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1 Introduction

1.1 Why the POT package?

The POT package is an add-on package for the R statistical software (R Development Core Team, 2006).
The main goal of this package is to develop tools to perform stastical analyses of Peaks Over a Threshold
(POT).

Most of functions are related to the Extreme Value Theory (EVT). Coles (2001) gives a comprehensive
introduction to the EVT, while Kluppelberg and Mikosch (1997) present advanced results.

1.2 Obtaining the package/guide

The package can be downloaded from CRAN (The Comprehensive R Archive Network) at https://

cran.r-project.org/. This guide (in pdf) will be in the directory POT/doc/ underneath wherever the
package is installed.

1.3 Contents

To help users to use properly the POT package, this guide contains practical examples on the use of
this package. Section 2 introduce quickly the Extreme Value Theory (EVT). Some basic examples are
described in section 3, while section 4 gives a concrete statistical analysis of extreme value for river
Adieéres at Beaujeu (FRANCE).

1.4 Citing the package/guide

To cite this guide or the package in publications please use the following bibliographic database entry.

title = {A User Guide to the POT Package (Version 1.4)},

author = {Ribatet, M. A.},

year = {2011},

month = {August},

url = {https://cran.r-project.org/package=POT}

}

1.5 Caveat

I have checked these functions as best I can but, as ever, they may contain bugs. If you �nd a bug or
suspected bug in the code or the documentation please report it to https://pot.r-forge.r-project.

org/. Please include an appropriate subject line.
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1.6 Legalese

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but without any warranty; without even
the implied warranty of merchantability or �tness for a particular purpose. See the GNU General Public
License for more details.

The GNU General Public License can be obtained from https://www.gnu.org/licenses/gpl-3.0.

html. You can also obtain it by writing to the Free Software Foundation, Inc., 59 Temple Place � Suite
330, Boston, MA 02111-1307, USA.

2 An Introduction to the EVT

2.1 The univariate case

Even if this package is only related to peaks over a threshold, a classical introduction to the EVT must
deal with �block maxima�. Let X1, . . . , Xn be a series of independent and identically distributed random
variables with common distribution function F . Let Mn = max(X1, . . . , Xn).

Suppose there exists normalizing constants an > 0 and bn such that:

Pr

[
Mn − bn

an
≤ y

]
= Fn(any + bn) −→ G(y), n→ +∞ (2.1)

for all y ∈ R, where G is a non-degenerate distribution function. According to the Extremal Types
Theorem (Fisher and Tippett, 1928), G must be either Fréchet, Gumbel or negative Weibull. Jenkinson
(1955) noted that these three distributions can be merged into a single parametric family: the Generalized
Extreme Value (GEV) distribution. The GEV has a distribution function de�ned by:

G(y) = exp

[
−
(
1 + ξ

y − µ

σ

)−1/ξ

+

]
, (2.2)

where (µ, σ, ξ) are the location, scale and shape parameters respectively, σ > 0 and z+ = max(z, 0).

The Fréchet case is obtained when ξ > 0, the negative Weibull when ξ < 0 while the Gumbel case is
de�ned by continuity when ξ → 0.

From this result, Pickands (1975) showed that the limiting distribution of normalized excesses of a
threshold µ as the threshold approaches the endpoint µend of the variable of interest is the Generalized
Pareto Distribution (GPD). That is, if X is a random variable which holds (2.1), then:

Pr [X ≤ y|X > µ] −→ H(y), µ→ µend (2.3)

with

H(y) = 1−
(
1 + ξ

y − µ

σ

)−1/ξ

+

, (2.4)

where (µ, σ, ξ) are the location, scale and shape parameters respectively, σ > 0 and z+ = max(z, 0). Note
that the Exponential distribution is obtained by continuity as ξ → 0.

In practice, these two asymptotical results motivated modelling block maxima with a GEV, while peaks
over threshold with a GPD.

2.2 The multivariate case

When dealing with multivariate extremes, it is usual to transform data to a particular distribution. For
example, Falk and Reiss (2005) used the inverted standard exponential distribution � Pr[Z ≤ z] = exp(z),
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z ≤ 0, Coles et al. (1999) use the uniform distribution on [0, 1]. However, the most common distribution
seems to be the standard Fréchet one � Pr[Z ≤ z] = exp(−1/z) (Smith, 1994; Smith et al., 1997; Bortot
and Coles, 2000). Thus, in the following, we will only consider this case. For this purpose, margins are
transformed according to:

Zj = − 1

logFj (Yj)

where Fj is the distribution of the j-th margin.

Obviously, in practice, the margins Fj are unknown. When dealing with extremes, the univariate EVT
tells us what to do. Thus, if block maxima or peaks over a threshold are of interest, we must replace Fj

with GEV or GPD respectively.

De�nition 2.2.1. A multivariate extreme value distribution in dimension d has representation:

G (y1, . . . , yd) = exp [−V (z1, . . . , zd)] (2.5)

with

V (z1, . . . , zd) =

∫
Tp

max
j=1,...,d

(
qj
zj

)
dH (q1, . . . , qd)

where H is a measure with mass 2 called spectral density de�ned on the set

Tp =

(q1, . . . , qd) : qj ≥ 0,

d∑
j=1

q2j = 1


with the constraint ∫

Tp

qjdH(qj) = 1, ∀j ∈ {1, . . . , d}

The V function is often called exponential measure (Klüppelberg and May, 2006) and is an homogeneous
function of order -1.

