Title: | GPA Factor Rotation |
---|---|
Description: | Gradient Projection Algorithm Rotation for Factor Analysis. See '?GPArotation.Intro' for more details. |
Authors: | Coen Bernaards and Robert Jennrich |
Maintainer: | Paul Gilbert <[email protected]> |
License: | GPL (>= 2) | file LICENSE |
Version: | 2015.7-1 |
Built: | 2024-12-08 06:32:20 UTC |
Source: | https://github.com/r-forge/optimizer |
GPArotation implements Gradient Projection Algorithms and several rotation objective functions for factor analysis.
Package: | GPArotation |
Depends: | R (>= 2.0.0) |
License: | GPL Version 2. |
URL: | http://www.stat.ucla.edu/research or |
http://www.stat.ucla.edu/research/gpa |
The main optimization functions are
GPForth
and GPFoblq
. Rotation objectives include
oblimin
and many others.
Coen A. Bernaards and Robert I. Jennrich with some R modifications by Paul Gilbert.
Code is modified from original source ‘splusfunctions.net’ available at http://www.stat.ucla.edu/research/gpa.
The software reference is
Bernaards, C.A. and Jennrich, R.I. (2005) Gradient Projection Algorithms and Software for Arbitrary Rotation Criteria in Factor Analysis. Educational and Psychological Measurement, 65, 676–696.
Theory of gradient projection algorithms may be found in:
Jennrich, R.I. (2001). A simple general procedure for orthogonal rotation. Psychometrika, 66, 289–306.
Jennrich, R.I. (2002). A simple general method for oblique rotation. Psychometrika, 67, 7–19.
rotations
,
GPForth
,
GPFoblq
,
factanal
See GPArotation-package
( in the help system use
package?GPArotation or ?"GPArotation-package") for an overview.
Rotate to an echelon parameterization.
echelon(L, reference=seq(NCOL(L)), ...)
echelon(L, reference=seq(NCOL(L)), ...)
L |
a factor loading matrix |
reference |
indicates rows of loading matrix that should be used to determine the rotation transformation. |
... |
additional arguments discarded. |
The loadings matrix is rotated so the rows of the loading matrix
indicated by
reference
are the Cholesky factorization given by
t(chol(L[reference,] %*% t(L[reference,])))
.
This defines the
rotation transformation, which is then also applied to other rows to
give the new loadings matrix.
The optimization is not iterative and does not use the GPA algorithm.
The function can be used directly or the
function name can be passed to factor analysis functions like factanal
.
An orthogonal solution is assumed (so is identity).
The default uses the first rows
as the reference. If the submatrix of
L
indicated by reference is
singular then the rotation will fail and the
user needs to supply a different choice of rows.
One use of this parameterization is for obtaining good starting values (so it may appear strange to rotate towards this solution afterwards). It has a few other purposes:
(1) It can be useful for comparison with published results in this parameterization.
(2) The S.E.s are more straightforward to compute, because it is the solution to an unconstrained optimization (though not necessarily computed as such).
(3) The models with k and (k+1) factors are nested, so it
is more straightforward to test the k-factor model versus the
(k+1)-factor model. In particular, in addition to the LR test
(which does not depend on the rotation), now the Wald test
and LM test can be used as well. For these, the test of a
k-factor model versus a (k+1)-factor model is a
joint test whether all the free parameters (loadings) in the (k+1)st
column of L
are zero.
(4) For some purposes, only the subspace spanned by the factors is important, not the specific parameterization within this subspace.
(5) The back-predicted indicators (explained portion of the indicators) do not depend on the rotation method. Combined with the greater ease to obtain correct standard errors of this method, this allows easier and more accurate prediction-standard errors.
(6) This parameterization and its standard errors can be used to detect identification problems (McDonald, 1999, pp. 181-182).
A list (which includes elements used by factanal
) with:
loadings |
The new loadings matrix. |
Th |
The rotation. |
method |
A string indicating the rotation objective function ("echelon"). |
orthogonal |
For consistency with other rotation results. Always TRUE. |
convergence |
For consistency with other rotation results. Always TRUE. |
Erik Meijer and Paul Gilbert.
