
Package: PST (via r-universe)
August 31, 2024

Version 0.95

Date 2020-11-25

Title Probabilistic Suffix Trees and Variable Length Markov Chains

Author Alexis Gabadinho [aut, cre, cph]

Maintainer Alexis Gabadinho <alexis.gabadinho@wanadoo.fr>

Depends R (>= 2.10), TraMineR, RColorBrewer

Imports methods, stats4

Description Provides a framework for analysing state sequences with
probabilistic suffix trees (PST), the construction that stores
variable length Markov chains (VLMC). Besides functions for
learning and optimizing VLMC models, the PST library includes
many additional tools to analyse sequence data with these
models: visualization tools, functions for sequence prediction
and artificial sequences generation, as well as for context and
pattern mining. The package is specifically adapted to the
field of social sciences by allowing to learn VLMC models from
sets of individual sequences possibly containing missing
values, and by accounting for case weights. The library also
allows to compute probabilistic divergence between two models,
and to fit segmented VLMC, where sub-models fitted to distinct
strata of the learning sample are stored in a single PST. This
software results from research work executed within the
framework of the Swiss National Centre of Competence in
Research LIVES, which is financed by the Swiss National Science
Foundation. The authors are grateful to the Swiss National
Science Foundation for its financial support.

License GPL (>= 2)

Encoding latin1

URL http://r-forge.r-project.org/projects/pst

Repository https://r-forge.r-universe.dev

RemoteUrl https://github.com/r-forge/pst

RemoteRef HEAD

RemoteSha dfcb48241141b7d7962d30aca9d594f20ba8d12f

1

http://r-forge.r-project.org/projects/pst

2 cmine

Contents

cmine . 2
cplot . 4
cprob . 5
generate . 7
impute . 8
logLik . 10
nobs . 12
nodenames . 13
pdist . 14
plot-PSTr . 16
pmine . 18
ppplot . 21
pqplot . 22
predict . 23
print . 25
prune . 26
PSTf-class . 28
PSTr-class . 30
pstree . 32
query . 34
s1 . 35
SRH . 36
subtree . 37
summary-methods . 39
tune . 40

Index 42

cmine Mining contexts

Description

Extracting contexts in a PST satisfying user defined criterion

Usage

S4 method for signature 'PSTf'
cmine(object, l, pmin, pmax, state, as.tree=FALSE, delete=TRUE)

cmine 3

Arguments

object A probabilistic suffix tree, i.e., an object of class "PSTf" as returned by the
pstree, prune or tune function.

l length of the context to search for.

pmin numeric. Minimal probability for selecting the (sub)sequence.

pmax numeric. Maximal probability for selecting the (sub)sequence.

state character. One or several states of the alphabet for which the (cumulated) prob-
ability is greater than pmin or less than pmax.

as.tree logical. If TRUE the cmine method returns a subtree of the PST given as input
with selected contexts (including their parent nodes, even if these don’t statistify
the defined criterion). If FALSE the output is the list of selected contexts. See
value.

delete Logical. If as.tree=TRUE and delete=FALSE, the pruned nodes are not re-
moved from the tree but tagged as pruned=FALSE, so that when plotting the
pruned tree these nodes wil appear surrounded with red (can be set to another
color) lines.

Value

If as.tree=TRUE a PST, that is an object of class PSTf which can be printed and plotted; if
as.tree=FALSE a list of contexts with their associated next symbol probability distribution, that
is an object of class cprobd.list for which a plot method is available. Subscripts can be used to
select subsets of the contexts, see examples.

details

The cmine function searches in the tree for nodes fulfilling certain characteristics, for example
contexts that are highly likely to be followed by a given state (see example 1). One can also mine
for contexts corresponding to a minimum or maximum probability for several states together (see
example 2). For more details, see Gabadinho 2016.

Author(s)

Alexis Gabadinho

References

Gabadinho, A. & Ritschard, G. (2016). Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), pp. 1-39.

Examples

Loading the SRH.seq sequence object
data(SRH)

Learning the model
SRH.pst <- pstree(SRH.seq, nmin=30, ymin=0.001)

4 cplot

Example 1: searching for all contexts yielding a probability of the
state G1 (very good health) of at least pmin=0.5
cm1 <- cmine(SRH.pst, pmin=0.5, state="G1")
cm1[1:10]

Example 2: contexts associated with a high probability of
medium or lower self rated health
cm2 <- cmine(SRH.pst, pmin=0.5, state=c("B1", "B2", "M"))
plot(cm2, tlim=0, main="(a) p(B1,B2,M)>0.5")

cplot Plot single nodes of a probabilistic suffix tree

Description

Plot the next symbol probability distribution associated with a particular node in a PST

Usage

S4 method for signature 'PSTf'
cplot(object, context, state, main=NULL, all=FALSE, x.by=1, y.by=0.2, by.state=FALSE, ...)

Arguments

object A probabilistic suffix tree, i.e., an object of class "PSTf" as returned by the
pstree, prune or tune function.

context character. Label of the node to plot, provided as a string where states are sepa-
rated by ’-’, see examples.

state logical. Under development.

main character. Main title for the plot. By default, the title is the node label.

all logical.

x.by numeric. Interval for the ticks on the x axis (segments).

y.by numeric. Interval for the ticks on the y axis (probability).

by.state logical. If TRUE, the representation of the probability distribution is done sepa-
rately for each state of the alphabet.

... arguments to be passed to the plot function or other graphical parameters.

Details

The cplot() function displays a single node labelled with context of the tree where one or mode
barplots (if object is a segmented PST) represent the probability distribution(s) stored in the node.
For more details, see Gabadinho 2016.

Author(s)

Alexis Gabadinho

cprob 5

References

Gabadinho, A. & Ritschard, G. (2016). Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), pp. 1-39.

See Also

ppplot

Examples

data(s1)
s1 <- seqdef(s1)
S1 <- pstree(s1, L=3)

cplot(S1, "a-b")

cprob Empirical conditional probability distributions of order L

Description

Compute the empirical conditional probability distributions of order L from a set of sequences

Usage

S4 method for signature 'stslist'
cprob(object, L, cdata=NULL, context, stationary=TRUE, nmin=1, prob=TRUE,
weighted=TRUE, with.missing=FALSE, to.list=FALSE)

Arguments

object a sequence object, that is an object of class stslist as created by TraMineR
seqdef function.

L integer. Context length.

cdata under development

context character. An optional subsequence (a character string where symbols are sepa-
rated by ’-’) for which the conditional probability distribution is to be computed.

stationary logical. If FALSE probability distributions are computed for each sequence posi-
tion L+1 ... l where l is the maximum sequence length. If TRUE the probability
distributions are stationary that is time homogenous.

nmin integer. Minimal frequency of a context. See details.

prob logical. If TRUE the probability distributions are returned. If FALSE the function
returns the empirical counts on which the probability distributions are computed.

weighted logical. If TRUE case weights attached to the sequence object are used in the
computation of the probabilities.

6 cprob

with.missing logical. If FALSE only contexts contining no missing status are considered.

to.list logical. If TRUE and stationary=TRUE, a list instead of a matrix is returned.
See value.

Details

The empirical conditional probability P̂ (σ|c) of observing a symbol σ ∈ A after the subsequence
c = c1, . . . , ck of length k = L is computed as

P̂ (σ|c) = N(cσ)∑
α∈A N(cα)

where

N(c) =

ℓ∑
i=1

1
[
xi, . . . , xi+|c|−1 = c

]
, x = x1, . . . , xℓ, c = c1, . . . , ck

is the number of occurrences of the subsequence c in the sequence x and cσ is the concatenation of
the subsequence c and the symbol σ.

Considering a - possibly weighted - sample of m sequences having weights wj , j = 1 . . .m, the
function N(c) is replaced by

N(c) =

m∑
j=1

wj
ℓ∑

i=1

1
[
xj
i , . . . , x

j
i+|c|−1 = c

]
, c = c1, . . . , ck

where xj = xj
1, . . . , x

j
ℓ is the jth sequence in the sample. For more details, see Gabadinho 2016.

Value

If stationary=TRUE a matrix with one row for each subsequence of length L and minimal fre-
quency nmin appearing in object. If stationary=FALSE a list where each element corresponds
to one subsequence and contains a matrix whith the probability distribution at each position p where
a state is preceded by the subsequence.

Author(s)

Alexis Gabadinho

References

Gabadinho, A. & Ritschard, G. (2016). Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), pp. 1-39.

