.

z

a numeric vector : z=(x,lambda,w)z=(x, lambda, w) where dimx is the size of components of xx and dimlam is the size of components of lambdalambda and ww.

dimx

a numeric vector with the size of each components of xx.

dimlam

a numeric vector with the size of each components of lambdalambda. We must have length(dimx) == length(dimlam).

Hfinal

the root function.

argfun

a list of additionnals arguments for Hfinal.

jacHfinal

the Jacobian of the root function.

argjac

a list of additionnals arguments for jacHfinal.

Details

potential.ce is the potential function for the GNEP, and gradpotential.ce its gradient. psi.ce is the application of the potential function for Hfinal, and gradpsi.ce its gradient.

Value

A numeric or a numeric vector.

Author(s)

Christophe Dutang

References

S. Bellavia, M. Macconi, B. Morini (2003), An affine scaling trust-region approach to bound-constrained nonlinear systems, Applied Numerical Mathematics 44, 257-280

A. Dreves, F. Facchinei, C. Kanzow and S. Sagratella (2011), On the solutions of the KKT conditions of generalized Nash equilibrium problems, SIAM Journal on Optimization 21(3), 1082-1108.

See Also

See also GNE.ceq.


Projection of a point on a set

Description

Projection of a point z on the set defined by the constraints g(x) <= 0.

Usage

projector(z, g, jacg, bounds=c(0, 10), echo=FALSE, ...)

Arguments

z

The point to project.

g

The constraint function.

jacg

The jacobian of the constraint function.

bounds

bounds for the randomized initial iterate.

echo

a logical to plot traces.

...

further arguments to pass to g function.

Details

Find a point x in the set KK which minimizes the Euclidean distance zx2||z - x||^2, where the set KK is x,g(x)<=0x, g(x) <= 0. The Optimization is carried out by the constrOptim.nl function of the package alabama.

Value

A vector x.

Author(s)

Christophe Dutang

See Also

See also GNE.

Examples

# 1. the rectangle set
#

g <- function(x)
	c(x - 3, 1 - x)

jacg <- function(x)
	rbind(
	diag( rep(1, length(x)) ),
	diag( rep(-1, length(x)) )
	)

z <- runif(2, 3, 4)

#computation
projz <- projector(z, g, jacg)

#plot
plot(c(1, 3), c(1, 1), xlim=c(0, 4), ylim=c(0,4), type="l", col="blue")
lines(c(3, 3), c(1, 3), col="blue")
lines(c(3, 1), c(3, 3), col="blue")
lines(c(1, 1), c(3, 1), col="blue")

points(z[1], z[2], col="red")
points(projz[1], projz[2], col="red", pch="+")

z <- runif(2) + c(1, 0)
projz <- projector(z, g, jacg)

points(z[1], z[2], col="green")
points(projz[1], projz[2], col="green", pch="+")



# 2. the circle set
#

g <- function(x) sum((x-2)^2)-1
jacg <- function(x) as.matrix( 2*(x-2) )

z <- runif(2) + c(1, 0)

#computation
projz <- projector(z, g, jacg)

#plot
plot(c(1, 3), c(1, 1), xlim=c(0, 4), ylim=c(0,4), type="n", col="blue")
symbols(2, 2, circles=1, fg="blue", add=TRUE, inches=FALSE)

points(z[1], z[2], col="red")
points(projz[1], projz[2], col="red", pch="+")

z <- c(runif(1, 3, 4), runif(1, 1, 2))
projz <- projector(z, g, jacg)

points(z[1], z[2], col="green")
points(projz[1], projz[2], col="green", pch="+")

Rejection method for random generation.

Description

Generate random variate satisfying the constraint function by the Rejection algorithm.

Usage

rejection(constr, nvars, LB=0, UB=1, ..., echo=FALSE, 
	method=c("unif","norm", "normcap"), control=list())

Arguments

constr

Constraint function

nvars

Number of variables

LB

Lower bound

UB

Upper bound

...

further arguments to pass to constr function.

echo

a logical to plot traces.

method

the distribution to draw random variates, either "unif", "norm", "normcap".

control

a named list containing the mean and the standard deviation of the normal distribution used if method!="unif".