Roderick P. McDonald (1999) Test Theory: A Unified Treatment, Mahwah, NJ: Erlbaum.
Tom Wansbeek and Erik Meijer (2000) Measurement Error and Latent Variables in Econometrics, Amsterdam: North-Holland.
eiv
,
rotations
,
GPForth
,
GPFoblq
data("WansbeekMeijer", package="GPArotation") fa.unrotated <- factanal(factors = 2, covmat=NetherlandsTV, rotation="none") fa.ech <- echelon(fa.unrotated$loadings) fa.ech2 <- factanal(factors = 2, covmat=NetherlandsTV, rotation="echelon") cbind(loadings(fa.unrotated), loadings(fa.ech), loadings(fa.ech2)) fa.ech3 <- echelon(fa.unrotated$loadings, reference=6:7) cbind(loadings(fa.unrotated), loadings(fa.ech), loadings(fa.ech3))
data("WansbeekMeijer", package="GPArotation") fa.unrotated <- factanal(factors = 2, covmat=NetherlandsTV, rotation="none") fa.ech <- echelon(fa.unrotated$loadings) fa.ech2 <- factanal(factors = 2, covmat=NetherlandsTV, rotation="echelon") cbind(loadings(fa.unrotated), loadings(fa.ech), loadings(fa.ech2)) fa.ech3 <- echelon(fa.unrotated$loadings, reference=6:7) cbind(loadings(fa.unrotated), loadings(fa.ech), loadings(fa.ech3))
Rotate to errors-in-variables representation.
eiv(L, identity=seq(NCOL(L)), ...)
eiv(L, identity=seq(NCOL(L)), ...)
L |
a factor loading matrix |
identity |
indicates rows which should be identity matrix. |
... |
additional arguments discarded. |
This function rotates to an errors-in-variables representation. The
optimization is not iterative and does not use the GPA algorithm.
The function can be used directly or the
function name can be passed to factor analysis functions like factanal
.
The loadings matrix is rotated so the rows indicated by
identity
form an identity matrix, and the remaining rows are free parameters.
is also free. The default makes the first
rows
the identity. If inverting the matrix
of the rows indicated by
identity
fails, the rotation will fail and the
user needs to supply a different choice of rows.
Not all authors consider this representation to be a rotation.
Viewed as a rotation method, it is oblique, with an
explicit solution: given an initial loadings matrix partitioned as
, then (for the default
identity
) the new loadings matrix is
and
, where
is the
by
identity matrix. It is
assumed that
for the initial loadings matrix.
One use of this parameterization is for obtaining good starting values (so it looks a little strange to rotate towards this solution afterwards). It has a few other purposes: (1) It can be useful for comparison with published results in this parameterization; (2) The S.E.s are more straightfoward to compute, because it is the solution to an unconstrained optimization (though not necessarily computed as such); (3) One may have an idea about which reference variables load on only one factor, but not impose restrictive constraints on the other loadings, so, in a nonrestrictive way, it has similarities to CFA; (4) For some purposes, only the subspace spanned by the factors is important, not the specific parameterization within this subspace; (5) The back-predicted indicators (explained portion of the indicators) do not depend on the rotation method. Combined with the greater ease to obtain correct standard errors of this method, this allows easier and more accurate prediction-standard errors.
A list (which includes elements used by factanal
) with:
loadings |
The new loadings matrix. |
Th |
The rotation. |
method |
A string indicating the rotation objective function ("eiv"). |
orthogonal |
For consistency with other rotation results. Always FALSE. |
convergence |
For consistency with other rotation results. Always TRUE. |
Phi |
The covariance matrix of the rotated factors. |
Erik Meijer and Paul Gilbert.
Gösta Hägglund. (1982). "Factor Analysis by Instrumental Variables Methods." Psychometrika, 47, 209–222.
Sock-Cheng Lewin-Koh and Yasuo Amemiya. (2003). "Heteroscedastic factor analysis." Biometrika, 90, 85–97.