Examples

Example with the single sequence s1
data(s1)
s1 <- seqdef(s1)
cprob(s1, L=0, prob=FALSE)
cprob(s1, L=1, prob=TRUE)

generate 7

Preparing a sequence object with the SRH data set
data(SRH)
state.list <- levels(SRH$p99c01)
sequential color palette
mycol5 <- rev(brewer.pal(5, "RdYlGn"))
SRH.seq <- seqdef(SRH, 5:15, alphabet=state.list, states=c("G1", "G2", "M", "B2", "B1"),
labels=state.list, weights=SRH$wp09lp1s, right=NA, cpal=mycol5)

names(SRH.seq) <- 1999:2009

Example 1: 0th order: weighted and unweigthed counts
cprob(SRH.seq, L=0, prob=FALSE, weighted=FALSE)
cprob(SRH.seq, L=0, prob=FALSE, weighted=TRUE)

Example 2: 2th order: weighted and unweigthed probability distrib.
cprob(SRH.seq, L=2, prob=TRUE, weighted=FALSE)
cprob(SRH.seq, L=2, prob=TRUE, weighted=TRUE)

generate Generate sequences using a probabilistic suffix tree

Description

Generate sequences using a probabilistic suffix tree

Usage

S4 method for signature 'PSTf'
generate(object, l, n, s1, p1, method, L, cnames)

Arguments

object a probabilistic suffix tree, i.e., an object of class "PSTf" as returned by the
pstree, prune or tune function.

l integer. Length of the sequence(s) to generate.

n integer. Number of the sequence(s) to generate.

s1 character. The first state in the sequences. The length of the vector should equal
n. If specified, the first state in the sequence(s) is not randomly generated but
taken from s1.

p1 numeric. An optional probability vector for generating the first position state
in the sequence(s). If specified, the first state in the sequence(s) is randomly
generated using the probability distribution in p1 instead of the probability dis-
tribution taken fron the root node of object.

method character. If method=pmax, at each position the state having the highest proba-
bility is chosen. If method=prob, at each position the state is generated using
the corresponding probability distribution taken from object.

L integer: Maximal depth used to extract the probability distributions from the
PST object.

8 impute

cnames character: Optional column (position) names for the returned state sequence
object. By default, the names of the sequence object to which the model was
fitted are used (slot "data" of the PST).

Details

As a probabilistic suffix tree (PST) represents a generating model, it can be used to generate arti-
ficial sequence data sets. Sequences are built by generating the states at each successive position.
The process is similar to sequence prediction (see predict), except that the retrieved conditional
probability distributions provided by the PST are used to generate a symbol instead of computing
the probability of an existing state. For more details, see Gabadinho 2016.

Value

A state sequence object (an object of class stslist) containing n sequences. This object can be
passed as argument to all the functions for visualization and analysis provided by the TraMineR
package.

Author(s)

Alexis Gabadinho

References

Gabadinho, A. & Ritschard, G. (2016). Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), pp. 1-39.

Examples

data(s1)
s1.seq <- seqdef(s1)
S1 <- pstree(s1.seq, L=3)

Generating 10 sequences
generate(S1, n=10, l=10, method="prob")

First state is generated with p(a)=0.9 and p(b)=0.1
generate(S1, n=10, l=10, method="prob", p1=c(0.9, 0.1))

impute Impute missing values using a probabilistic suffix tree

Description

Missing states in a set of sequences are imputed by using the probability distributions stored in a
probabilistic suffix tree.

impute 9

Usage

S4 method for signature 'PSTf,stslist'
impute(object, data, method="pmax")

Arguments

object a probabilistic suffix tree, i.e., an object of class "PSTf" as returned by the
pstree, prune or tune function.

data a sequence object, i.e., an object of class 'stslist' as created by TraMineR
seqdef function, containing the sequences to impute. See details.

method character. If method='pmax' the state having the highest probability according
to the probability distribution associated with the context preceding the missing
status is imputed. If method='prob' the imputation is done randomly by using
this probability distribution.

Details

A probabilistic suffix tree (PST) can be used to impute missing states in sequences built on the
same alphabet. When a missing state occurs in a sequence the procedure searches in the PST for the
context preceding the missing state and impute the state according to the conditional distribution
associated with the context. The imputation can be done either randomly (method="prob") or with
the state having the highest probability. However, more sophisticated modelling taking account of
the non response mechanism could be required for imputing missing states. For more details, see
Gabadinho 2016.

Value

A sequence object (of class stslist) containing original sequences in data with missing states
imputed.

Author(s)

Alexis Gabadinho

References

Gabadinho, A. & Ritschard, G. Analyzing State Sequences with Probabilistic Suffix Trees: The
PST R Package. Journal of Statistical Software, 2016, 72(3), 1-39.

Examples

Loading the SRH.seq sequence object
data(SRH)

working with a sub-sample of 500 sequences
to reduce computing time
subs <- sample(nrow(SRH.seq), size=500)
SRH.sub.seq <- SRH.seq[subs,]

10 logLik

Learning the model (missing state is not included)
SRH.pst.L10 <- pstree(SRH.sub.seq, nmin=2, ymin=0.001)

Pruning
C99 <- qchisq(0.99,5-1)/2
SRH.pst.L10.C99 <- prune(SRH.pst.L10, gain="G2", C=C99)

Imputing missing values in the SRH sequences
SRH.sub.iseq <- impute(SRH.pst.L10, SRH.sub.seq, method="prob")

locating sequences having missing values
in sequence object missing states are identified by '*'
have.miss <- which(rowSums(SRH.sub.seq=='*')>0)

plotting non imputed vs imputed sequence
(first 10 sequences in the set)
par(mfrow=c(1,2))
seqiplot(SRH.sub.seq[have.miss,], withlegend=FALSE)
seqiplot(SRH.sub.iseq[have.miss,], withlegend=FALSE)

logLik Log-Likelihood of a variable length Markov chain model

Description

Retrieve the log-likelihood of a fitted VLMC. This is the logLik method for objects of class PSTf
returned by the pstree and prune functions.

Usage

S4 method for signature 'PSTf'
logLik(object)

Arguments

object a probabilistic suffix tree, i.e., an object of class "PSTf" as returned by the
pstree, prune or tune function.

Details

The likelihood of a learning sample containing n sequences, given a model S fitted to it, is

L(S) =

n∏
i=1

PS(xi)

where PS(xi) is the probability of the ith observed sequence predicted by S. Note that the log-
likelihood of a VLMC model is not used in the estimation of the model’s parameters (see pstree).
It is obtained once the model is estimated by calling the predict function. The value is stored in
the logLik slot of the probabilistic suffix tree representing the model (a PSTf object returned by the
pstree or prune function). The AIC and BIC values can also be obtained with the corresponding
generic functions, which call logLik and use its result. For more details, see Gabadinho 2016.

logLik 11

Value

An object of class logLik, a negative numeric value with the df (degrees of freedom) attribute
containing the number of free parameters of the model.

Author(s)

Alexis Gabadinho

References

Gabadinho, A. & Ritschard, G. (2016). Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), pp. 1-39.

See Also

AIC, BIC

Examples

activity calendar for year 2000
from the Swiss Household Panel
see ?actcal
data(actcal)

selecting individuals aged 20 to 59
actcal <- actcal[actcal$age00>=20 & actcal$age00 <60,]

defining a sequence object
actcal.lab <- c("> 37 hours", "19-36 hours", "1-18 hours", "no work")
actcal.seq <- seqdef(actcal,13:24,labels=actcal.lab)

building a PST
actcal.pst <- pstree(actcal.seq, nmin=2, ymin=0.001)
logLik(actcal.pst)

Cut-offs for 5% and 1% (see ?prune)
C99 <- qchisq(0.99,4-1)/2

pruning
actcal.pst.C99 <- prune(actcal.pst, gain="G2", C=C99)

Comparing AIC
AIC(actcal.pst, actcal.pst.C99)

12 nobs

nobs Extract the number of observations to which a VLMC model is fitted

Description

The number of observations to which a VLMC model is fitted is notably used for computing the
Bayesian information criterion BIC or the Akaike information criterion with correction for finite
sample sizes AICc.

Usage

S4 method for signature 'PSTf'
nobs(object)

Arguments

object A PST, that is an object of class PSTf as returned by the pstree or prune
method.

Details

This is the method for the generic nobs function provided by the stats4 package. The number
of observations to which a VLMC model is fitted is the total number of symbols in the learning
sample. If the learning sample contains missing values and the model is learned without including
missing values (see pstree), the total number of symbols is the number of non-missing states in
the sequence(s). This information is used to compute the Bayesian information criterion of a fitted
VLMC model. The BIC generic function calls the logLik and nobs methods for class PSTf. For
more details, see Gabadinho 2016.