Details

Draw random variates x until all the components of constr(x) are negative. The distribution to draw random variates can be the uniform distribution on the hypercube defined by LB and UB, the normal distribution centered in (LB + UB)/2 and standard deviation (UB - LB) / (4*1.9600) and the capped normal distribution (intended for debug use).

Value

A vector x which verifies the constraints constr(x) <= 0.

Author(s)

Christophe Dutang

See Also

See also GNE.

Examples

f <- function(x) x[1]^2 + x[2]^2 - 1

rejection(f, 2, -3, 3, method="unif")

rejection(f, 2, -3, 3, method="norm")

SemiSmooth Reformulation

Description

functions of the SemiSmooth Reformulation of the GNEP

Usage

funSSR(z, dimx, dimlam, grobj, arggrobj, constr, argconstr,  grconstr, arggrconstr, 
	compl, argcompl, dimmu, joint, argjoint, grjoint, arggrjoint, echo=FALSE)
jacSSR(z, dimx, dimlam, heobj, argheobj, constr, argconstr,  grconstr, arggrconstr, 
	heconstr, argheconstr, gcompla, gcomplb, argcompl, dimmu, joint, argjoint,
	grjoint, arggrjoint, hejoint, arghejoint, echo=FALSE)

Arguments

z

a numeric vector z containing (x,lambda,mu)(x, lambda, mu) values.

dimx

a vector of dimension for xx.

dimlam

a vector of dimension for lambdalambda.

grobj

gradient of the objective function, see details.

arggrobj

a list of additional arguments of the objective gradient.

constr

constraint function, see details.

argconstr

a list of additional arguments of the constraint function.

grconstr

gradient of the constraint function, see details.

arggrconstr

a list of additional arguments of the constraint gradient.

compl

the complementarity function with (at least) two arguments: compl(a,b).

argcompl

list of possible additional arguments for compl.

dimmu

a vector of dimension for mumu.

joint

joint function, see details.

argjoint

a list of additional arguments of the joint function.

grjoint

gradient of the joint function, see details.

arggrjoint

a list of additional arguments of the joint gradient.

heobj

Hessian of the objective function, see details.

argheobj

a list of additional arguments of the objective Hessian.

heconstr

Hessian of the constraint function, see details.

argheconstr

a list of additional arguments of the constraint Hessian.

gcompla

derivative of the complementarity function w.r.t. the first argument.

gcomplb

derivative of the complementarity function w.r.t. the second argument.

hejoint

Hessian of the joint function, see details.

arghejoint

a list of additional arguments of the joint Hessian.

echo

a logical to show some traces.

Details

Compute the SemiSmooth Reformulation of the GNEP: the Generalized Nash equilibrium problem is defined by objective functions ObjObj with player variables xx defined in dimx and may have player-dependent constraint functions gg of dimension dimlam and/or a common shared joint function hh of dimension dimmu, where the Lagrange multiplier are lambdalambda and mumu, respectively, see F. Facchinei et al.(2009) where there is no joint function.

Arguments of the Phi function

The arguments which are functions must respect the following features

grobj

The gradient GradObjGrad Obj of an objective function ObjObj (to be minimized) must have 3 arguments for GradObj(z,playnum,ideriv)Grad Obj(z, playnum, ideriv): vector z, player number, derivative index , and optionnally additional arguments in arggrobj.

constr

The constraint function gg must have 2 arguments: vector z, player number, such that g(z,playnum)<=0g(z, playnum) <= 0. Optionnally, gg may have additional arguments in argconstr.

grconstr

The gradient of the constraint function gg must have 3 arguments: vector z, player number, derivative index, and optionnally additional arguments in arggrconstr.

compl

It must have two arguments and optionnally additional arguments in argcompl. A typical example is the minimum function.

joint

The constraint function hh must have 1 argument: vector z, such that h(z)<=0h(z) <= 0. Optionnally, hh may have additional arguments in argjoint.

grjoint

The gradient of the constraint function hh must have 2 arguments: vector z, derivative index, and optionnally additional arguments in arggrjoint.

