Package: Rwave (via r-universe)

October 22, 2024

Version 1.25-2

Date 2011-02-22

Title Time-Frequency analysis of 1-D signals

- Author S original by Rene Carmona <rcarmona@princeton.edu> and Bruno Torresani <bruno.torresani@cmi.univ-mrs.fr>; R port by Brandon Whitcher <bjw34032@users.sourceforge.net>
- Maintainer Brandon Whitcher <bjw34032@users.sourceforge.net> and Christian Gunning <xian@unm.edu>

Depends R (>= 2.6.0)

Description Rwave is a library of R functions which provide an environment for the Time-Frequency analysis of 1-D signals (and especially for the wavelet and Gabor transforms of noisy signals). It was originally written for Splus by Rene Carmona, Bruno Torresani, and Wen L. Hwang, first at the University of California at Irvine and then at Princeton University. Credit should also be given to Andrea Wang whose functions on the dyadic wavelet transform are included. Rwave is based on the book: ``Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S", by Rene Carmona, Wen L. Hwang and Bruno Torresani, Academic Press, 1998. This package is no longer actively maintained. A C++ rewrite of core functionality is in progress. If you'd like to participate, please contact Christian Gunning.

License GPL (>= 2)

URL http://www.orfe.princeton.edu/~rcarmona/TFbook/tfbook.html,

http://r-forge.r-project.org/projects/rwave/

Repository https://r-forge.r-universe.dev

RemoteUrl https://github.com/r-forge/rwave

RemoteRef HEAD

RemoteSha 8848bf05cd9d8a158313a875713b0fcf70fd1776

Contents

A0	4
A4	5
adjust.length	5
amber7	6
amber8	6
amber9	7
B0	7
B4	8
back1.000	8
back1.180	9
back1.220	9
C0	10
C4	10
cfamily	11
cgt	12
ch	12
check.maxresoln	13
	13 14
cleanph	14 14
click	
corona	15
coronoid	16
crc	17
crcrec	18
crfview	19
cwt	20
cwtimage	21
cwtp	22
cwtpolar	23
cwtsquiz	24
cwtTh	25
D0	26
D4	26
DOG	27
dwinverse	28
Ekg	28
epl	29
ext	29
fastgkernel	30
fastkernel	31
gabor	33
gcrcrec	34
gkernel	35
gregrec	36
gridrec	37
gsampleOne	38
gwave	39
Strute	5)

Contents

gwave2	39
HOWAREYOU	40
hurst.est	41
icm	42
kernel	43
mbtrim	44
mntrim	45
	46
	47
	47
	48
	49
	50
5	50 50
1	50 51
1	
1	51
1	52
e	52
8	54
	55
	56
	57
scrcrec	58
signal_W_tilda.1	59
signal_W_tilda.2	59
signal_W_tilda.3	60
signal_W_tilda.4	60
signal_W_tilda.5	61
signal_W_tilda.6	61
	62
6 = =	63
6 = =	63
b = -	64
8= =	64
	65
8	65
	66
	67
	68
	00 69
	69 70
	70
	71
	72
	73
	74
	74
tflmax	75

3

tfmean
tfpct
tfvar
Undocumented
vDOG
vecgabor
vecmorlet
vgt
vwt
wpl
wRidgeSampling
wspec.pl
WV
YN 84
YNdiff
zerokernel
zeroskeleton
zeroskeleton2

Index

A0

Transient Signal

Description

Transient signal.

Usage

data(A0)

Format

A vector containing 1024 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

A0

88

A4

Description

Transient signal.

Usage

data(A4)

Format

A vector containing 1024 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

adjust.length Zero Padding

Description

Add zeros to the end of the data if necessary so that its length is a power of 2. It returns the data with zeros added if nessary and the length of the adjusted data.

Usage

```
adjust.length(inputdata)
```

Arguments

inputdata either a text file or an S object containing data.

Value

Zero-padded 1D array.

References

See discussions in the text of "Practical Time-Frequency Analysis".

amber7

Description

Pixel from amber camara.

Usage

data(amber7)

Format

A vector containing 7000 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

amber8

Pixel from Amber Camara

Description

Pixel from amber camara.

Usage

data(amber8)

Format

A vector containing 7000 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

amber9

Description

Pixel from amber camara.

Usage

data(amber9)

Format

A vector containing 7000 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

B0

Transient Signal

Description

Transient signal.

Usage

data(B0)

Format

A vector containing 1024 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

Description

Transient signal.

Usage

data(B4)

Format

A vector containing 1024 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

back1.000 Acoustic Returns

Description

Acoustic returns from natural underwater clutter.

Usage

data(back1.000)

Format

A vector containing 7936 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

Β4

back1.180

Description

Acoustic returns from ...

Usage

data(back1.180)

Format

A vector containing 7936 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

back1.220 Acoustic Returns

Description

Acoustic returns from an underwater metallic object.

Usage

data(back1.220)

Format

A vector containing 7936 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

C0

Description

Transient signal.

Usage

data(C0)

Format

A vector containing 1024 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

C4

Transient Signal

Description

Transient signal.