Tom Wansbeek and Erik Meijer (2000) Measurement Error and Latent Variables in Econometrics, Amsterdam: North-Holland.
echelon
,
rotations
,
GPForth
,
GPFoblq
data("WansbeekMeijer", package="GPArotation") fa.unrotated <- factanal(factors = 2, covmat=NetherlandsTV, rotation="none") fa.eiv <- eiv(fa.unrotated$loadings) fa.eiv2 <- factanal(factors = 2, covmat=NetherlandsTV, rotation="eiv") cbind(loadings(fa.unrotated), loadings(fa.eiv), loadings(fa.eiv2)) fa.eiv3 <- eiv(fa.unrotated$loadings, identity=6:7) cbind(loadings(fa.unrotated), loadings(fa.eiv), loadings(fa.eiv3))
data("WansbeekMeijer", package="GPArotation") fa.unrotated <- factanal(factors = 2, covmat=NetherlandsTV, rotation="none") fa.eiv <- eiv(fa.unrotated$loadings) fa.eiv2 <- factanal(factors = 2, covmat=NetherlandsTV, rotation="eiv") cbind(loadings(fa.unrotated), loadings(fa.eiv), loadings(fa.eiv2)) fa.eiv3 <- eiv(fa.unrotated$loadings, identity=6:7) cbind(loadings(fa.unrotated), loadings(fa.eiv), loadings(fa.eiv3))
Gradient projection rotation optimization routine used by various rotation objective.
GPForth(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, method="varimax", methodArgs=NULL) GPFoblq(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, method="quartimin", methodArgs=NULL)
GPForth(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, method="varimax", methodArgs=NULL) GPFoblq(A, Tmat=diag(ncol(A)), normalize=FALSE, eps=1e-5, maxit=1000, method="quartimin", methodArgs=NULL)
A |
initial factor loadings matrix for which the rotation criterian is to be optimized. |
Tmat |
initial rotation matrix. |
method |
rotation objective criterian. |
normalize |
see details. |
eps |
convergence is assumed when the norm of the gradient is smaller than eps. |
maxit |
maximum number of iterations allowed in the main loop. |
methodArgs |
a list ofmethodArgs arguments passed to the rotation objective |
Gradient projection rotation optimization routines developed by
Coen A. Bernaards and Robert I. Jennrich. These functions can be used directly
to rotate a loadings matrix, or indirectly through a rotation
objective passed to a factor estimation routine such as factanal
.
For examples of the indirect use see the documention for
rotations (such as oblimin
).
GPForth
is the main GP algorithm for orthogonal rotation.
GPFoblq
is the main GP algorithm for oblique rotation.
Both algorithms require a loadings matrix A
which fixes the
equivalence class over which the optimization is done. It must be
the solution to the orthogonal factor analysis problem.
A rotation is defined as A %*% t(solve(Tmat))
. For the
orthogonal case Tmat
is orthonormal so this simplifies
to A %*% Tmat
. The starting point for
iterative optimization is given by the Tmat
rotation of A
.
By default the initial rotation is the
identity matrix. For some rotation criteria local optima may exist
and it is recommended to check for this by starting with many different
initial rotations. The function Random.Start
will help to do
this.
The argument method
can be used to specify a string indicating
the rotation objective. GPFoblq
defaults to "quartimin"
and GPForth
defaults to "varimax"
. Available rotation objectives
are "oblimin"
, "quartimin"
, "target"
, "pst"
,
"oblimax"
, "entropy"
,
"quartimax"
, "varimax"
, "simplimax"
, "bentler"
,
"tandemI"
, "tandemII"
,
"geomin"
, "cf"
, "infomax"
and "mccammon"
.
The string is prefixed with
"vgQ." to give the actual function call. The vgQ.*
function call
would typically not be used directly, so these methods are not exported
from the package namespace. You can print these functions to see the code for
calculating a criterion, but since they are not exported the package
name needs to be specified. For example, use
GPArotation:::vgQ.oblimin
to view the function vgQ.oblimin
.
Some rotation criteria (including "simplimax"
, "pst"
,
"procrustes"
)
require one or more additional arguments. For example, "simplimax"
needs the number of 'close to zero loadings' which is given as
the extra argument k
. Check the rotation methods for details.
(If a new rotation method is implemented and needs additional
arguments then this is the way to pass them.)