Arguments of the Jacobian of Phi

The arguments which are functions must respect the following features

heobj

It must have 4 arguments: vector z, player number, two derivative indexes and optionnally additional arguments in argheobj.

heconstr

It must have 4 arguments: vector z, player number, two derivative indexes and optionnally additional arguments in argheconstr.

gcompla,gcomplb

It must have two arguments and optionnally additional arguments in argcompl.

hejoint

It must have 3 arguments: vector z, two derivative indexes and optionnally additional arguments in arghejoint.

See the example below.

Value

A vector for funSSR or a matrix for jacSSR.

Author(s)

Christophe Dutang

References

F. Facchinei, A. Fischer and V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.

See Also

See also GNE.nseq.

Examples

# (1) associated objective functions
#

dimx <- c(2, 2, 3)

#Gr_x_j O_i(x)
grfullob <- function(x, i, j)
{
	x <- x[1:7]	
	if(i == 1)
	{
		grad <- 3*(x - 1:7)^2
	}
	if(i == 2)
	{
		grad <- 1:7*(x - 1:7)^(0:6)
	}
	if(i == 3)
	{
		s <- x[5]^2 + x[6]^2 + x[7]^2 - 5	
		grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s)
			
	}
	grad[j]	
}


#Gr_x_k Gr_x_j O_i(x)
hefullob <- function(x, i, j, k)
{
	x <- x[1:7]
	if(i == 1)
	{
		he <- diag( 6*(x - 1:7) )
	}
	if(i == 2)
	{
		he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) )
	}
	if(i == 3)
	{
		s <- x[5]^2 + x[6]^2 + x[7]^2	
		
		he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7),
			c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]),
			c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]),
			c(0, 0, 0, 0,  8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) )
	}
	he[j,k]	
}



# (2) constraint linked functions
#

dimlam <- c(1, 2, 2)

#constraint function g_i(x)
g <- function(x, i)
{
	x <- x[1:7]
	if(i == 1)
		res <- sum( x^(1:7) ) -7
	if(i == 2)
		res <- c(sum(x) + prod(x) - 14, 20 - sum(x))
	if(i == 3)
		res <- c(sum(x^2) + 1, 100 - sum(x))
	res
}


#Gr_x_j g_i(x)
grfullg <- function(x, i, j)
{
	x <- x[1:7]	
	if(i == 1)
	{
		grad <- (1:7) * x ^ (0:6)
	}
	if(i == 2)
	{
		grad <- 1 + sapply(1:7, function(i) prod(x[-i]))
		grad <- cbind(grad, -1)
	}
	if(i == 3)
	{
		grad <- cbind(2*x, -1)
	}


	if(i == 1)
		res <- grad[j]	
	if(i != 1)
		res <- grad[j,]	
	as.numeric(res)
}



#Gr_x_k Gr_x_j g_i(x)
hefullg <- function(x, i, j, k)
{
	x <- x[1:7]
	if(i == 1)
	{
		he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) )
	}
	if(i == 2)
	{
		he1 <- matrix(0, 7, 7)
		he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)]))
		he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)]))
		he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)]))
		he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)]))
		he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)]))
		he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)]))
		he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)]))
						
						
		he2 <- matrix(0, 7, 7)
		
	}
	if(i == 3)
	{
		he1 <- diag(rep(2, 7))
		he2 <- matrix(0, 7, 7)
	}
	if(i != 1)
		return( c(he1[j, k], he2[j, k])	)
	else				
		return( he1[j, k] )
}