Usage

data(C4)

Format

A vector containing 1024 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

cfamily

Description

Chains the ridge estimates produced by the function crc.

Usage

cfamily(ccridge, bstep=1, nbchain=100, ptile=0.05)

Arguments

ccridge	unchained ridge set as the output of the function crc
bstep	maximal length for a gap in a ridge.
nbchain	maximal number of chains produced by the function.
ptile	relative threshold for the ridges.

Details

crc returns a measure in time-frequency (or time-scale) space. cfamily turns it into a series of onedimensional objects (ridges). The measure is first thresholded, with a relative threshold value set to the input parameter ptile. During the chaining procedure, gaps within a given ridge are allowed and filled in. The maximal length of such gaps is the input parameter bstep.

Value

Returns the results of the chaining algorithm

ordered map	image containing the ridges (displayed with different colors)
chain	2D array containing the chained ridges, according to the chain data structure chain[,1]: first point of the ridge chain[,2]: length of the chain chain[,3:(chain[,2]+2)]: values of the ridge
nbchain	number of chains produced by the algorithm

References

See discussion in text of "Practical Time-Frequency Analysis".

See Also

crc for the ridge estimation, and crcrec, gcrcrec and scrcrec for corresponding reconstruction functions.

Description

Computes the continuous Gabor transform with Gaussian window.

Usage

cgt(input, nvoice, freqstep=(1/nvoice), scale=1, plot=TRUE)

Arguments

input	input signal (possibly complex-valued).
nvoice	number of frequencies for which gabor transform is to be computed.
freqstep	Sampling rate for the frequency axis.
scale	Size parameter for the window.
plot	logical variable set to TRUE to display the modulus of the continuous gabor transform on the graphic device.

Details

The output contains the (complex) values of the gabor transform of the input signal. The format of the output is a 2D array (signal_size x nb_scales).

Value

continuous (complex) gabor transform (2D array).

Warning

freqstep must be less than 1/nvoice to avoid aliasing. freqstep=1/nvoice corresponds to the Nyquist limit.

References

See discussion in text of "Practical Time-Frequency Analysis".

See Also

cwt, cwtp, DOG for continuous wavelet transforms. cwtsquiz for synchrosqueezed wavelet transform.

cgt

cgt

ch

Description

Chen's chirp.

Usage

data(ch)

Format

A vector containing 15,000 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

check.maxresoln Verify Maximum Resolution

Description

Stop when $2^{maxresoln}$ is larger than the signal size.

Usage

```
check.maxresoln(maxresoln, np)
```

Arguments

maxresoln	number of decomposition scales.
np	signal size.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

mw, mrecons.

cleanph

Description

Sets to zero the phase of time-frequency transform when modulus is below a certain value.

Usage

cleanph(tfrep, thresh=0.01, plot=TRUE)

Arguments

tfrep	continuous time-frequency transform (2D array)
thresh	(relative) threshold.
plot	if set to TRUE, displays the maxima of cwt on the graphic device.

Value

thresholded phase (2D array)

References

See discussion in text of "Practical Time-Frequency Analysis".

click

Dolphin Click Data

Description

Dolphin click data.

Usage

data(click)

Format

A vector containing 2499 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

corona

Description

Estimate a (single) ridge from a time-frequency representation, using the corona method.

Usage

```
corona(tfrep, guess, tfspec=numeric(dim(tfrep)[2]), subrate=1,
temprate=3, mu=1, lambda=2 * mu, iteration=1000000, seed=-7,
stagnant=20000, costsub=1, plot=TRUE)
```

Arguments

tfrep	Time-Frequency representation (real valued).
guess	Initial guess for the algorithm.
tfspec	Estimate for the contribution of the noise to modulus.
subrate	Subsampling rate for ridge estimation.
temprate	Initial value of temperature parameter.
mu	Coefficient of the ridge's second derivative in cost function.
lambda	Coefficient of the ridge's derivative in cost function.
iteration	Maximal number of moves.
seed	Initialization of random number generator.
stagnant	Maximum number of stationary iterations before stopping.
costsub	Subsampling of cost function in output.
plot	When set(default), some results will be shown on the display.

Details

To accelerate convergence, it is useful to preprocess modulus before running annealing method. Such a preprocessing (smoothing and subsampling of modulus) is implemented in corona. The parameter subrate specifies the subsampling rate.

Value

Returns the estimated ridge and the cost function.

ridge	1D array (of same length as the signal) containing the ridge.
cost	1D array containing the cost function.

Warning

The returned cost may be a large array, which is time consuming. The argument costsub allows subsampling the cost function.

coronoid

References

See discussion in text of "Practical Time-Frequency Analysis".

See Also

icm,coronoid,snake, snakoid.

coronoid

Ridge Estimation by Modified Corona Method

Description

Estimate a ridge using the modified corona method (modified cost function).