Value

An integer containing the number of symbols in the learning sample.

Author(s)

Alexis Gabadinho

References

Gabadinho, A. & Ritschard, G. (2016). Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), pp. 1-39.

See Also

BIC

nodenames 13

Examples

data(s1)
s1.seq <- seqdef(s1)
S1 <- pstree(s1.seq, L=3)
nobs(S1)

Self rated health sequences
Loading the 'SRH' data frame and 'SRH.seq' sequence object
data(SRH)

model without considering missing states
model with max. order 2 to reduce computing time
nobs is the same whatever L and nmin
m1 <- pstree(SRH.seq, L=2, nmin=30, ymin=0.001)
nobs(m1)

considering missing states, hence nobs is higher
m2 <- pstree(SRH.seq, L=2, nmin=30, ymin=0.001, with.missing=TRUE)
nobs(m2)

nodenames Retrieve the node labels of a PST

Description

Retrieve the node labels of a PST

Usage

S4 method for signature 'PSTf'
nodenames(object, L)

Arguments

object A PST, that is an object of class PSTf as returned by the pstree or prune
method.

L integer. Depth of the tree for which the node names are retrieved. If missing the
names of all the nodes in the tree are returned.

Value

A vector containing the node labels (i.e. contexts).

Author(s)

Alexis Gabadinho

14 pdist

Examples

data(s1)
s1 <- seqdef(s1)
S1 <- pstree(s1, L=3)

nodenames(S1, L=3)
nodenames(S1)

pdist Compute probabilistic divergence between two PST

Description

Compute probabilistic divergence between two PST

Usage

S4 method for signature 'PSTf,PSTf'
pdist(x,y, method="cp", l, ns=5000, symetric=FALSE, output="all")

Arguments

x a probabilistic suffix tree, i.e., an object of class "PSTf" as returned by the
pstree, prune or tune function.

y a probabilistic suffix tree, i.e., an object of class "PSTf" as returned by the
pstree, prune or tune function.

method character. Method for computing distances. So far only one method is available.

l integer. Length of the sequence(s) to generate.

ns integer. Number sequences to generate.

symetric logical. If TRUE, the symetric version of the measure is returned, see details.

output character. See value.

Details

The function computes a probabilistic divergence measure between PST SA and SB based on the
measure originally proposed in Juang-1985 and Rabiner-1989 for the comparison of two (hidden)
Markov models SA and SB

d(SA, SB) =
1

ℓ
[logPSA(x)− logPSB (x)] =

1

ℓ
log

PSA(x)

PSB (x)

where x = x1, . . . , xℓ is a sequence generated by model SA, PSA(x) is the probability of x given
model SA and PSB (x) is the probability of x given model SB . The ratio between the two sequence
likelihoods measures how many times the sequence x is more likely to have been generated by SA

than by S2.

pdist 15

As the number n of generated sequences on which the measure is computed (or the length of a
single sequence) approaches infinity, the expected value of d(SA, SB) converges to dKL(SA, SB)
Falkhausen-1995, He-2000, the Kullback-Leibler (KL) divergence (also called information gain)
used in information theory to measure the difference between two probability distributions.

The pdist function uses the following procedure to compute the divergence between two PST:

• generate a ransom sample of n sequences (of length ℓ) with model SA using the generate
method

• predict the sequences with SA and with SB

• compute

di(SA, SB) =
1

ℓ
[logPSA(xi)− logPSB (xi))], i = 1, . . . , n

• the expected value
E(d(SA, SB))

is the divergence between models SA and SB and is estimated as

Ê(d(SA, SB)) =
1

n

n∑
i=1

di(SA, SB)

For more details, see Gabadinho 2016.

Value

If ouput="all", a vector containing the divergence value for each generated sequence, if output="mean",
the mean, i.e. expected value which is the divergence between models.

Author(s)

Alexis gabadinho

References

Gabadinho, A. & Ritschard, G. (2016). Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), pp. 1-39.

Juang, B. H. and Rabiner, L. R. (1985). A probabilistic distance measure for hidden Markov models.
ATT Technical Journal, 64(2), pp. 391-408.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2), pp. 257-286.

Examples

activity calendar for year 2000
from the Swiss Household Panel
see ?actcal
data(actcal)

selecting individuals aged 20 to 59
actcal <- actcal[actcal$age00>=20 & actcal$age00 <60,]

16 plot-PSTr

defining a sequence object
actcal.lab <- c("> 37 hours", "19-36 hours", "1-18 hours", "no work")
actcal.seq <- seqdef(actcal,13:24,labels=actcal.lab)

building a PST segmented by age group
gage10 <- cut(actcal$age00, c(20,30,40,50,60), right=FALSE,
labels=c("20-29","30-39", "40-49", "50-59"))

actcal.pstg <- pstree(actcal.seq, nmin=2, ymin=0.001, group=gage10)

pruning
C99 <- qchisq(0.99,4-1)/2
actcal.pstg.opt <- prune(actcal.pstg, gain="G2", C=C99)

extracting PST for age group 20-39 and 30-39
g1.pst <- subtree(actcal.pstg.opt, group=1)
g2.pst <- subtree(actcal.pstg.opt, group=2)

generating 5000 sequences with g1.pst
and computing 5000 distances
dist.g1_g2 <- pdist(g1.pst, g2.pst, l=11)
hist(dist.g1_g2)

the probabilistic distance is the mean
of the 5000 distances
mean(dist.g1_g2)

plot-PSTr Plot a PST

Description

Plot a PST

Usage

S4 method for signature 'PSTf,ANY'
plot(x, y=missing, max.level=NULL,
nodePar = list(), edgePar = list(),
axis=FALSE, xlab = NA, ylab = if (axis) { "L" } else {NA},
horiz = FALSE, xlim, ylim,
withlegend=TRUE, ltext=NULL, cex.legend=1,
use.layout=withlegend!=FALSE, legend.prop=NA, ...)

Arguments

x A PST, that is an object of class PSTf as returned by the pstree or prune
method.

plot-PSTr 17

y not applicable

max.level integer. The maximal depth for the display of the tree.

nodePar list. A list of parameters for tuning the node representation. Possible parameters
are

• node.size. numeric. The size of the node, in fraction of a unit of the x axis
(or y axis if horiz=TRUE).

• gratio. The ratio between horizontal and vertical dimensions of the node.
usefull if the horizontal and vertical dimensions of the plot are not equal.
If not provided, it is estimated as a function of the number of leaves repre-
sented in the plot and the depth of the tree.

edgePar list. A list of parameters for tuning the edges representation. Possible paramters
are

axis logical. If TRUE the axes are displayed on the plot.

xlab character. Label for the x axis.

ylab character. Label for the y axis representing the tree depth.

horiz logical. If FALSE, the tree is represented vertically. The root node at depth L=0
is plotted on the top, and the nodes of maximal depth are plotted on the bottom
of the plot. If TRUE, the tree is represented horizontally. The root node at depth
L=0 is plotted on the right, and the nodes of maximal depth are plotted on the
left of the plot.

xlim numeric. Vector of length 2 giving the x limits for the plot. By default the limits
are 1 .. number of terminal nodes (at max.level if specified). This may be usefull
to facilitate comparison if several trees are plotted on the same figure.

ylim numeric. Vector of length 2 giving the y limits for the plot. By default the limits
are 0 .. max. depth of the tree (max.level if specified). This may be usefull to
facilitate comparison if several trees are plotted on the same figure.

withlegend defines if and where the legend of the state colors is plotted. The default value
TRUE sets the position of the legend automatically. Other possible value is
"right".

ltext optional description of the states to appear in the legend. Must be a vector of
character strings with number of elements equal to the size of the alphabet. If
unspecified, the label attribute of the seqdata sequence object is used (see
seqdef).

cex.legend expansion factor for setting the size of the font for the labels in the legend. The
default value is 1. Values lesser than 1 will reduce the size of the font, values
greater than 1 will increase the size.

use.layout if TRUE, layout is used to arrange plots when using the group option or plotting
a legend. When layout is activated, the standard ’par(mfrow=....)’ for arrang-
ing plots does not work. With withlegend=FALSE and group=NULL, layout is
automatically deactivated and ’par(mfrow=....)’ can be used.

legend.prop sets the proportion of the graphic area used for plotting the legend when use.layout=TRUE
and withlegend=TRUE. Default value is set according to the place (bottom or
right of the graphic area) where the legend is plotted. Values from 0 to 1.