# (3) compute Phi
#

z <- rexp(sum(dimx) + sum(dimlam))

n <- sum(dimx)
m <- sum(dimlam)
x <- z[1:n]
lam <- z[(n+1):(n+m)]

resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB)


check <- c(grfullob(x, 1, 1) + lam[1] * grfullg(x, 1, 1), 
	grfullob(x, 1, 2) + lam[1] * grfullg(x, 1, 2), 
	grfullob(x, 2, 3) + lam[2:3] %*% grfullg(x, 2, 3),
	grfullob(x, 2, 4) + lam[2:3] %*% grfullg(x, 2, 4), 	
	grfullob(x, 3, 5) + lam[4:5] %*% grfullg(x, 3, 5),
	grfullob(x, 3, 6) + lam[4:5] %*% grfullg(x, 3, 6),
	grfullob(x, 3, 7) + lam[4:5] %*% grfullg(x, 3, 7),
	phiFB( -g(x, 1), lam[1]), 
	phiFB( -g(x, 2)[1], lam[2]), 
	phiFB( -g(x, 2)[2], lam[3]), 
	phiFB( -g(x, 3)[1], lam[4]), 
	phiFB( -g(x, 3)[2], lam[5]))
	
	

#check
cat("\n\n________________________________________\n\n")

#part A
print(cbind(check, res=as.numeric(resphi))[1:n, ])
#part B
print(cbind(check, res=as.numeric(resphi))[(n+1):(n+m), ])
	
# (4) compute Jac Phi
#
	
resjacphi <- jacSSR(z, dimx, dimlam, heobj=hefullob, constr=g, grconstr=grfullg, 
	heconstr=hefullg, gcompla=GrAphiFB, gcomplb=GrBphiFB)

	
#check
cat("\n\n________________________________________\n\n")


cat("\n\npart A\n\n")	