The argument normalize
gives an indication of if and how any
normalization should be done before rotation, and then undone after rotation.
If normalize
is FALSE
(the default) no normalization is done.
If normalize
is TRUE
then Kaiser normalization is done. (So
squared row entries of normalized A
sum to 1.0. This is sometimes called
Horst normalization.)
If normalize
is a vector of length equal to the number of indicators (=
number of rows of A
) then the colums are divided by normalize
before rotation and multiplied by normalize
after rotation.
If normalize
is a function then it should take A
as an argument
and return a vector which is used like the vector above.
A GPArotation object which is a list with elements
loadings |
The rotated loadings, one column for each factor. |
Th |
The rotation matrix, Lh %*% t(Th) = A. |
Table |
A matrix recording the iterations of the rotation optimization. |
method |
A string indicating the rotation objective function. |
orthogonal |
A logical indicating if the rotation is orthogonal. |
convergence |
A logical indicating if convergence was obtained. |
Phi |
t(Th) %*% Th. The covariance matrix of the rotated factors. This will be the identity matrix for orthogonal rotations so is omitted (NULL) for the result from GPForth. |
Gq |
The gradient of the objective function at the rotated loadings. |
Coen A. Bernaards and Robert I. Jennrich with some R modifications by Paul Gilbert
Additional information is available at http://www.stat.ucla.edu/research or http://www.stat.ucla.edu/research/gpa The software reference is
Bernaards, C.A. and Jennrich, R.I. (2005) Gradient Projection Algorithms and Software for Arbitrary Rotation Criteria in Factor Analysis. Educational and Psychological Measurement, 65, 676–696.
Theory of gradient projection algorithms may be found in:
Jennrich, R.I. (2001). A simple general procedure for orthogonal rotation. Psychometrika, 66, 289–306.
Jennrich, R.I. (2002). A simple general method for oblique rotation. Psychometrika, 67, 7–19.
Random.Start
,
factanal
,
oblimin
,
quartimin
,
targetT
,
targetQ
,
pstT
,
pstQ
,
oblimax
,
entropy
,
quartimax
,
Varimax
,
varimax
,
simplimax
,
bentlerT
,
bentlerQ
,
tandemI
,
tandemII
,
geominT
,
geominQ
,
cfT
,
cfQ
,
infomaxT
,
infomaxQ
,
mccammon
,
promax
data("Harman", package="GPArotation") qHarman <- GPForth(Harman8, Tmat=diag(2), method="quartimax") data("WansbeekMeijer", package="GPArotation") fa.unrotated <- factanal(factors = 2, covmat=NetherlandsTV, normalize=TRUE, rotation="none") GPForth(loadings(fa.unrotated), method="varimax", normalize=TRUE)$loadings TV <- GPFoblq(loadings(fa.unrotated), method="oblimin", normalize=TRUE) print(TV) print(TV, Table=TRUE) summary(TV)
data("Harman", package="GPArotation") qHarman <- GPForth(Harman8, Tmat=diag(2), method="quartimax") data("WansbeekMeijer", package="GPArotation") fa.unrotated <- factanal(factors = 2, covmat=NetherlandsTV, normalize=TRUE, rotation="none") GPForth(loadings(fa.unrotated), method="varimax", normalize=TRUE)$loadings TV <- GPFoblq(loadings(fa.unrotated), method="oblimin", normalize=TRUE) print(TV) print(TV, Table=TRUE) summary(TV)
Harman8 is initial factor loading matrix for Harman's 8 physical variables.
data(Harman)
data(Harman)
The object Harman8 is a matrix.
The object Harman8 is loaded from the data file Harman.
Harman, H. H. (1976) Modern Factor Analysis, Third Edition Revised, University of Chicago Press.
GPForth
,
Thurstone
,
WansbeekMeijer
Random orthogonal rotation to use as Tmat matrix to start GPForth or GPFoblq.
Random.Start(k)
Random.Start(k)
k |
An integer indicating the dimension of the square matrix. |
The random start function produces an orthogonal matrix with columns of length one based on the QR decompostion.
An orthogonal matrix.