... arguments to be passed to the plot function or graphical parameters

18 pmine

Details

The function for graphical representation of a PST uses is recursive. The main argument of the
function is a tree represented as a nested list (an object of class PSTr). See also Gabadinho 2016.

Author(s)

Alexis Gabadinho, based on code from plot.dendrogram

References

Gabadinho, A. & Ritschard, G. (2016). Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), pp. 1-39.

Examples

data(s1)
s1 <- seqdef(s1)
S1 <- pstree(s1, L=3)
plot(S1)
plot(S1, horiz=TRUE)
plot(S1, nodePar=list(node.type="path", lab.type="prob", lab.pos=1, lab.offset=2, lab.cex=0.7),
edgePar=list(type="triangle"), withlegend=FALSE)

pmine PST based pattern mining

Description

Mine for (sub)sequences satisfying user defined criteria in a state sequence object

Usage

S4 method for signature 'PSTf,stslist'
pmine(object, data, l, pmin=0, pmax=1, prefix, lag, average=FALSE,
output="sequences", with.prefix=TRUE, sorted=TRUE, decreasing=TRUE, score.norm=FALSE)

Arguments

object A fitted PST, that is an object of class PSTf as returned by the pstree or prune
method.

data A sequence object of class ’stslist’ as defined with the seqdef function of the
TraMineR library.

l integer. Length of the subsequence to search for.

pmin numeric. (Sub)-sequences having average or per state probability greater or
equal than pmin are selected. Default to 1, meaning no lower threshold for the
probability.

pmine 19

pmax numeric. (Sub)-sequences having average or per state probability less or equal
than pmax are selected. Default to 1, meaning no upper threshold for the proba-
bility.

prefix character. Subsequences are searched in sequences starting with 'prefix',
where 'prefix' is a string representing a subsequence with states separated
by '-'. This option can be used to search for -most- likely patterns in sequences
starting with ’prefix’.

lag integer. The lag first states in the sequence are omitted. If prefix is

average logical. If TRUE, the pmin or pmax probability is supposed to be the average state
probability in the (sub)sequence. If FALSE (sub)sequences having every state
probability less than pmax or greater than pmin are selected.

output character. If output='sequences' the whole sequence(s) where the user de-
fined criteria is satisfied are returned. If output='patterns' only the (sub)sequences
satisfying the user defined criteria are returned.

with.prefix logical. If 'output=patterns', should the patterns in the output be preceeded
by their prefix, that is by the whole sub-sequence preceding the pattern.

sorted logical. If 'sorted=TRUE', selected patterns or sequences are sorted according
to their score, i.e., their average probability.

decreasing logical. If 'sorted=TRUE', should sort order be decreasing or increasing ?

score.norm logical. If TRUE, the score attached to each selected pattern or (sub)-sequence
(the weights in the returned sequence object) is the average per state probability,
and is thus normalized by the length of the pattern. If FALSE, the score is the
whole (sub)-sequence probability.

Details

The likelihood PS(x) of a whole sequence x is computed from the state probabilities at each po-
sition in the sequence. However, the likelihood of the first states is usually lower than at higher
position due to a reduced memory available for prediction. A sequence may not appear as very
likely if its first state has a low relative frequency, even if the model predicts high probabilities for
the states at higher positions.

The pmine function allows for advanced pattern mining with user defined parameters. It is con-
trolled by the lag and pmin arguments. For example, by setting lag=2 and pmin=0.40 (example
1), we select all sequences with average (the geometric mean is used) state probability from po-
sition lag + 1, . . . , ℓ above pmin. Instead of considering the average state probability at positions
lag + 1, . . . , ℓ, it is also possible to select frequent patterns that do not contain any state with prob-
ability below the threshold. This prevents from selecting sequences having many states with high
probability but one ore several states with a low probability.

It is also possible to mine the sequence data for frequent patterns of length ℓj < ℓ, regardless of the
position in the sequence where they occur. By using the output="patterns" argument, the pmine
function returns the patterns (as a sequence object) instead of the whole set of distinct sequences
containing the patterns. Since the probability of a pattern can be different depending on the context
(previous states) the returned subsequences also contain the context preceding the pattern. For more
details, see Gabadinho 2016.

20 pmine

Value

A state sequence object, that is an object of class stslist, where weights are the probability score
of (sub)sequences.

Author(s)

Alexis Gabadinho

References

Gabadinho, A. & Ritschard, G. (2016). Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), pp. 1-39.

See Also

cmine for context mining

Examples

activity calendar for year 2000
from the Swiss Household Panel
see ?actcal
data(actcal)

selecting individuals aged 20 to 59
actcal <- actcal[actcal$age00>=20 & actcal$age00 <60,]

defining a sequence object
actcal.lab <- c("> 37 hours", "19-36 hours", "1-18 hours", "no work")
actcal.seq <- seqdef(actcal,13:24,labels=actcal.lab)

building a PST
actcal.pst <- pstree(actcal.seq, nmin=2, ymin=0.001)

pruning
Cut-offs for 5% and 1% (see ?prune)
C99 <- qchisq(0.99,4-1)/2
actcal.pst.C99 <- prune(actcal.pst, gain="G2", C=C99)

example 1
pmine(actcal.pst.C99, actcal.seq, pmin=0.4, lag=2)

example 2: patterns of length 6 having p>=0.6
pmine(actcal.pst.C99, actcal.seq, pmin=0.6, l=6)

ppplot 21

ppplot Plotting a branch of a probabilistic suffix tree

Description

The ppplot function displays the probability distributions of a node and all its parent nodes (suf-
fixes) in the tree. IF the name of a gain function and a vector of pruning cutoffs are provided, the
graphic will display the outcomes of the gain function, i.e., whether a node represents an informa-
tion gain relative to its parent.

Usage

S4 method for signature 'PSTf'
ppplot(object, path, gain, C, cex.plot = 1, nsize = 0.3, nlab=TRUE,
psize = nsize/2, pruned.col = "red", div.col = "green", ...)

Arguments

object a probabilistic suffix tree, i.e., an object of class "PSTf" as returned by the
pstree, prune or tune function.

path character. Either a character string representing the node label (i.e., the context)
where symbols are separated by ’-’, or a vector where each element is a symbol.
See example.

gain character or function. Gain function, see prune.

C numeric. Value of the cutoff used by the gain function, see prune.

cex.plot numeric. Expansion factor for setting the size of the font for the axis labels and
names. The default value is 1. Values lesser than 1 will reduce the size of the
font, values greater than 1 will increase the size.

nsize numeric. Size of the circles representing the nodes.

nlab logical. Should the node label be displayed inside the circle?

psize numeric. Size of the circles representing the outcome of the gain function.

pruned.col character. Color used to represent a terminal node which provides no informa-
tion gain relative to its parent.

div.col character. Color used to represent an internal node which provides information
gain relative to its parent.

... additional parameters to be passed to the plot function.

Details

For more details, see Gabadinho 2016.

Author(s)

Alexis Gabadinho

22 pqplot

References

Gabadinho, A. & Ritschard, G. (2016). Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), pp. 1-39.

See Also

cplot, prune

Examples

data(s1)
s1.seq <- seqdef(s1)
S1 <- pstree(s1.seq, L=5, ymin=0.001)
ppplot(S1, "a-a-b-b-a", gain="G1", C=c(1.1, 1.2))

pqplot Prediction quality plot

Description

Plot the predicted probability of each state in a sequence

Usage

S4 method for signature 'PSTf,stslist'
pqplot(object, data, cdata, L, stcol, plotseq=FALSE,
ptype="b", cex.plot=1, space=0,
measure="prob", pqmax, seqscale, ...)

Arguments

object a probabilistic suffix tree, i.e., an object of class "PSTf" as returned by the
pstree, prune or tune function.

data a sequence object, i.e., an object of class 'stslist' as created by TraMineR
seqdef function, either subsetted with the index of the sequence to predict or
containing one sequence.

cdata Not implemented yet.

L integer. Maximal context length for sequence prediction. This is the same as
pruning the PST by removing all nodes of depth<L before prediction.

stcol character. Color to use to plot the prediction qualities.

plotseq logical. If TRUE, the sequence is displayed separately, and the prediction plot
is plotted above.

ptype character. Type of plot, either 'b' for barplot or 'l' for line.

cex.plot numeric. Expansion factor for setting the size of the font for the axis labels and
names. The default value is 1. Values lesser than 1 will reduce the size of the
font, values greater than 1 will increase the size.

predict 23

space numeric. Space separating each state in the plot.

measure character. Measure used for prediction quality. Either 'prob' or 'logloss'.$

pqmax numeric. Maximum coordinate for the prediction quality plot, i.e. the max of
the y axis.

seqscale numeric. If plotseq=TRUE, width of the bar representing the sequence as a
proportion of the y axis range.