checkA <- 
rbind(
c(hefullob(x, 1, 1, 1) + lam[1]*hefullg(x, 1, 1, 1), 
hefullob(x, 1, 1, 2) + lam[1]*hefullg(x, 1, 1, 2),
hefullob(x, 1, 1, 3) + lam[1]*hefullg(x, 1, 1, 3),
hefullob(x, 1, 1, 4) + lam[1]*hefullg(x, 1, 1, 4),
hefullob(x, 1, 1, 5) + lam[1]*hefullg(x, 1, 1, 5),
hefullob(x, 1, 1, 6) + lam[1]*hefullg(x, 1, 1, 6),
hefullob(x, 1, 1, 7) + lam[1]*hefullg(x, 1, 1, 7)
),
c(hefullob(x, 1, 2, 1) + lam[1]*hefullg(x, 1, 2, 1), 
hefullob(x, 1, 2, 2) + lam[1]*hefullg(x, 1, 2, 2),
hefullob(x, 1, 2, 3) + lam[1]*hefullg(x, 1, 2, 3),
hefullob(x, 1, 2, 4) + lam[1]*hefullg(x, 1, 2, 4),
hefullob(x, 1, 2, 5) + lam[1]*hefullg(x, 1, 2, 5),
hefullob(x, 1, 2, 6) + lam[1]*hefullg(x, 1, 2, 6),
hefullob(x, 1, 2, 7) + lam[1]*hefullg(x, 1, 2, 7)
),
c(hefullob(x, 2, 3, 1) + lam[2:3] %*% hefullg(x, 2, 3, 1), 
hefullob(x, 2, 3, 2) + lam[2:3] %*% hefullg(x, 2, 3, 2),
hefullob(x, 2, 3, 3) + lam[2:3] %*% hefullg(x, 2, 3, 3),
hefullob(x, 2, 3, 4) + lam[2:3] %*% hefullg(x, 2, 3, 4),
hefullob(x, 2, 3, 5) + lam[2:3] %*% hefullg(x, 2, 3, 5),
hefullob(x, 2, 3, 6) + lam[2:3] %*% hefullg(x, 2, 3, 6),
hefullob(x, 2, 3, 7) + lam[2:3] %*% hefullg(x, 2, 3, 7)
),
c(hefullob(x, 2, 4, 1) + lam[2:3] %*% hefullg(x, 2, 4, 1), 
hefullob(x, 2, 4, 2) + lam[2:3] %*% hefullg(x, 2, 4, 2), 
hefullob(x, 2, 4, 3) + lam[2:3] %*% hefullg(x, 2, 4, 3), 
hefullob(x, 2, 4, 4) + lam[2:3] %*% hefullg(x, 2, 4, 4), 
hefullob(x, 2, 4, 5) + lam[2:3] %*% hefullg(x, 2, 4, 5), 
hefullob(x, 2, 4, 6) + lam[2:3] %*% hefullg(x, 2, 4, 6), 
hefullob(x, 2, 4, 7) + lam[2:3] %*% hefullg(x, 2, 4, 7)
),
c(hefullob(x, 3, 5, 1) + lam[4:5] %*% hefullg(x, 3, 5, 1),  
hefullob(x, 3, 5, 2) + lam[4:5] %*% hefullg(x, 3, 5, 2),  
hefullob(x, 3, 5, 3) + lam[4:5] %*% hefullg(x, 3, 5, 3),  
hefullob(x, 3, 5, 4) + lam[4:5] %*% hefullg(x, 3, 5, 4),  
hefullob(x, 3, 5, 5) + lam[4:5] %*% hefullg(x, 3, 5, 5),  
hefullob(x, 3, 5, 6) + lam[4:5] %*% hefullg(x, 3, 5, 6),  
hefullob(x, 3, 5, 7) + lam[4:5] %*% hefullg(x, 3, 5, 7)
),
c(hefullob(x, 3, 6, 1) + lam[4:5] %*% hefullg(x, 3, 6, 1),   
hefullob(x, 3, 6, 2) + lam[4:5] %*% hefullg(x, 3, 6, 2),  
hefullob(x, 3, 6, 3) + lam[4:5] %*% hefullg(x, 3, 6, 3),  
hefullob(x, 3, 6, 4) + lam[4:5] %*% hefullg(x, 3, 6, 4),  
hefullob(x, 3, 6, 5) + lam[4:5] %*% hefullg(x, 3, 6, 5),  
hefullob(x, 3, 6, 6) + lam[4:5] %*% hefullg(x, 3, 6, 6),  
hefullob(x, 3, 6, 7) + lam[4:5] %*% hefullg(x, 3, 6, 7)
),
c(hefullob(x, 3, 7, 1) + lam[4:5] %*% hefullg(x, 3, 7, 1),   
hefullob(x, 3, 7, 2) + lam[4:5] %*% hefullg(x, 3, 7, 2),  
hefullob(x, 3, 7, 3) + lam[4:5] %*% hefullg(x, 3, 7, 3),  
hefullob(x, 3, 7, 4) + lam[4:5] %*% hefullg(x, 3, 7, 4),  
hefullob(x, 3, 7, 5) + lam[4:5] %*% hefullg(x, 3, 7, 5),  
hefullob(x, 3, 7, 6) + lam[4:5] %*% hefullg(x, 3, 7, 6),  
hefullob(x, 3, 7, 7) + lam[4:5] %*% hefullg(x, 3, 7, 7)
)
)


print(resjacphi[1:n, 1:n] - checkA)


cat("\n\n________________________________________\n\n")


cat("\n\npart B\n\n")	


checkB <- 
rbind(
cbind(c(grfullg(x, 1, 1), grfullg(x, 1, 2)), c(0, 0), c(0, 0), c(0, 0), c(0, 0)),
cbind(c(0, 0), rbind(grfullg(x, 2, 3), grfullg(x, 2, 4)), c(0, 0), c(0, 0)),
cbind(c(0, 0, 0), c(0, 0, 0), c(0, 0, 0), 
 rbind(grfullg(x, 3, 5), grfullg(x, 3, 6), grfullg(x, 3, 7)))
)


print(resjacphi[1:n, (n+1):(n+m)] - checkB)	


cat("\n\n________________________________________\n\n")
cat("\n\npart C\n\n")	