Contrary to the univariate case, there is an in�nity of functions V for d > 1. Thus, it is usual to used
speci�c parametric families for V . Several examples for these families are given in Annexe A.

Another representation for a multivariate extreme value distribution is the Pickands' representation (Pickands,
1981). We give here only the bivariate case.

De�nition 2.2.2. A bivariate extreme value distribution has the Pickands' representation:

G (y1, y2) = exp

[
−
(

1

z1
+

1

z2

)
A

(
z2

z1 + z2

)]
(2.6)

with

A : [0, 1] −→ [0, 1]

w 7−→ A(w) =

∫ 1

0

max {w (1− q) , (1− w) q} dH(q)

In particular, the functions V and A are linked by the relation:

A(w) =
V (z1, z2)

z−1
1 + z−1

2

, w =
z2

z1 + z2

The dependence function A holds:

1. A(0) = A(1) = 1;

2. max(w, 1− w) ≤ A(w) ≤ 1, ∀w;

3. A is convex;

4. Two random variables (with unit Fréchet margins) are independent if A(w) = 1, ∀w;
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5. Two random variables (with unit Fréchet margins) are perfectly dependent if A(w) = max(w, 1−w),
∀w.

We de�ne the multivariate extreme value distributions which are identical to the block maxima approach
in higher dimensions. We now establish the multivariate theory for peaks over threshold.

According to Resnick (1987, Prop. 5.15), multivariate peaks over thresholds uj has the same representa-
tion than for block maxima. Only the margins Fj must be replaced by GPD instead of GEV. Thus,

F (y1, . . . , yd) = exp

[
−V

(
− 1

logF1 (y1)
, . . . ,− 1

logFd (yd)

)]
, yj > uj (2.7)

3 Basic Use

3.1 Random Numbers and Distribution Functions

First of all, lets start with basic stu�s. The POT package uses the R convention for random numbers
generation and distribution function features.

> library(POT)

> rgpd(5, loc = 1, scale = 2, shape = -0.2)

[1] 4.454167 5.391766 1.618671 2.816065 5.966311

> rgpd(6, c(1, -5), 2, -0.2)

[1] 1.3033998 0.8953343 3.2876180 -4.6477346 2.4595034 -2.1255737

> rgpd(6, 0, c(2, 3), 0)

[1] 0.039867863 0.005365053 1.113929677 0.278064310 2.439995609

[6] 10.988479899

> pgpd(c(9, 15, 20), 1, 2, 0.25)

[1] 0.9375000 0.9825149 0.9922927

> qgpd(c(.25, .5, .75), 1, 2, 0)

[1] 1.575364 2.386294 3.772589

> dgpd(c(9, 15, 20), 1, 2, 0.25)

[1] 0.015625000 0.003179117 0.001141829

Several options can be passed to three of these four functions. In particular:

� for �pgpd�, user can specify if non exceedence or exceedence probability should be computed with
option lower.tail = TRUE or lower.tail = FALSE respectively;

� for �qgpd�, user can specify if quantile is related to non exceedence or exceedence probability with
option lower.tail = TRUE or lower.tail = FALSE respectively;

� for �dgpd�, user can specify if the density or the log-density should be computed with option
log = FALSE or log = TRUE respectively.
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3.2 Threshold Selection

The location for the GPD or equivalently the threshold is a particular parameter as must often it is not
estimated as the other ones. All methods to de�ne a suitable threshold use the asymptotic approximation
de�ned by equation (2.3). In other words, we select a threshold for which the asymptotic distribution H
in equation (2.4) is a good approximation.

The POT package has several tools to de�ne a reasonable threshold. For this purpose, the user must use
tcplot, mrlplot, lmomplot, exiplot and diplot functions.

The main goal of threshold selection is to selects enough events to reduce the variance; but not too much
as we could select events coming from the central part of the distribution1 and induce bias.

3.2.1 Threshold Choice plot: tcplot

Let X ∼ GP (µ0, σ0, ξ0). Let µ1 be a another threshold as µ1 > µ0. The random variable X|X > µ1 is
also GPD with updated parameters σ1 = σ0 + ξ0(µ1 − µ0) and ξ1 = ξ0. Let

σ∗ = σ1 − ξ1µ1 (3.1)

With this new parametrization, σ∗ is independent of µ1. Thus, estimates of σ∗ and ξ1 are constant for
all µ1 > µ0 if µ0 is a suitable threshold for the asymptotic approximation.

Threshold choice plots represent the points de�ned by:

{(µ1, σ∗) : µ1 ≤ xmax} and {(µ1, ξ1) : µ1 ≤ xmax} (3.2)

where xmax is the maximum of the observations x.

Moreover, con�dence intervals can be computed using Fisher information.

Here is an application.

> x <- runif(10000)

> par(mfrow=c(1,2))

> tcplot(x, u.range = c(0.9, 0.995))

Results of the tcplot function is displayed in Figure 1. We can see clearly that a threshold around 0.98
is a reasonable choice. However, in practice decision are not so clear-cut as for this synthetic example.