... optional graphical parameters to be passed to the plot function.

Details

The pqplot() function displays either the predicted probabilities or the log-loss for each position
of a single sequence as a series of barplots. For more details, see Gabadinho 2016.

Author(s)

Alexis Gabadinho

References

Gabadinho, A. & Ritschard, G. (2016) Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), 1-39.

Examples

data(s1)
s1 <- seqdef(s1)
S1 <- pstree(s1, L=3)

z <- seqdef("a-b-a-a-b")
pqplot(S1, z)
pqplot(S1, z, measure="logloss", plotseq=TRUE)

predict Compute the probability of categorical sequences using a probabilistic
suffix tree

Description

Compute the probability (likelihood) of categorical sequences using a Probabilistic Suffix Tree

Usage

S4 method for signature 'PSTf'
predict(object, data, cdata, group, L=NULL, p1=NULL, output="prob", decomp=FALSE, base=2)

24 predict

Arguments

object a probabilistic suffix tree, i.e., an object of class "PSTf" as returned by the
pstree, prune or tune function.

data a sequence object, i.e., an object of class 'stslist' as created by TraMineR
seqdef function, containing the sequences to predict.

cdata not implemented yet.

group if object is a segmented PST, providing a vector of group membership so that
each sequence probability will be predicted with the conditional probability dis-
tributions for the group it belongs to. If object is a segmented PST and group is
not provided, each sequence will be predicted by each of the submodel, and the
output will be a matrix with nbgroup columns, where nbgroup is the number of
segments in the PST.

L integer. Maximal context length for sequence prediction. This is the same as
pruning the PST by removing all nodes of depth<L before prediction.

p1 vector. A probability distribution for the first position in the sequence that will
be used instead of the root node of the tree.

output character. One of 'prob', 'logloss', 'SIMn' or 'SIMo'. See details.

decomp logical. If TRUE the predicted probability for each state in the sequence(s) is
returned instead of the whole sequence probability.

base integer. Base for the logarithm if a logarithm is used in the used prediction
measure.

Details

A probabilistic suffix tree (PST) allows to compute the likelihood of any sequence built on the
alphabet of the learning sample. This feature is called sequence prediction. The likelihood of the
sequence a-b-a-a-b given a PST S1 fitted to the example sequence s1 (see example) is

PS1(abaab) = PS1(a)× PS1(b|a)× PS1(a|ab)× PS1(a|aba)× PS1(b|abaa)

The probability of each of the state is retrieved from the PST. To get for example P(a|a-b-a), the
tree is scanned for the node labelled with the string a-b-a, and if this node does not exist, it is
scanned for the node labelled with the longest suffix of this string, that is b-a, and so on. The node
a-b-a is not found in the tree (it has been removed during the pruning stage), and the longest suffix
of a-b-a found is b-a. The probability P(a|b-a) is then used instead of P(a|a-b-a).

The sequence likelihood is returned by the predict function. By setting decomp=TRUE the output is
a matrix containing the probability of each of the symbol composing the sequence. The score PS(x)
of a sequence x represents the probability that the VLMC model stored by the PST S generates x.
It can be turned into a more readable prediction quality measure such as the average log-loss

logloss(S, x) = −1

ℓ

ℓ∑
i=1

log2 P
S(xi|x1, . . . , xi−1) = −1

ℓ
log2 P

S(x)

by using 'output=logloss'. The returned value is the average log-loss of each state in the se-
quence, which allows to compare the prediction for sequences of unequal lengths. The average

print 25

log-loss can be interpreted as a residual, that is the distance between the prediction of a sequence
by a PST S and the perfect prediction P (x) = 1 yielding logloss(PS , x) = 0. The lower the value
of logloss(PS , s) the better the sequence is predicted. For more details, see Gabadinho 2016.

Value

Either a vector of sequence probabilities (decomp=FALSE) or a matrix (if decomp=FALSE) con-
taining for each sequence (row) the probability of each state in columns.

Author(s)

Alexis Gabadinho

References

Gabadinho, A. & Ritschard, G. (2016) Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), 1-39.

Examples

data(s1)
s1 <- seqdef(s1)

S1 <- pstree(s1, L=3, nmin=2, ymin=0.001)
S1 <- prune(S1, gain="G1", C=1.20, delete=FALSE)

predict(S1, s1, decomp=TRUE)
predict(S1, s1)

print Print method for objects of class PSTf and PSTr

Description

Display a probabilistic suffix tree

Usage

S4 method for signature 'PSTr'
print(x, max.level = NULL, digits = 1, give.attr = FALSE,

nest.lev = 0, indent.str = "", stem = "--")

Arguments

x A PST, that is an object of class PSTf as returned by the pstree or prune
method.

max.level integer. The maximal depth for the display of the tree.

digits integer specifying the precision for printing.

26 prune

give.attr logical. If TRUE the attributes of each node (an object of class PSTr) are dis-
played.

nest.lev integer. Parameter used internally by the function.

indent.str character. String used to indent each line when displaying the tree. Default to ”.

stem character. String used to display the stems. Default to ’–’.

Methods

signature(x = "ANY")

signature(x = "PSTf")

signature(x = "PSTr")

prune Prune a probabilistic suffix tree

Description

Prune a PST, using either a gain function, a maximal depth or a list of nodes to keep or remove.
Optionally, nodes are not removed from the tree but tagged as deleted, helping to visualize the
pruning process.

Usage

S4 method for signature 'PSTf'
prune(object, nmin, L, gain, C, keep, drop, state, delete = TRUE, lik =TRUE)

Arguments

object a probabilistic suffix tree, i.e., an object of class "PSTf" as returned by the
pstree, prune or tune function.

nmin integer. All strings having counts less than nmin are removed.

L integer. If specified the the tree is cut at depth L., that is all nodes with depth >
L are removed.

gain character. Function for measuring information gain. See details.

C numeric. Cutoff value to use with the gain function

keep character. A vector of character strings containing the names of the nodes to
keep in the tree. All nodes that are not a suffix of contexts in keep are removed
from the tree.

drop character. A vector of character strings containing the names of the nodes to
remove from the tree. All nodes that are a suffix of contexts in drop are removed
from the tree as weel.

state character. All nodes corresponding to contexts which include state are pruned.

prune 27

delete Logical. If FALSE, the pruned nodes are not removed from the tree but tagged
as pruned=FALSE, so that when plotting the pruned tree these nodes wil appear
surrounded with red (can be set to another color) lines.

lik Logical. If TRUE, the log-likelihood of the pruned model, i.e. the likelihood of
the training sequences given the model, is computed and stored in the ’logLik’
slot of the PST. Setting to FALSE will spare the time required to compute the
likelihood.

Details

The initial tree returned by the pstree function may yield an overly complex model containing
all contexts of maximal length L and frequency N(c) ≥ nmin found in the learning sample.
The pruning stage potentially reduces the number of nodes in the tree, and thus the model com-
plexity. It compares the conditional probabilities associated to a node labelled by a subsequence
c = c1, c2, . . . , ck to the conditional probabilities of its parent node labelled by the longest suffix
of c, suf(c) = c2, . . . , ck. The general idea is to remove a node if it does not contribute addi-
tional information with respect to its parent in predicting the next symbol, that is if P̂ (σ|c) is not
significantly different from P̂ (σ|suf(c)) for all σ ∈ A.

The pruning procedure starts from the terminal nodes and is applied recursively until all terminal
nodes remaining in the tree represent an information gain relative to their parent. A gain function,
whose outcome will determine the pruning decision, is used to compare the two probability distri-
butions. The gain function is driven by a cut-off, and different values of this parameter will yield
more or less complex trees. A method for selecting the pruning cut-off is described in the tune help
page.

A first implemented gain function, which is used by the Learn-PSA algorithm, is based on the ratio
between P̂ (σ|c) and hatP (σ|suf(c)) for each σ ∈ A. A node represents an information gain if for
any symbol σ ∈ A the ratio is greater than the cut-off C or lower than 1/C, that is if

G1(c) =
∑
σ∈A

1

[
P̂ (σ|c)

P̂ (σ|suf(c))
≥ C ∪ P̂ (σ|c)

P̂ (σ|suf(c))
≤ 1

C

]
≥ 1

where C is a user defined cut-off value. Nodes that do not satisfy the above condition are pruned.
For C = 1 no node is removed since even a node having a next probability distribution similar to
the one of its parent does not satisfy the pruning condition.