gx <- c(g(x,1), g(x,2), g(x,3))

checkC <- 
- t(
cbind(
rbind(
grfullg(x, 1, 1) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 2) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 3) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 4) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 5) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 6) * GrAphiFB(-gx, lam)[1],
grfullg(x, 1, 7) * GrAphiFB(-gx, lam)[1]
),
rbind(
grfullg(x, 2, 1) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 2) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 3) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 4) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 5) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 6) * GrAphiFB(-gx, lam)[2:3],
grfullg(x, 2, 7) * GrAphiFB(-gx, lam)[2:3]
),
rbind(
grfullg(x, 3, 1) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 2) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 3) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 4) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 5) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 6) * GrAphiFB(-gx, lam)[4:5],
grfullg(x, 3, 7) * GrAphiFB(-gx, lam)[4:5]
)
)
)



print(resjacphi[(n+1):(n+m), 1:n] - checkC)


cat("\n\n________________________________________\n\n")

cat("\n\npart D\n\n")	


checkD <- diag(GrBphiFB(-gx, lam)) 

print(resjacphi[(n+1):(n+m), (n+1):(n+m)] - checkD)

Step functions

Description

Step functions for relaxation methods

Usage

purestep(k)
decrstep(k, param)
decrstep5(k)
decrstep10(k)
decrstep20(k)

Arguments

k

iteration number.

param

parameter for the decreasing step function after which the step decreases.

Details

The decrstep function is a decreasing step serie such that decrstep(k) equals to 1/2/(kparam)1/2/(k - param) when k>paramk>param, 1/2, otherwise. Functions decrstep5, decrstep10, decrstep20 are just wrappers of decrstep.

The purestep function implements a constant step serie equaled to 1.

Value

A numeric.

Author(s)

Christophe Dutang

See Also

See also GNE and GNE.fpeq.

Examples

cbind(
purestep(1:20),
decrstep(1:20, 7),
decrstep5(1:20),
decrstep10(1:20),
decrstep20(1:20)
)

Nikaido Isoda Reformulation

Description

functions of the Nikaido Isoda Reformulation of the GNEP

Usage

gapVIR(x, y, dimx, grobj, arggrobj, param=list(), echo=FALSE)
gradxgapVIR(x, y, dimx, grobj, arggrobj, heobj, argheobj, param=list(), echo=FALSE)
gradygapVIR(x, y, dimx, grobj, arggrobj, param=list(), echo=FALSE)
fpVIR(x, dimx, obj, argobj, joint, argjoint,  
	grobj, arggrobj, jacjoint, argjacjoint, param=list(), 
	echo=FALSE, control=list(), yinit=NULL, optim.method="default")

Arguments

x, y

a numeric vector.

dimx

a vector of dimension for x.

obj

objective function (to be minimized), see details.

argobj

a list of additional arguments.

grobj

gradient of the objective function, see details.

arggrobj

a list of additional arguments of the objective gradient.

heobj

Hessian of the objective function, see details.

argheobj

a list of additional arguments of the objective Hessian.

joint

joint function, see details.

argjoint

a list of additional arguments of the joint function.

jacjoint

gradient of the joint function, see details.

argjacjoint

a list of additional arguments of the joint Jacobian.

param

a list of parameters.

control

a list with control parameters for the fixed point algorithm.

yinit

initial point when computing the fixed-point function.

optim.method

optimization method when computing the fixed-point function.

echo

a logical to show some traces.

Details

gapVIR computes the Nikaido Isoda function of the GNEP, while gradxgapVIR and gradygapVIR give its gradient with respect to xx and yy. fpVIR computes the fixed-point function.

Value

A vector for funSSR or a matrix for jacSSR.

Author(s)

Christophe Dutang

References

A. von Heusinger & J. Kanzow (2009), Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions, Comput Optim Appl .

F. Facchinei, A. Fischer and V. Piccialli (2009), Generalized Nash equilibrium problems and Newton methods, Math. Program.

See Also

See also GNE.fpeq.