3.2.2 Mean Residual Life Plot: mrlplot

The mean residual life plot is based on the theoretical mean of the GPD. Let X be a r.v. distributed
as GPD(µ, σ, ξ). Then, theoretically we have:

E [X] = µ+
σ

1− ξ
, for ξ < 1 (3.3)

When ξ ≥ 1, the theoretical mean is in�nite.

In practice, if X represents excess over a threshold µ0, and if the approximation by a GPD is good
enough, we have:

E [X − µ0|X > µ0] =
σµ0

1− ξ
(3.4)

For all new threshold µ1 such as µ1 > µ0, excesses above the new threshold are also approximate by a
GPD with updated parameters - see section 3.2.1. Thus,

E [X − µ1|X > µ1] =
σµ1

1− ξ
=
σµ0

+ ξµ1

1− ξ
(3.5)

1i.e. not extreme events.
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Figure 1: The threshold selection using the tcplot function
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Figure 2: The threshold selection using the mrlplot function

The quantity E [X − µ1|X > µ1] is linear in µ1. Or, E [X − µ1|X > µ1] is simply the mean of excesses
above the threshold µ1 which can easily be estimated using the empirical mean.

A mean residual life plot consists in representing points:{(
µ,

1

nµ

nµ∑
i=1

xi,nµ
− µ

)
: µ ≤ xmax

}
(3.6)

where nµ is the number of observations x above the threshold µ, xi,nµ
is the i-th observation above the

threshold µ and xmax is the maximum of the observations x.

Con�dence intervals can be added to this plot as the empirical mean can be supposed to be normally
distributed (Central Limit Theorem). However, normality doesn't hold anymore for high threshold as
there are less and less excesses. Moreover, by construction, this plot always converge to the point (xmax, 0).

Here is another synthetic example.

> x <- rnorm(10000)

> mrlplot(x, u.range = c(1, quantile(x, probs = 0.995)),

+ col = c("green", "black", "green"), nt = 200)

Figure 2 displays the mean residual life plot. A threshold around 2.5 should be reasonable.
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3.2.3 L-Moments plot: lmomplot

L-moments are summary statistics for probability distributions and data samples. They are analogous to
ordinary moments � they provide measures of location, dispersion, skewness, kurtosis, and other aspects
of the shape of probability distributions or data samples � but are computed from linear combinations of
the ordered data values (hence the pre�x L).

For the GPD, the following relation holds:

τ4 = τ3
1 + 5τ3
5 + τ3

(3.7)

where τ4 is the L-Kurtosis and τ3 is the L-Skewness.

The L-Moment plot represents points de�ned by:

{(τ̂3,u, τ̂4,u) : u ≤ xmax} (3.8)

where τ̂3,u and τ̂4,u are estimations of the L-Kurtosis and L-Skewness based on excesses over threshold
u and xmax is the maximum of the observations x. The theoretical curve de�ned by equation (3.7) is
traced as a guideline.

Here is a trivial example.

> x <- c(1 - abs(rnorm(200, 0, 0.2)), rgpd(100, 1, 2, 0.25))

> lmomplot(x, u.range = c(0.9, quantile(x, probs = 0.9)), identify = FALSE)

Figure 3.2.3 displays the L-Moment plot. By passing option identiy = TRUE user can click on the graphic
to identify the threshold related to the point selected.

We found that this graphic has often poor performance on real data.

3.2.4 Dispersion Index Plot: diplot

The Dispersion Index plot is particularly useful when dealing with time series. The EVT states
that excesses over a threshold can be approximated by a GPD. However, the EVT also states that the
occurrences of these excesses must be represented by a Poisson process.

Let X be a r.v. distributed as a Poisson distribution with parameter λ. That is:

Pr [X = k] = e−λλ
k

k!
, k ∈ N. (3.9)

Thus, we have E [X] = V ar [X]. Cunnane (1979) introduced a Dispersion Index statistic de�ned by:

DI =
s2

λ
(3.10)

where s2 is the intensity of the Poisson process and λ the mean number of events in a block - most often
this is a year. Moreover, a con�dence interval can be computed by using a χ2 test:

Iα =

[
χ2
(1−α)/2,M−1

M − 1
,
χ2
1−(1−α)/2,M−1

M − 1

]
(3.11)

where Pr [DI ∈ Iα] = α.

For the next example, we use the data set ardieres included in the POT package. Moreover, as ardieres
is a time series, and thus strongly auto-correlated, we must �extract� extreme events while preserving
independence between events. This is achieved using function clust2.

> data(ardieres)

> events <- clust(ardieres, u = 2, tim.cond = 8 / 365, clust.max = TRUE)

> diplot(events, u.range = c(2, 20))

The Dispersion Index plot is presented in Figure 4. From this �gure, a threshold around 5 should be
reasonable.

2The clust function will be presented later in section 3.6.
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3.3 Fitting the GPD

3.3.1 The univariate case

The main function to �t the GPD is called �tgpd. This is a generic function which can �t the GPD
according several estimators. There are currently 17 estimators available: method of moments moments,
maximum likelihood mle, biased and unbiased probability weighted moments pwmb, pwmu, mean power
density divergence mdpd, median med, pickands' pickands, maximum penalized likelihood mple and max-
imum goodness-of-�t mgf estimators. For the mgf estimator, the user has to select which goodness-of-�t
statistics must be used. These statistics are the Kolmogorov-Smirnov, Cramer von Mises, Anderson
Darling and modi�ed Anderson Darling. See the html help page of the fitgpd function to see all of
them. Details for these estimators can be found in (Coles, 2001), (Hosking and Wallis, 1987), (Juárez
and Schucany, 2004), (Peng and Welsh, 2001) and (Pickands, 1975).