Coen A. Bernaards and Robert I. Jennrich with some R modifications by Paul Gilbert
Global.min <- function(A,method,B=10){ fv <- rep(0,B) seeds <- sample(1e+7, B) for(i in 1:B){ cat(i," ") set.seed(seeds[i]) gpout <- GPFoblq(A=A, Random.Start(ncol(A)), method=method) dtab <- dim(gpout$Table) fv[i] <- gpout$Table[dtab[1],2] cat(fv[i], "\n") } cat("Min is ",min(fv),"\n") set.seed(seeds[order(fv)[1]]) ans <- GPFoblq(A=A, Random.Start(ncol(A)), method=method) ans } data("Thurstone", package="GPArotation") Global.min(box26,"simplimax",10)
Global.min <- function(A,method,B=10){ fv <- rep(0,B) seeds <- sample(1e+7, B) for(i in 1:B){ cat(i," ") set.seed(seeds[i]) gpout <- GPFoblq(A=A, Random.Start(ncol(A)), method=method) dtab <- dim(gpout$Table) fv[i] <- gpout$Table[dtab[1],2] cat(fv[i], "\n") } cat("Min is ",min(fv),"\n") set.seed(seeds[order(fv)[1]]) ans <- GPFoblq(A=A, Random.Start(ncol(A)), method=method) ans } data("Thurstone", package="GPArotation") Global.min(box26,"simplimax",10)
Optimize factor loading rotation objective.
oblimin(L, Tmat=diag(ncol(L)), gam=0, normalize=FALSE, eps=1e-5, maxit=1000) quartimin(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) targetT(L, Tmat=diag(ncol(L)), Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000) targetQ(L, Tmat=diag(ncol(L)), Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000) pstT(L, Tmat=diag(ncol(L)), W=NULL, Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000) pstQ(L, Tmat=diag(ncol(L)), W=NULL, Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000) oblimax(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) entropy(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) quartimax(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) Varimax(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) simplimax(L, Tmat=diag(ncol(L)), k=nrow(L), normalize=FALSE, eps=1e-5, maxit=1000) bentlerT(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) bentlerQ(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) tandemI(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) tandemII(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) geominT(L, Tmat=diag(ncol(L)), delta=.01, normalize=FALSE, eps=1e-5, maxit=1000) geominQ(L, Tmat=diag(ncol(L)), delta=.01, normalize=FALSE, eps=1e-5, maxit=1000) cfT(L, Tmat=diag(ncol(L)), kappa=0, normalize=FALSE, eps=1e-5, maxit=1000) cfQ(L, Tmat=diag(ncol(L)), kappa=0, normalize=FALSE, eps=1e-5, maxit=1000) infomaxT(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) infomaxQ(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) mccammon(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) bifactorT(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) bifactorQ(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) vgQ.oblimin(L, gam=0) vgQ.quartimin(L) vgQ.target(L, Target=NULL) vgQ.pst(L, W=NULL, Target=NULL) vgQ.oblimax(L) vgQ.entropy(L) vgQ.quartimax(L) vgQ.varimax(L) vgQ.simplimax(L, k=nrow(L)) vgQ.bentler(L) vgQ.tandemI(L) vgQ.tandemII(L) vgQ.geomin(L, delta=.01) vgQ.cf(L, kappa=0) vgQ.infomax(L) vgQ.mccammon(L) vgQ.bifactor(L)
oblimin(L, Tmat=diag(ncol(L)), gam=0, normalize=FALSE, eps=1e-5, maxit=1000) quartimin(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) targetT(L, Tmat=diag(ncol(L)), Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000) targetQ(L, Tmat=diag(ncol(L)), Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000) pstT(L, Tmat=diag(ncol(L)), W=NULL, Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000) pstQ(L, Tmat=diag(ncol(L)), W=NULL, Target=NULL, normalize=FALSE, eps=1e-5, maxit=1000) oblimax(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) entropy(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) quartimax(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) Varimax(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) simplimax(L, Tmat=diag(ncol(L)), k=nrow(L), normalize=FALSE, eps=1e-5, maxit=1000) bentlerT(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