The context algorithm uses another gain function, namely

G2(c) =
∑
σ∈A

P̂ (σ|c) log

(
P̂ (σ|c)

P̂ (σ|suf(c))

)
N(c) > C

where c is the context labelling the terminal node, N(c) is the number of occurrences of c in the
data. The cutoff C is specified on the scale of χ2-quantiles Maechler-2004

C = C(α) =
1

2
qchisq(1− α, v), v = |A| − 1

where qchisq(p = 1−α, v) is the quantile function of a χ2 distribution with v degrees of freedom.
The cutoff C is a threshold for the difference of deviances between a tree S1 and its subtree S2

obtained by pruning the terminal node c. Typical values for α are 5% and 1%, yielding p = 0.95
and p = 0.99 respectively. For more details, see Gabadinho 2016.

28 PSTf-class

Value

A probabilistic suffix tree, i.e., an object of class PSTf.

Author(s)

Alexis Gabadinho

References

Bejerano, G. & Yona, G. (2001). Variations on probabilistic suffix trees: statistical modeling and
prediction of protein families. Bioinformatics, 17, pp. 23-43.

Gabadinho, A. & Ritschard, G. (2016). Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), pp. 1-39.

Maechler, M. & Buehlmann, P. (2004). Variable Length Markov Chains: Methodology, Computing,
and Software Journal of Computational and Graphical Statistics, 13, pp. 435-455.

Ron, D.; Singer, Y. & Tishby, N. (1996). The power of amnesia: Learning probabilistic automata
with variable memory length Machine Learning, 25, pp. 117-149.

See Also

tune, ppplot

Examples

data(s1)
s1.seq <- seqdef(s1)
S1 <- pstree(s1.seq, L=3, nmin=2, ymin=0.001)

--
S1.p1 <- prune(S1, gain="G1", C=1.20, delete=FALSE)
summary(S1.p1)
plot(S1.p1)

--
C95 <- qchisq(0.95,1)/2
S1.p2 <- prune(S1, gain="G2", C=C95, delete=FALSE)
plot(S1.p2)

PSTf-class Flat representation of a probabilistic suffix tree

Description

The class "PSTf" is the flat representation of a probabilistic suffix tree (PST) storing a variable
length Markov chain model. The flat representation is a list where each element corresponds to
a given depth. It is the prefered representation and is used by all functions for model fitting and
sequence analysis with PST. The nested representation "PSTr" is used only for printing and plotting
PSTs.

PSTf-class 29

Objects from the Class

Objects of class "PSTf" are returned by the pstree, prune and tune function.

Slots

.Data: Object of class "list", a list where each element corresponds to one level of the tree and
is itself a list of nodes, i.e., objects of class "PSTr".

data: Object of class "stslist". The learning sample to which the PST is fitted, i.e., a sequence
object created with the seqdef function.

cdata: Object of class "stslist"

alphabet: Object of class "character". Alphabet on which the sequences, and the PST are built.

labels: Object of class "character" containing the long state labels.

cpal: Object of class "character". Color palette used to represent each state of the alphabet.

segmented: Object of class "logical" indicating whether the tree is segmented. See pstree.

group: Object of class "factor" containing the group membership for each sequence in data.

call: Object of class "call".

logLik: Object of class "numeric", containing the log-likelihood of the VLMC model represented
by the PST.

Extends

Class "list", from data part. Class "vector", by class "list", distance 2.

Methods

cmine signature(object = "PSTf"): context mining, see cmine,PSTf-method.

cplot signature(object = "PSTf"): plot single nodes of a PST, see cplot,PSTf-method.

generate signature(object = "PSTf"): generate artificial sequences, see generate,PSTf-method.

impute signature(object = "PSTf", data = "stslist"): impute missing values in sequence
data, seeimpute,PSTf,stslist-method.

logLik signature(object = "PSTf"): extract log-likelihood of the VLMC model represented by
a PST, see logLik,PSTf-method.

nobs signature(object = "PSTf"): number of observations (symbols) in the learning sample to
which a VLMC model is fitted, see nobs,PSTf-method.

nodenames signature(object = "PSTf"): retrieve the node labels of a PST, see see nodenames,PSTf-method.

pdist signature(x = "PSTf", y = "PSTf"): compute probabilistic divergence between two PSTs,
see pdist,PSTf,PSTf-method.

plot signature(x = "PSTf", y = "ANY"): plot a PST, see plot,PSTf,ANY-method.

pmine signature(object = "PSTf", data = "stslist"): pattern mining, see see pmine,PSTf,stslist-method.

ppplot signature(object = "PSTf"): plotting a branch of a PST, see ppplot,PSTf-method.

pqplot signature(object = "PSTf", data = "stslist"): plot the predicted probability of each
state in a sequence, see pqplot,PSTf,stslist-method.

30 PSTr-class

predict signature(object = "PSTf"): predict the likelihood of sequences, see predict,PSTf-method.

print signature(x = "PSTf"): print a PST, see print,PSTf-method.

prune signature(object = "PSTf"): prune a PST, see prune,PSTf-method.

query signature(object = "PSTf"): retrieve counts or next symbol probability distribution from
a node in a Probabilistic Suffix Tree, see query,PSTf-method.

subtree signature(object = "PSTf"): extract a subtree from a segmented PST, see subtree,PSTf-method.

summary signature(object = "PSTf"): see summary,PSTf-method.

tune signature(object = "PSTf"): AIC, AICc and BIC based model selection, see tune,PSTf-method.

Author(s)

Alexis Gabadinho

See Also

PSTr

Examples

showClass("PSTf")

PSTr-class Nested representation of a probabilistic suffix tree

Description

An object of class "PSTr" is a node of a probabilistic suffix tree (PST). The slot prob contains
one or several probability distributions (if the PST is segmented) and the slot counts contains the
empirical - possibly weighted - counts from which the probabilities are computed. The slot leaf
indicates whether the node (segment) is a terminal node (segment). The ’flat’ representation of
a PST is an object of class "PSTf"), that is a list that contains one element for each level of the
tree. Each element of the list is itself a list whose elements are nodes, that is objects of class PSTr.
The ’nested’ representation of a probabilistic suffix tree (PST) is a nested list whose elements are
children nodes of class "PSTr". This representation is used for printing and plotting PST, in which
case the flat representation of a PST, i.e., an object of class "PSTf" is turned into an object of class
"PSTr" by using the as function.

Objects from the Class

Objects are created when calling the pstree function.

PSTr-class 31

Slots

.Data: Object of class "list". In the nested representation of a PST, the elements of the list are
the children nodes. Otherwise the list is empty.

alphabet: Object of class "character". Alphabet on which the sequences, and the PST are built.
This slot is non-empty only for the root node of the nested representation of a PST.

labels: Object of class "character" containing the long state labels. This slot is non-empty only
for the root node of the nested representation of a PST.

cpal: Object of class "character". Color palette used to represent each state of the alphabet. This
slot is non-empty only for the root node of the nested representation of a PST.

index: Object of class "matrix". When the PST is segmented, indicates the id of the segment
corresponding to each group.

counts: Object of class "matrix". The counts to which the probability distributions are computed.
n: Object of class "matrix". The number of occurrences of the context in the learning sample, see

cprob.
prob: Object of class "matrix". The probability distributions computed from the counts.
path: Object of class "character". The node label, i.e. the context which is the path from the

node to the root node of the tree.
order: Object of class "integer". The depth of the node in the tree, i.e., the order of the proba-

bility distribution(s) stored in the node.
leaf: Object of class "matrix". Indicates whether the node (segment) is a terminal node (seg-

ment).
pruned: Object of class "matrix". If the PST was pruned with the delete=FALSE option, indicates

whether the node (segment) is actually pruned. See prune.

Extends

Class "list", from data part. Class "vector", by class "list", distance 2.

Methods

[[signature(x = "PSTr"): extract sub-branches of a nested representation of a PST.
plot signature(x = "PSTr", y = "ANY"): plot a PST, see plot,PSTr,ANY-method.
print signature(x = "PSTr"): print a PST, see print,PSTr-method.
summary signature(object = "PSTr"): see summary,PSTr-method.