The MLE is a particular case as it is the only one which allows varying threshold. Moreover, two types
of standard errors are available: �expected� or �observed� information of Fisher. The option obs.fish

speci�es if we want observed (obs.fish = TRUE) or expected (obs.fish = FALSE).

As Pickands' estimator is not always feasible, user must check the message of feasibility return by function
fitgpd.

We give here several didactic examples.

> x <- rgpd(200, 1, 2, 0.25)

> mom <- fitgpd(x, 1, "moments")$param

> mle <- fitgpd(x, 1, "mle")$param

> pwmu <- fitgpd(x, 1, "pwmu")$param

> pwmb <- fitgpd(x, 1, "pwmb")$param

> pickands <- fitgpd(x, 1, "pickands")$param

> med <- fitgpd(x, 1, "med", start = list(scale = 2, shape = 0.25))$param

> mdpd <- fitgpd(x, 1, "mdpd")$param

> mple <- fitgpd(x, 1, "mple")$param

> ad2r <- fitgpd(x, 1, "mgf", stat = "AD2R")$param

> print(rbind(mom, mle, pwmu, pwmb, pickands, med, mdpd, mple, ad2r))

scale shape

mom 2.154947 0.06707930

mle 2.123095 0.08148597

pwmu 2.102226 0.08990309

pwmb 2.111666 0.08581659

pickands 1.849474 0.21575903

med 2.005431 0.02130738

mdpd 2.100859 0.09366601

mple 2.138461 0.07383506

ad2r 2.125868 0.09419032

The MLE, MPLE and MGF estimators allow to �x either the scale or the shape parameter. For example,
if we want to �t a Exponential distribution, just do (with eventually a �xed scale parameter):

> x <- rgpd(100, 1, 2, 0)

> fitgpd(x, thresh = 1, shape = 0, est = "mle")

Estimator: MLE

Deviance: 318.9681

AIC: 320.9681

Varying Threshold: FALSE

Threshold Call: 1
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Number Above: 100

Proportion Above: 1

Estimates

scale

1.813

Standard Error Type: observed

Standard Errors

scale

0.1813

Asymptotic Variance Covariance

scale

scale 0.03286

Optimization Information

Convergence: successful

Function Evaluations: 16

Gradient Evaluations: 1

> fitgpd(x, thresh = 1, scale = 2, est = "mle")

Estimator: MLE

Deviance: 316.8075

AIC: 318.8075

Varying Threshold: FALSE

Threshold Call: 1

Number Above: 100

Proportion Above: 1

Estimates

shape

-0.1355

Standard Error Type: observed

Standard Errors

shape

0.05987

Asymptotic Variance Covariance

shape

shape 0.003584

Optimization Information

Convergence: successful

Function Evaluations: 21

Gradient Evaluations: 6

If now, we want to �t a GPD with a varying threshold, just do:

> x <- rgpd(500, 1:2, 0.3, 0.01)

> fitgpd(x, 1:2, est = "mle")
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Estimator: MLE

Deviance: -185.5261

AIC: -181.5261

Varying Threshold: TRUE

Threshold Call: 1:2

Number Above: 500

Proportion Above: 1

Estimates

scale shape

0.27671 0.09925

Standard Error Type: observed

Standard Errors

scale shape

0.01879 0.05132

Asymptotic Variance Covariance

scale shape

scale 0.0003532 -0.0006683

shape -0.0006683 0.0026332

Optimization Information

Convergence: successful

Function Evaluations: 42

Gradient Evaluations: 12

Note that the varying threshold is repeated cyclically until it matches the length of object x.

3.3.2 The bivariate case

The generic function to �t bivariate POT is �tbvgpd. There is currently 6 models for the bivariate
GPD - see Annexe A. All of these models are �tted using maximum likelihood estimator. Moreover, the
approach uses censored likelihood - see (Smith et al., 1997).

> x <- rgpd(500, 0, 1, 0.25)

> y <- rgpd(500, 2, 0.5, -0.25)

> Mlog <- fitbvgpd(cbind(x,y), c(0,2), model = "log")

> Mlog

Call: fitbvgpd(data = cbind(x, y), threshold = c(0, 2), model = "log")

Estimator: MLE

Dependence Model and Strength:

Model : Logistic

lim_u Pr[ X_1 > u | X_2 > u] = 0.049

Deviance: 1463.973

AIC: 1473.973

Marginal Threshold: 0 2

Marginal Number Above: 500 500

Marginal Proportion Above: 1 1

Joint Number Above: 500

Joint Proportion Above: 1

Number of events such as {Y1 > u1} U {Y2 > u2}: 500
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Estimates

scale1 shape1 scale2 shape2 alpha

1.1744 0.2600 0.5089 -0.2765 0.9639

Standard Errors

scale1 shape1 scale2 shape2 alpha

0.08299 0.05581 0.02905 0.03779 0.02691

Asymptotic Variance Covariance

scale1 shape1 scale2 shape2 alpha

scale1 6.887e-03 -2.906e-03 9.872e-05 -8.974e-05 4.820e-05

shape1 -2.906e-03 3.115e-03 5.895e-06 3.618e-05 -1.703e-04

scale2 9.872e-05 5.895e-06 8.439e-04 -9.266e-04 4.612e-06

shape2 -8.974e-05 3.618e-05 -9.266e-04 1.428e-03 -7.407e-05

alpha 4.820e-05 -1.703e-04 4.612e-06 -7.407e-05 7.242e-04

Optimization Information

Convergence: successful

Function Evaluations: 38

Gradient Evaluations: 10

In the summary, we can see lim_u Pr[ X_1 > u | X_2 > u] = 0.02 . This is the χ statistics of Coles
et al. (1999). For the parametric model, we have:

χ = 2− V (1, 1) = 2 (1−A(0.5))

For independent variables, χ = 0 while for perfect dependence, χ = 1. In our application, the value
0.02 indicates that the variables are independent � which is obvious. In this perspective, it is possible to
�xed some parameters. For our purpose of independence, we can run -which is equivalent to �t x and y
separately of course:

> fitbvgpd(cbind(x,y), c(0,2), model = "log", alpha = 1)

Call: fitbvgpd(data = cbind(x, y), threshold = c(0, 2), model = "log", alpha = 1)

Estimator: MLE

Dependence Model and Strength:

Model : Logistic

lim_u Pr[ X_1 > u | X_2 > u] = 0

Deviance: 1466.038

AIC: 1474.038

Marginal Threshold: 0 2

Marginal Number Above: 500 500

Marginal Proportion Above: 1 1

Joint Number Above: 500

Joint Proportion Above: 1

Number of events such as {Y1 > u1} U {Y2 > u2}: 500

Estimates

scale1 shape1 scale2 shape2

1.1766 0.2555 0.5103 -0.2793

Standard Errors

scale1 shape1 scale2 shape2

0.08311 0.05586 0.02914 0.03766

Asymptotic Variance Covariance

14



0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Pickands' Dependence Function

x

A

Figure 5: The Pickands' dependence function

scale1 shape1 scale2 shape2

scale1 6.907e-03 -2.916e-03 1.500e-12 -1.776e-12

shape1 -2.916e-03 3.120e-03 -1.360e-12 1.760e-12

scale2 1.500e-12 -1.360e-12 8.493e-04 -9.290e-04

shape2 -1.776e-12 1.760e-12 -9.290e-04 1.418e-03

Optimization Information

Convergence: successful

Function Evaluations: 31

Gradient Evaluations: 7

Note that as all bivariate extreme value distributions are asymptotically dependent, the χ statistic of
Coles et al. (1999) is always equal to 1.

Another way to detect the strength of dependence is to plot the Pickands' dependence function � see
Figure 5. This is simply done with the pickdep function.

> pickdep(Mlog)

The horizontal line corresponds to independence while the other ones corresponds to perfect dependence.
Please note that by construction, the mixed and asymetric mixed models can not model perfect depen-
dence variables.
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3.3.3 Markov Chains for Exceedances

The classical way to perform an analysis of peaks over a threshold is to �t the GPD to cluster maxima.
However, there is a waste of data as only the cluster maxima is considered. On the contrary, if we �t the
GPD to all exceedances, standard errors are underestimated as we consider independence for dependent
observations. Here is where Markov Chains can help us. The main idea is to model the dependence
structure using a Markov Chains while the joint distribution is obviously a multivariate extreme value
distribution. This idea was �rst introduces by Smith et al. (1997).

In the remainder of this section, we will only focus with �rst order Markov Chains. Thus, the likelihood
for all exceedances is:

L(y1, . . . , yn; θ, ψ) =

∏n
i=2 f(yi−1, yi; θ, ψ)∏n−1

i=2 f(yi; θ)
(3.12)

where f(yi−1, yi; θ, ψ) is the joint density, f(yi; θ) is the marginal density, θ is the marginal GPD pa-
rameters and ψ is the dependence parameter. The marginals are modelled using a GPD, while the joint
distribution is a bivariate extreme value distribution.

For our application, we use the simmc function which simulate a �rst order Markov chain with extreme
value dependence structure.

> mc <- simmc(1000, alpha = 0.5, model = "log")

> mc <- qgpd(mc, 2, 1, 0.15)

> fitmcgpd(mc, 2, "log")

Call: fitmcgpd(data = mc, threshold = 2, model = "log")

Estimator: MLE

Dependence Model and Strenght:

Model : Logistic

lim_u Pr[ X_1 > u | X_2 > u] = 0.61

Deviance: 1539.685

AIC: 1545.685

Threshold Call:

Number Above: 998

Proportion Above: 1

Estimates

scale shape alpha

1.0766 0.1751 0.4748

Standard Errors

scale shape alpha

0.11937 0.04758 0.02174

Asymptotic Variance Covariance

scale shape alpha

scale 0.0142500 -0.0023811 -0.0015079

shape -0.0023811 0.0022638 -0.0003088

alpha -0.0015079 -0.0003088 0.0004725

Optimization Information

Convergence: successful

Function Evaluations: 45

Gradient Evaluations: 13
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3.4 Con�dence Intervals

Once a statistical model is �tted, it is usual to gives con�dence intervals. Currently, only mle, pwmu,
pwmb, moments estimators can computed con�dence intervals. Moreover, for method mle, �standard� and
�pro�le� con�dence intervals are available.