) bentlerQ(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) tandemI(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) tandemII(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) geominT(L, Tmat=diag(ncol(L)), delta=.01, normalize=FALSE, eps=1e-5, maxit=1000) geominQ(L, Tmat=diag(ncol(L)), delta=.01, normalize=FALSE, eps=1e-5, maxit=1000) cfT(L, Tmat=diag(ncol(L)), kappa=0, normalize=FALSE, eps=1e-5, maxit=1000) cfQ(L, Tmat=diag(ncol(L)), kappa=0, normalize=FALSE, eps=1e-5, maxit=1000) infomaxT(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) infomaxQ(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) mccammon(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) bifactorT(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) bifactorQ(L, Tmat=diag(ncol(L)), normalize=FALSE, eps=1e-5, maxit=1000) vgQ.oblimin(L, gam=0) vgQ.quartimin(L) vgQ.target(L, Target=NULL) vgQ.pst(L, W=NULL, Target=NULL) vgQ.oblimax(L) vgQ.entropy(L) vgQ.quartimax(L) vgQ.varimax(L) vgQ.simplimax(L, k=nrow(L)) vgQ.bentler(L) vgQ.tandemI(L) vgQ.tandemII(L) vgQ.geomin(L, delta=.01) vgQ.cf(L, kappa=0) vgQ.infomax(L) vgQ.mccammon(L) vgQ.bifactor(L)
L |
a factor loading matrix |
Tmat |
initial rotation matrix. |
gam |
0=Quartimin, .5=Biquartimin, 1=Covarimin. |
Target |
rotation target for objective calculation. |
W |
weighting of each element in target. |
k |
number of close to zero loadings. |
delta |
constant added to L\^2 in objective calculation. |
kappa |
see details. |
normalize |
parameter passed to optimization routine (GPForth or GPFoblq). |
eps |
parameter passed to optimization routine (GPForth or GPFoblq). |
maxit |
parameter passed to optimization routine (GPForth or GPFoblq). |
These functions optimize a rotation objective. They can be used directly or the
function name can be passed to factor analysis functions like factanal
.
Several of the function names end in T or Q, which indicates if they are
orthogonal or oblique rotations (using GPForth
or GPFoblq
respectively.
The vgQ.*
versions of the code are called by the optimization routine and
would typically not be used directly, so these methods are not exported
from the package namespace. (They simply return the function value and gradient
for a given rotation matrix.) You can print these functions, but the package
name needs to be specified since they are not exported. For example, use
GPArotation:::vgQ.oblimin
to view the function vgQ.oblimin
.
The T or Q ending on function names should be omitted for the vgQ.*
versions of the code so, for example, use GPArotation:::vgQ.target
to view the target
criterion calculation.
Rotations which are available are
oblimin | oblique | oblimin family |
quartimin | oblique | |
targetT | orthogonal | target rotation |
targetQ | oblique | target rotation |
pstT | orthogonal | partially specified target rotation |
pstQ | oblique | partially specified target rotation |
oblimax | oblique | |
entropy | orthogonal | minimum entropy |
quartimax | orthogonal | |
varimax | orthogonal | |
simplimax | oblique | |
bentlerT | orthogonal | Bentler's invariant pattern simplicity criterion |
bentlerQ | oblique | Bentler's invariant pattern simplicity criterion |
tandemI | orthogonal | Tandem Criterion |
tandemII | orthogonal | Tandem Criterion |
geominT | orthogonal | |
geominQ | oblique | |
cfT | orthogonal | Crawford-Ferguson family |
cfQ | oblique | Crawford-Ferguson family |
infomaxT | orthogonal | |
infomaxQ | oblique | |
mccammon | orthogonal | McCammon minimum entropy ratio |
bifactorT | orthogonal | Jennrich and Bentler bifactor rotation |
bifactorQ | oblique | Jennrich and Bentler biquartimin rotation |
Also included for convenience are two analytic rotations eiv
and echelon
which do not require GPForth
or GPFoblq
.
Note that Varimax
defined here uses vgQ.varimax
and
is not varimax
defined in the stats
package. stats:::varimax
does Kaiser
normalization by default whereas Varimax
defined here does not.