Author(s)

Alexis Gabadinho

See Also

PSTf

Examples

showClass("PSTr")

32 pstree

pstree Build a probabilistic suffix tree

Description

Build a probabilistic suffix tree that stores a variable length Markov chain (VLMC) model

Usage

S4 method for signature 'stslist'
pstree(object, group, L, cdata=NULL, stationary=TRUE,
nmin = 1, ymin=NULL, weighted = TRUE, with.missing = FALSE, lik = TRUE)

Arguments

object a sequence object, i.e., an object of class 'stslist' as created by TraMineR
seqdef function.

group a vector giving the group membership for each observation in x. If specified, a
segmented PST is produced containing one PST for each group.

cdata Not implemented yet.

stationary Not implemented yet.

L Integer. Maximal depth of the PST. Default to maximum length of the se-
quence(s) in object minus 1.

nmin Integer. Minimum number of occurences of a string to add it in the tree

ymin Numeric. Smoothing parameter for conditional probabilities, assuring that no
symbol, and hence no sequence, is predicted to have a null probability. The
parameter $ymin$ sets a lower bound for a symbol’s probability.

weighted Logical. If TRUE, weights attached to the sequence object are used in the esti-
mation of probabilities.

with.missing Logical. If TRUE, the missing state is added to the alphabet

lik Logical. If TRUE, the log-likelihood of the model, i.e. the likelihood of the
training sequences given the model, is computed and stored in the ’logLik’ slot
of the PST. Setting to FALSE will spare the time required to compute the likeli-
hood.

Details

A probabilistic suffix tree (PST) is built from a learning sample of n, n ≥ 1 sequences by succes-
sively adding nodes labelled with subsequences (contexts) c of length L, 0 ≤ L ≤ Lmax found in
the data. When the value Lmax is not defined by the user it is set to its theorectical maximum ℓ− 1
where ℓ is the maximum sequence length in the learning sample. The nmin argument specifies the
minimum frequency of a subsequence required to add it to te tree.
Each node of the tree is labelled with a context c and stores the next symbol empirical probability
distribution P̂ (σ|c), σ ∈ A, where A is an alphabet of finite size. The root node labelled with

pstree 33

the empty string e stores the 0th order probability P̂ (σ), σ ∈ A of oberving each symbol of the
alphabet in the whole learning sample.
The building algorithm calls the cprob function which returns the empirical next symbol counts
observed after each context c and computes the corresponding empirical probability distribution.
Each node in the tree is connected to its longest suffix, where the longest suffix of a string c =
c1, c2, . . . , ck of length k is suffix(c) = c2, . . . , ck.
Once an initial PST is built it can be pruned to reduce its complexity by removing nodes that do
not provide significant information (see prune). A model selection procedure based on information
criteria is also available (see tune). For more details, see Gabadinho 2016.

Value

An object of class "PSTf".

Author(s)

Alexis Gabadinho

References

Bejerano, G. & Yona, G. (2001) Variations on probabilistic suffix trees: statistical modeling and
prediction of protein families. Bioinformatics 17, 23-43.

Gabadinho, A. & Ritschard, G. (2016) Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software 72(3), 1-39.

Maechler, M. & Buehlmann, P. (2004) Variable Length Markov Chains: Methodology, Computing,
and Software. Journal of Computational and Graphical Statistics 13, pp. 435-455.

Ron, D.; Singer, Y. & Tishby, N. (1996) The power of amnesia: Learning probabilistic automata
with variable memory length. Machine Learning 25, 117-149.

See Also

prune, tune

Examples

Build a PST on one single sequence
data(s1)
s1.seq <- seqdef(s1)
s1.seq
S1 <- pstree(s1.seq, L = 3)
print(S1, digits = 3)
S1

34 query

query Retrieve counts or next symbol probability distribution

Description

Retrieve counts or next symbol probability distribution from a node of a probabilistic suffix tree

Usage

S4 method for signature 'PSTf'
query(object, context, state, output = "prob", exact = FALSE)

Arguments

object A probabilistic suffix tree, i.e an object of class "PSTf") as returned by the
pstree, prune or tune function.

context Character. The string labelling the node to retrieve. States must be separated by
’-’ as for example in ’a-a-b’. If the node labelled with this string does not exist
in the tree, the node labelled with the longest suffix is searched for, and so on
until an existing node is found.

state character. If specified the probability of the specified state is returned instead of
the whole distribution.

output character. If output="prob" the probability distribution (or a single symbol dis-
tribution if state is specified) is returned. If output="counts" the counts on which
the probability distribution is calculated are returned. If output="all" the node
itself is returned, that is an object of class PSTr.

exact logical. If TRUE, the information is returned only if the node labelled with
context is present in the tree. That is, the longest suffix of context is not searched
for if context is not in the tree.

Details

The PST is searched for the node labelled with context. If exact=FALSE, when the node does not
exist the PST is searched for the longest suffix of context, and so on until a node corresponding to
a suffix of context is found or the root node is reached. For more details, see Gabadinho 2016.

Value

An object of class cprobd, with available round method.

Author(s)

Alexis Gabadinho

s1 35

References

Gabadinho, A. & Ritschard, G. (2016). Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), pp. 1-39.

See Also

cplot, ppplot

Examples

data(s1)
s1 <- seqdef(s1)
S1 <- pstree(s1, L=3)
Retrieving from the node labelled 'a-a-a'
query(S1, "a-a-a")

The node 'a-b-b-a' is not presetnin the tree, and the next symbol
probability is retrieved from the node labelled 'b-b-a' (the longest
suffix
query(S1, "a-b-b-a")

s1 Example sequence data set

Description

Example data set containing one single sequence

Usage

data(s1)

Format

A character string representing a sequence of 27 symbols separated with ’-’.

Details

A sequence object can be created with the dedicated TraMineR seqdef function. State sequence
objects are the main argument for the pstree method that creates probabilistic suffix trees. See
example below.

36 SRH

Examples

Loading the data
data(s1)

Creating a state sequence object
s1.seq <- seqdef(s1)

Building and plotting a PST
S1 <- pstree(s1.seq, L = 3)
plot(S1)

SRH Longitudinal data on self rated health

Description

Longitudinal data on self rated health from waves 1-11 of the Swiss household panel

Usage

data(SRH)

Format

SRH is a data frame with 2612 observations on the following 15 variables.

idpers personal identification number

sex a factor with levels man woman

birthy birth year of the respondent

wp09lp1s longitudinal weight

p99c01 ... p09c01 factors with levels:
very well; well; so, so (average); not very well; not well at all

SRH.seq is a TraMineR sequence object created from the SRH data frame using the code in example.
States are coded as follows:

G1 (very well)
G2 (well)
M (so, so (average))
B2 (not very well)
B1 (not well at all)

subtree 37

Details

Respondant’s self rated health is collected at each yearly wave of the SHP with the following ques-
tion: How do you feel right now?. Possible answers are: very well; well; so, so (average), not very
well and not well at all. The sequences are made of an individual’s responses over 11 yearly waves
of the SHP, starting with wave 1 in 1999. Variable p99c01 contains the self rated health at wave
1, p00c01 contains the self rated health at wave 2, etc... Note that sequences may contain missing
values due to wave or item non response.

Source

Swiss Household Panel: www.swisspanel.ch

Examples

Preparing a sequence object with the SRH data set
data(SRH)

Long state labels
state.list <- levels(SRH$p99c01)

Sequential color palette
mycol5 <- rev(brewer.pal(5, "RdYlGn"))

Creating the sequence object
SRH.seq <- seqdef(SRH, 5:15, alphabet=state.list,
states=c("G1", "G2", "M", "B2", "B1"), labels=state.list,
weights=SRH$wp09lp1s, right=NA, cpal=mycol5)

names(SRH.seq) <- 1999:2009

subtree Extract a subtree from a segmented PST

Description

Extract a subtree from a segmented PST

Usage

S4 method for signature 'PSTf'
subtree(object, group=NULL, position=NULL)

Arguments

object A segmented probabilistic suffix tree, i.e an object of class "PSTf") as returned
by the pstree, prune or tune function.

group integer. Segment of the PST

position Not implemented yet.

www.swisspanel.ch

38 subtree

Details

See also Gabadinho 2016.

Author(s)

Alexis Gabadinho

References

Gabadinho, A. & Ritschard, G. (2016). Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), pp. 1-39.