If we want con�dence intervals for the scale parameters:

> x <- rgpd(200, 1, 2, 0.25)

> mle <- fitgpd(x, 1, est = "mle")

> mom <- fitgpd(x, 1, est = "moments")

> pwmb <- fitgpd(x, 1, est = "pwmb")

> pwmu <- fitgpd(x, 1, est = "pwmu")

> gpd.fiscale(mle, conf = 0.9)

conf.inf.scale conf.sup.scale

1.763476 2.454335

> gpd.fiscale(mom, conf = 0.9)

conf.inf.scale conf.sup.scale

0.8315235 3.0539507

> gpd.fiscale(pwmu, conf = 0.9)

conf.inf.scale conf.sup.scale

1.786693 2.570726

> gpd.fiscale(pwmb, conf = 0.9)

conf.inf.scale conf.sup.scale

1.795467 2.582764

For shape parameter con�dence intervals, simply use function gpd.fishape instead of gpd.fiscale.
Note that the � stands for �Fisher Information�.

Thus, if we want pro�le con�dence intervals, we must use functions gpd.pfscale and gpd.pfshape. The
pf stands for �pro�le�. These functions are only available with a model �tted with MLE.

> par(mfrow=c(1,2))

> gpd.pfscale(mle, range = c(1, 2.9), conf = 0.9)

If there is some troubles try to put vert.lines = FALSE or change

the range...

conf.inf conf.sup

1.777273 2.468182

> gpd.pfshape(mle, range = c(0, 0.6), conf = 0.85)

If there is some troubles try to put vert.lines = FALSE or change

the range...

conf.inf conf.sup

0.06969697 0.27575758

Con�dence interval for quantiles - or return levels - are also available. This is achieved using: (a) the
Delta method or (b) pro�le likelihood.
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If there is some troubles try to put vert.lines = FALSE or change

the range...
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Figure 6: The pro�le log-likelihood con�dence intervals
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conf.inf conf.sup

7.513017 10.646388

If there is some troubles try to put vert.lines = FALSE or change

the range...

conf.inf conf.sup
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Figure 7: The pro�le log-likelihood con�dence interval for return levels

> gpd.firl(pwmu, prob = 0.95)

conf.inf conf.sup

7.513017 10.646388

> gpd.pfrl(mle, prob = 0.95, range = c(5, 16))

If there is some troubles try to put vert.lines = FALSE or change

the range...

conf.inf conf.sup

7.833333 11.166667

The pro�le con�dence interval functions both returns the con�dence interval and plot the pro�le log-
likelihood function. Figure 7 depicts the graphic window returned by function gpd.pfrl for the return
level associated to non exceedence probability 0.95.

19



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Probability plot

Empirical

M
od

el

−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−−−−

−−−−−−−−−−−−−
−−−−−−−−−−−−−

−−−−−−−−−−−−−
−−−−−−−−−−−−

−−−−−−−−−−−−−
−−−−−−−−−−−

−−−−−−−−−−−−−
−−−−−−−−−−−

−−−−−−−−−−−−
−−−−−−−−−−−

−−−−−−−−−−
−−−−−−−−

−−−−−−−−−
−−−−−−−−−−

−−−−−−−−−−−
−−−−−−−−−−−−

−−−−−−−−−−−
−−−−−−−−−−−−

−−−−−−−−−−−−
−−−−−−−−−−−−

−−−−−−−−−−−−
−−−−−−−−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−−−−

−−−−−−−−−−−−−
−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−

10.0 10.5 11.0 11.5

10
.0

11
.0

QQ−plot

Model

E
m

pi
ric

al

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

−−−−−−−−−−−
−−−−−−−−

−−−−−−
−−−−

−−−− − −

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−−−

−−−−−−−−−
−−−−−−

−−−−−
−−−−

−−−
−−

−
−

−

10 11 12 13 14 15

0.
0

0.
5

1.
0

1.
5

Density Plot

Quantile

D
en

si
ty

1 2 5 20 100 500

10
.0

11
.0

Return Level Plot

Return Period (Years)

R
et

ur
n 

Le
ve

l

Figure 8: Graphical diagnostic for a �tted POT model (univariate case)

3.5 Model Checking

To check the �tted model, users must call function plot which has a method for the uvpot, bvpot and
mcpot classes. For example, this is a generic function which calls functions: pp (probability/probability
plot), qq (quantile/quantile plot), dens (density plot) and retlev (return level plot) for the uvpot class.

Here is a basic illustration of the function plot for the class uvpot.

> x <- rgpd(200, 10, 0.5, -0.2)

> fitted <- fitgpd(x, 10, est = "mle")

> par(mfrow=c(2,2))

> plot(fitted, npy = 1)

Figure 8 displays the graphic windows obtained with the latter execution.

If one is interested in only a probability/probability plot, there is two options. We can call function pp or
equivalently plotgpd with the which option. The �which� option select which graph you want to plot.
That is:

� which = 1 for a probability/probability plot;

� which = 2 for a quantile/quantile plot;

� which = 3 for a density plot;
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� which = 4 for a return level plot;

Note that �which� can be a vector like c(1,3) or 1:3.