The argument kappa
parameterizes the family for the Crawford-Ferguson
method. If m
is the number of factors and p
is the number of
indicators then kappa
values having special names are 0=Quartimax,
1/p=Varimax, m/(2*p)=Equamax, (m-1)/(p+m-2)=Parsimax, 1=Factor parsimony.
New rotation methods can be programmed with a name "vgQ.newmethod". The inputs are the matrix L, and optionally any additional arguments. The output should be a list with elements
f |
the value of the criterion at L. |
Gq |
the gradient at L. |
Method |
a string indicating the criterion. |
A list (which includes elements used by factanal
) with:
loadings |
Lh from |
Th |
Th from |
Table |
Table from |
method |
A string indicating the rotation objective function. |
orthogonal |
A logical indicating if the rotation is orthogonal. |
convergence |
Convergence indicator from |
Phi |
t(Th) %*% Th. The covariance matrix of the rotated factors. This will be the identity matrix for orthogonal rotations so is omitted (NULL) for the result from GPForth. |
Coen A. Bernaards and Robert I. Jennrich with some R modifications by Paul Gilbert.
Bernaards, C.A. and Jennrich, R.I. (2005) Gradient Projection Algorithms and Software for Arbitrary Rotation Criteria in Factor Analysis. Educational and Psychological Measurement, 65, 676–696.
Bifactor rotation, bifactorT and bifactorQ are called bifactor and biquartimin in Jennrich, R.I. and Bentler, P.M. (2011) Exploratory bi-factor analysis. Psychometrika, 76.
A discussion of rotation objectives can be found in many references, for example,
Tom Wansbeek and Erik Meijer (2000) Measurement Error and Latent Variables in Econometrics, Amsterdam: North-Holland.
GPForth
,
GPFoblq
,
WansbeekMeijer
,
eiv
,
echelon
,
factanal
,
varimax
,
promax
data(ability.cov) factanal(factors = 2, covmat = ability.cov, rotation="oblimin") data("Harman", package="GPArotation") qHarman <- GPForth(Harman8, Tmat=diag(2), method="quartimax") qHarman2 <- quartimax(Harman8) data("WansbeekMeijer", package="GPArotation") fa.unrotated <- factanal(factors = 2, covmat=NetherlandsTV, rotation="none") fa.varimax <- factanal(factors = 2, covmat=NetherlandsTV, rotation="varimax", control=list(rotate=list(normalize=TRUE))) fa.oblimin <- factanal(factors = 2, covmat=NetherlandsTV, rotation="oblimin", control=list(rotate=list(normalize=TRUE))) cbind(loadings(fa.unrotated), loadings(fa.varimax), loadings(fa.oblimin))
data(ability.cov) factanal(factors = 2, covmat = ability.cov, rotation="oblimin") data("Harman", package="GPArotation") qHarman <- GPForth(Harman8, Tmat=diag(2), method="quartimax") qHarman2 <- quartimax(Harman8) data("WansbeekMeijer", package="GPArotation") fa.unrotated <- factanal(factors = 2, covmat=NetherlandsTV, rotation="none") fa.varimax <- factanal(factors = 2, covmat=NetherlandsTV, rotation="varimax", control=list(rotate=list(normalize=TRUE))) fa.oblimin <- factanal(factors = 2, covmat=NetherlandsTV, rotation="oblimin", control=list(rotate=list(normalize=TRUE))) cbind(loadings(fa.unrotated), loadings(fa.varimax), loadings(fa.oblimin))
box20 and box26 are initial factor loading matrices.
data(Thurstone)
data(Thurstone)
The objects box20 and box26 are matrices.
The objects box20 and box26 are loaded from the data file Thurstone.
Thurstone, L.L. (1947). Multiple Factor Analysis. Chicago: University of Chicago Press.
GPForth
,
Harman
,
WansbeekMeijer
Netherlands TV viewership example p 171, Wansbeek and Meijer (2000)
data(WansbeekMeijer)
data(WansbeekMeijer)
The object NetherlandsTV is a correlation matrix.
The object NetherlandsTV is loaded from the data file WansbeekMeijer.
Tom Wansbeek and Erik Meijer (2000) Measurement Error and Latent Variables in Econometrics, Amsterdam: North-Holland.