Examples

activity calendar for year 2000
from the Swiss Household Panel
see ?actcal
data(actcal)

selecting individuals aged 20 to 59
actcal <- actcal[actcal$age00>=20 & actcal$age00 <60,]

defining a sequence object
actcal.lab <- c("> 37 hours", "19-36 hours", "1-18 hours", "no work")
actcal.seq <- seqdef(actcal,13:24,labels=actcal.lab)

building a PST segmented by age group
gage10 <- cut(actcal$age00, c(20,30,40,50,60), right=FALSE,
labels=c("20-29","30-39", "40-49", "50-59"))

actcal.pstg <- pstree(actcal.seq, nmin=2, ymin=0.001, group=gage10)

pruning
C99 <- qchisq(0.99,4-1)/2
actcal.pstg.opt <- prune(actcal.pstg, gain="G2", C=C99)

extracting PST for age group 20-39 and 30-39
g1.pst <- subtree(actcal.pstg.opt, group=1)
g2.pst <- subtree(actcal.pstg.opt, group=2)

plotting the two PST
par(mfrow=c(1,2))
plot(g1.pst, withlegend=FALSE, max.level=4, main="20-29")
plot(g2.pst, withlegend=FALSE, max.level=4, main="30-39")

summary-methods 39

summary-methods Summary of variable length Markov chain model

Description

Summary of a variable length Markov chain model stored in a probabilistic suffix tree.

Usage

S4 method for signature 'PSTf'
summary(object, max.level)

Arguments

object A PST, that is an object of class PSTf as returned by the pstree or prune
method.

max.level integer. If specified, the summary is computed for the max.level levels of the
tree only.

Value

An object of class PST.summary with following attributes:

alphabet list of symbols in the alphabet

labels long labels for symbols in the alphabet

cpal color palette used to represent each state of the alphabet

ns number of symbols in the data to which the model was fitted

depth maximum depth (order) of the tree

nodes number of internal nodes in the PST

leaves number of leaves in the PST

freepar number of free parameters in the mode, i.e., (nodes+leaves)*(|A|-1) where |A| is the size
of the alphabet

A show method is available for displaying objects of class PST.summary.

Author(s)

Alexis Gabadinho

Examples

data(s1)
s1.seq <- seqdef(s1)
S1 <- pstree(s1.seq, L=3)
summary(S1)
summary(S1, max.level=2)

40 tune

tune AIC, AICc or BIC based model selection

Description

Prune a probabilistic suffix tree with a series of cut-offs and select the model having the lowest
value of the selected information criterion. Available information criterion are Akaike information
criterion (AIC), AIC with a correction for finite sample sizes (AICc) and Bayesian information
criterion (BIC).

Usage

S4 method for signature 'PSTf'
tune(object, gain="G2", C, criterion = "AIC", output = "PST")

Arguments

object a probabilistic suffix tree, i.e., an object of class "PSTf" as returned by the
pstree, prune or tune function.

gain character. The gain function used for pruning decisions. See prune for details.

C numeric. A vector of cutoff values. See prune for details.

criterion The criterion used to select the model, either AIC, AICc or BIC. AICc should
be used when the ratio between the number of observations and the number
of estimated parameters is low, which is often the case with VLMC models.
Burnham et al 2004 suggest to use AICc instead of AIC when the ratio is lower
than 40.

output If output='PST' the PST (an object of class "PSTr") having the lowest AIC,
AICc or BIC value. If output='stats', a table with the statistics for each
model obtained by pruning object with the cut-offs in C.

Details

The tune function selects among a series of PST pruned with different values of the C cutoff the
model having the lowest AIC or AICc value. The function can return either the selected PST or a
data frame containing the statistics for each model. For more details, see Gabadinho 2016.

Value

If output="PST" a PST that is an object of class PSTf. If output="stats" a matrix with the results
of the tuning procedure.
The selected model is tagged with ***, while models with IC < min(IC) + 2 are tagged with **,
and models with IC < min(IC) + 10 are tagged with **.

Author(s)

Alexis Gabadinho

tune 41

References

Burnham, K. P. & Anderson, D. R. (2004). Multimodel Inference Sociological Methods & Re-
search, 33, pp. 261-304.

Gabadinho, A. & Ritschard, G. (2016). Analyzing State Sequences with Probabilistic Suffix Trees:
The PST R Package. Journal of Statistical Software, 72(3), pp. 1-39.

See Also

prune

Examples

activity calendar for year 2000
from the Swiss Household Panel
see ?actcal
data(actcal)

selecting individuals aged 20 to 59
actcal <- actcal[actcal$age00>=20 & actcal$age00 <60,]

defining a sequence object
actcal.lab <- c("> 37 hours", "19-36 hours", "1-18 hours", "no work")
actcal.seq <- seqdef(actcal,13:24,labels=actcal.lab)

building a PST
actcal.pst <- pstree(actcal.seq, nmin=2, ymin=0.001)

Cut-offs for 5% and 1% (see ?prune)
C95 <- qchisq(0.95,4-1)/2
C99 <- qchisq(0.99,4-1)/2

selecting the optimal PST using AIC criterion
actcal.pst.opt <- tune(actcal.pst, gain="G2", C=c(C95,C99))

plotting the tree
plot(actcal.pst.opt)

Index

∗ classes
PSTf-class, 28
PSTr-class, 30

∗ datagen
generate, 7
impute, 8

∗ datasets
s1, 35
SRH, 36

∗ distribution
cprob, 5

∗ hplot
cplot, 4
plot-PSTr, 16
ppplot, 21
pqplot, 22

∗ methods
cmine, 2
generate, 7
plot-PSTr, 16
pqplot, 22
print, 25
subtree, 37
summary-methods, 39

∗ misc
nodenames, 13
pmine, 18

∗ models
cplot, 4
impute, 8
logLik, 10
nobs, 12
nodenames, 13
pdist, 14
predict, 23
prune, 26
pstree, 32
query, 34
subtree, 37

tune, 40
∗ print

print, 25
[,cprobd.list,ANY,ANY,ANY-method

(cmine), 2
[,cprobd.list-method (cmine), 2
[[,PSTr-method (PSTr-class), 30

AIC, 11

BIC, 11, 12

cmine, 2, 20
cmine,PSTf-method (cmine), 2
cplot, 4, 22, 35
cplot,PSTf-method (cplot), 4
cprob, 5, 31, 33
cprob,stslist-method (cprob), 5

generate, 7, 15
generate,PSTf-method (generate), 7

impute, 8
impute,PSTf,stslist-method (impute), 8

layout, 17
list, 29, 31
lnobs (nobs), 12
logLik, 10, 10, 12
logLik,PSTf-method (logLik), 10

nobs, 12
nobs,PSTf-method (nobs), 12
nodenames, 13
nodenames,PSTf-method (nodenames), 13

par, 17
pdist, 14
pdist,PSTf,PSTf-method (pdist), 14
plot,cprobd.list,ANY-method (cmine), 2
plot,PSTf,ANY-method (plot-PSTr), 16

42

INDEX 43

plot,PSTr,ANY-method (plot-PSTr), 16
plot-PSTr, 16
pmine, 18
pmine,PSTf,stslist-method (pmine), 18
ppplot, 5, 21, 28, 35
ppplot,PSTf-method (ppplot), 21
pqplot, 22
pqplot,PSTf,stslist-method (pqplot), 22
predict, 8, 10, 23
predict,PSTf-method (predict), 23
print, 25
print,PSTf-method (print), 25
print,PSTr-method (print), 25
prune, 3, 4, 7, 9, 10, 12–14, 16, 18, 21, 22,

24–26, 26, 29, 31, 33, 34, 37, 39–41
prune,PSTf-method (prune), 26
PSTf, 3, 4, 7, 9, 10, 14, 21, 22, 24, 26, 28, 30,

31, 33, 34, 37, 40
PSTf-class, 28
PSTr, 28–30, 40
PSTr-class, 30
pstree, 3, 4, 7, 9, 10, 12–14, 16, 18, 21, 22,

24–27, 29, 30, 32, 34, 35, 37, 39, 40
pstree,stslist-method (pstree), 32

query, 34
query,PSTf-method (query), 34

round,cprobd-method (query), 34

s1, 35
seqdef, 5, 9, 17, 22, 24, 29, 32, 35
SRH, 36
subtree, 37
subtree,PSTf-method (subtree), 37
summary,PSTf-method (summary-methods),

39
summary,PSTr-method (summary-methods),

39
summary-methods, 39

TraMineR, 8, 18
tune, 3, 4, 7, 9, 10, 14, 21, 22, 24, 26–29, 33,

34, 37, 40, 40
tune,PSTf-method (tune), 40

vector, 29, 31

	cmine
	cplot
	cprob
	generate
	impute
	logLik
	nobs
	nodenames
	pdist
	plot-PSTr
	pmine
	ppplot
	pqplot
	predict
	print
	prune
	PSTf-class
	PSTr-class
	pstree
	query
	s1
	SRH
	subtree
	summary-methods
	tune
	Index