Thus, the following instruction gives the same graphic.

> plot(fitted, which = 1)

> pp(fitted)

If a return level plot is asked (4 ∈ which), a value for npy is needed. �npy� corresponds to the mean

number of events per year. This is required to de�ne the �return period�. If missing, the default value
(i.e. 1) will be chosen.

3.6 Declustering Techniques

In opposition to block maxima, a peak over threshold can be problematic when dealing with time series.
Indeed, as often time series are strongly auto-correlated, select naively events above a threshold may lead
to dependent events.

The function clust tries to identify peaks over a threshold while meeting independence criteria. For
this purpose, this function needs at least two arguments: the threshold u and a time condition for
independence tim.cond. Clusters are identify as follow:

1. The �rst exceedance initiates the �rst cluster;

2. The �rst observation under the threshold u �ends� the cluster unless tim.cond does not hold;

3. The next exceedance which hold tim.cond initiates a new cluster;

4. The process is iterated as needed.

Here is an application on �ood discharges for river Ardière at Beaujeu. A preliminary study shows that
two �ood events can be considered independent if they do not lie within a 8 days window. Note that unit
to de�ne tim.cond must be the same than the data analyzed.

> data(ardieres)

> events <- clust(ardieres, u = 2, tim.cond = 8 / 365)

Several options can be passed to the �clust� function. By default, it will return a list with the identi�ed
clusters. Usually, we want only cluster maxima, this is achieved by passing option clust.max = TRUE.
Users can also ask for a graphic representation of clusters by passing option plot = TRUE - see Figure 9.

> clustMax <- clust(ardieres, u = 2, tim.cond = 8 / 365, clust.max = TRUE, plot = TRUE, xlim = c(1971.1, 1972.9))

3.7 Miscellaneous functions

3.7.1 Return periods: rp2prob and prob2rp

The functions rp2prob and prob2rp are useful to convert return periods to non exceedence probabilities
and vice versa. It needs either a return period either a non exceedence probability. Moreover, the mean
number of events per year �npy� must be speci�ed.

> rp2prob(50, 1.8)

npy retper prob

1 1.8 50 0.9888889

> prob2rp(0.6, 2.2)

npy retper prob

1 2.2 1.136364 0.6
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Figure 9: The identi�ed clusters. Data Ardières, u = 2, tim.cond = 8
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Figure 10: Instantaneous �ood discharges and averaged dischaged over duration 3 days. Data ardieres

3.7.2 Unbiased Sample L-Moments: samlmu

The function samlmu computes the unbiased sample L-Moments.

> x <- runif(50)

> samlmu(x, nmom = 5)

l_1 l_2 t_3 t_4 t_5

0.47398774 0.16581818 0.04966552 0.02654252 -0.03029092

3.7.3 Mobile average window on time series: ts2tsd

The function ts2tsd computes an �average� time series tsd from the initial time series ts. This is achieved
by using a mobile average window of length d on the initial time series.

> data(ardieres)

> tsd <- ts2tsd(ardieres, 3 / 365)

> plot(ardieres, type = "l", col = "blue")

> lines(tsd, col = "green")

The latter execution is depicted in Figure 10.
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4 A Concrete Statistical Analysis of Peaks Over a Threshold

In this section, we provide a full and detailed analysis of peaks over a threshold for the river Ardières at
Beaujeu. Figure 10 depicts instantaneous �ood discharges - blue line.

As this is a time series, we must selects independent events above a threshold. First, we �x a relatively
low threshold to �extract� more events. Thus, some of them are not extreme but regular events. This is
necessary to select a reasonable threshold for the asymptotic approximation by a GPD - see section 2.

> summary(ardieres)

time obs

Min. :1970 Min. : 0.022

1st Qu.:1981 1st Qu.: 0.236

Median :1991 Median : 0.542

Mean :1989 Mean : 1.024

3rd Qu.:1997 3rd Qu.: 1.230

Max. :2004 Max. :44.200

NA's :1

> events0 <- clust(ardieres, u = 1.5, tim.cond = 8/365, clust.max = TRUE)

> par(mfrow=c(2,2))

> mrlplot(events0[,"obs"])

> abline( v = 6, col = "green")

> diplot(events0)

> abline( v = 6, col = "green")

> tcplot(events0[,"obs"], which = 1)

> abline( v = 6, col = "green")

> tcplot(events0[,"obs"], which = 2)

> abline( v = 6, col = "green")

From Figure 11, a threshold value of 6m3/s should be reasonable. The Mean residual life plot - top left
panel- indicates that a threshold around 10m3/s should be adequate. However, the selected threshold
must be low enough to have enough events above it to reduce variance while not too low as it increase
the bias3.

Thus, we can now �re-extract� events above the threshold 6m3/s, obtaining object events1. This is
necessary as sometimes events1 is not equal to observations of events0 greater than 6m3/s. We can
now de�ne the mean number of events per year �npy�. Note that an estimation of the extremal index is
available.

> events1 <- clust(ardieres, u = 6, tim.cond = 8/365, clust.max = TRUE)

> npy <- length(events1[,"obs"]) / (diff(range(ardieres[,"time"], na.rm

+ = TRUE)) - diff(ardieres[c(20945,20947),"time"]))

> ##Because there is a gap !!!

> print(npy)

[1] 1.707897

> attributes(events1)$exi

[1] 0.1247265

Let's �t the GPD.

3As the asymptotic approximation by a GPD is not accurate anymore.
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Figure 11: Threshold selection for river Ardières at Beaujeu.
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Figure 12: Graphic diagnostics for river Ardières at Beaujeu

> mle <- fitgpd(events1[,"obs"], thresh = 6, est = "mle")

> par(mfrow=c(2,2))

> plot(mle, npy = npy)

The result of function �tgpd gives the name of the estimator, if a varying threshold was used, the
threshold value, the number and the proportion of observations above the threshold, parameter estimates,
standard error estimates and type, the asymptotic variance-covariance matrix and convergence diagnostic.

Figure 12 shows graphic diagnostics for the �tted model. It can be seen that the �tted model �mle� seems
to be appropriate. Suppose we want to know the return level associated to the 100-year return period.

> ##First convert return period in prob

> rp2prob(retper = 100, npy = npy)

npy retper prob

1 1.707897 100 0.9941448

> prob <- rp2prob(retper = 100, npy = npy)[,"prob"]

> qgpd(prob, loc = 6, scale = mle$param["scale"], shape = mle$param["shape"])

scale

36.44331

To take into account uncertainties, Figure 13 depicts the pro�le con�dence interval for the quantile
associated to the 100-year return period.
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If there is some troubles try to put vert.lines = FALSE or change

the range...
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Figure 13: Pro�le-likelihood function for the 100-year return period quantile

> gpd.pfrl(mle, prob, range = c(25, 100), nrang = 200)

If there is some troubles try to put vert.lines = FALSE or change

the range...

conf.inf conf.sup

25.56533 90.76633

Sometimes it is necessary to know the estimated return period of a speci�ed events. Lets do it with the
larger events in �events1�.

> maxEvent <- max(events1[,"obs"])

> maxEvent

[1] 44.2

> prob <- pgpd(maxEvent, loc = 6, scale = mle$param["scale"], shape =

+ mle$param["shape"])

> prob
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shape

0.9974115

> prob2rp(prob, npy = npy)

npy retper prob

1 1.707897 226.1982 0.9974115

Thus, the largest events that occurs in June 2000 has approximately a return period of 240 years.

Maybe it is a good idea to �t the GPD with the other estimators available in the POT package.
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A Dependence Models for Bivariate Extreme Value Distributions

A.1 The Logisitic model

The logisitic model is de�ned by:

V (x, y) =
(
x−1/α + y−1/α

)α
, 0 < α ≤ 1 (A.1)

Independence is obtained when α = 1 while total dependence for α→ 0.

The Pickands' dependence function for the logistic model is:

A : [0, 1] −→ [0, 1]

w 7−→
[
(1− w)

1
α + w

1
α

]α
A.2 The Asymetric Logistic model

The asymetric logistic model is de�ned by:

V (x, y) =
1− θ1
x

+
1− θ2
y

+

[(
x

θ1

)− 1
α

+

(
y

θ2

)− 1
α

]α
,

with 0 < α ≤ 1, 0 ≤ θ1, θ2 ≤ 1.

Independence is obtained when either α = 1, θ1 = 0 or θ2 = 0. Di�erents limits occur when θ1 and θ2
are �xed and α = 1 → 0.

The Pickands' dependence function for the asymetric logistic model is:

A(w) = (1− θ1) (1− w) + (1− θ2)w +
[
(1− w)

1
α θ

1
α
1 + w

1
α θ

1
α
2

]α
A.3 The Negative Logistic model

The negative logistic model is de�ned by:

V (x, y) =
1

x
+

1

y
− (xα + yα)

− 1
α , α > 0 (A.2)

Independence is obtained when α→ 0 while total dependence when α→ +∞.

The Pickands' dependence function for the negative logistic model is:

A(w) = 1−
[
(1− w)−α + w−α

]− 1
α

A.4 The Asymetric Negative Logistic model

The asymetric negative logistic model is de�ned by:

V (x, y) =
1

x
+

1

y
−
[(

x

θ1

)α

+

(
y

θ2

)α]− 1
α

, α > 0, 0 < θ1, θ2 ≤ 1

Independence is obtained when either α → 0, θ1 → 0 or θ2 → 0. Di�erent limits occur when θ1 and θ2
are �xed and α→ +∞.

The Pickands' dependence function for the asymetric negative logistic model is:

A(w) = 1−

[(
1− w

θ1

)−α

+

(
w

θ2

)−α
]− 1

α
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A.5 The Mixed model

The mixed model is de�ned by:

V (x, y) =
1

x
+

1

y
− α

x+ y
, 0 ≤ α ≤ 1

Independence is obtained when α = 0 while total dependence could never be reached.

The Pickands' dependence function for the mixed model is:

A(w) = 1− w (1− w)α

A.6 The Asymetric Mixed model

The asymetric mixed model is de�ned by:

V (x, y) =
1

x
+

1

y
− (α+ θ)x+ (α+ 2θ) y

(x+ y)
2 , α ≥ 0, α+ 2θ ≤ 1, α+ 3θ ≥ 0

Independence is obtained when α = θ = 0 while total dependence could never be reached.

The Pickands' dependence function for the asymetric mixed model is:

A(w) = θw3 + αw2 − (α+ θ)w + 1
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