Usage

```
coronoid(tfrep, guess, tfspec=numeric(dim(tfrep)[2]), subrate=1,
temprate=3, mu=1, lambda=2 * mu, iteration=1000000, seed=-7,
stagnant=20000, costsub=1, plot=TRUE)
```

Arguments

tfrep	Estimate for the contribution of the noise to modulus.
guess	Initial guess for the algorithm.
tfspec	Estimate for the contribution of the noise to modulus.
subrate	Subsampling rate for ridge estimation.
temprate	Initial value of temperature parameter.
mu	Coefficient of the ridge's derivative in cost function.
lambda	Coefficient of the ridge's second derivative in cost function.
iteration	Maximal number of moves.
seed	Initialization of random number generator.
stagnant	Maximum number of stationary iterations before stopping.
costsub	Subsampling of cost function in output.
plot	When set(default), some results will be shown on the display.

Details

To accelerate convergence, it is useful to preprocess modulus before running annealing method. Such a preprocessing (smoothing and subsampling of modulus) is implemented in coronoid. The parameter subrate specifies the subsampling rate.

16

Value

Returns the estimated ridge and the cost function.

ridge	1D array (of same length as the signal) containing the ridge.
cost	1D array containing the cost function.

Warning

The returned cost may be a large array. The argument costsub allows subsampling the cost function.

References

See discussion in text of "Practical Time-Frequency Analysis".

See Also

corona, icm, snake, snakoid.

crc

Ridge Extraction by Crazy Climbers

Description

Uses the "crazy climber algorithm" to detect ridges in the modulus of a continuous wavelet or a Gabor transform.

Usage

```
crc(tfrep, tfspec=numeric(dim(tfrep)[2]), bstep=3, iteration=10000,
rate=0.001, seed=-7, nbclimb=10, flag.int=TRUE, chain=TRUE,
flag.temp=FALSE)
```

Arguments

tfrep	modulus of the (wavelet or Gabor) transform.
tfspec	numeric vector which gives, for each value of the scale or frequency the expected size of the noise contribution.
bstep	stepsize for random walk of the climbers.
iteration	number of iterations.
rate	initial value of the temperature.
seed	initial value of the random number generator.
nbclimb	number of crazy climbers.
flag.int	if set to TRUE, the weighted occupation measure is computed.
chain	if set to TRUE, chaining of the ridges is done.
flag.temp	if set to TRUE: constant temperature.

Value

Returns a 2D array called beemap containing the (weighted or unweighted) occupation measure (integrated with respect to time)

References

See discussion in text of "Practical Time-Frequency Analysis".

See Also

corona, icm, coronoid, snake, snakoid for ridge estimation, cfamily for chaining and crcrec,gcrcrec,scrcrec for reconstruction.

crcrec

Crazy Climbers Reconstruction by Penalization

Description

Reconstructs a real valued signal from the output of crc (wavelet case) by minimizing an appropriate quadratic form.

Usage

```
crcrec(siginput, inputwt, beemap, noct, nvoice, compr, minnbnodes=2,
w0=2 * pi, bstep=5, ptile=0.01, epsilon=0, fast=FALSE, para=5, real=FALSE,
plot=2)
```

Arguments

siginput	original signal.
inputwt	wavelet transform.
beemap	occupation measure, output of crc.
noct	number of octaves.
nvoice	number of voices per octave.
compr	compression rate for sampling the ridges.
minnbnodes	minimal number of points per ridge.
w0	center frequency of the wavelet.
bstep	size (in the time direction) of the steps for chaining.
ptile	relative threshold of occupation measure.
epsilon	constant in front of the smoothness term in penalty function.
fast	if set to TRUE, uses trapezoidal rule to evaluate \$Q_2\$.
para	scale parameter for extrapolating the ridges.
real	if set to TRUE, uses only real constraints.
plot	1: displays signal, components, and reconstruction one after another. 2: displays signal, components and reconstruction.

crfview

Details

When ptile is high, boundary effects may appeare. para controls extrapolation of the ridge.

Value

Returns a structure containing the following elements:

rec	reconstructed signal.
ordered	image of the ridges (with different colors).
comp	2D array containing the signals reconstructed from ridges.

See Also

crc, cfamily, scrcrec.

crfview

Display chained ridges

Description

displays a family of chained ridges, output of cfamily.

Usage

crfview(beemap, twod=TRUE)

Arguments

beemap	Family of chained ridges, output of cfamily.
twod	If set to T, displays the ridges as an image. If set to F, displays as a series of
	curves.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

crc,cfamily for crazy climbers and corresponding chaining algorithms.

Description

Computes the continuous wavelet transform with for the (complex-valued) Morlet wavelet.

Usage

cwt(input, noctave, nvoice=1, w0=2 * pi, twoD=TRUE, plot=TRUE)

Arguments

input	input signal (possibly complex-valued)
noctave	number of powers of 2 for the scale variable
nvoice	number of scales in each octave (i.e. between two consecutive powers of 2).
w0	central frequency of the wavelet.
twoD	logical variable set to T to organize the output as a 2D array (signal_size x nb_scales), otherwise, the output is a 3D array (signal_size x noctave x nvoice).
plot	if set to T, display the modulus of the continuous wavelet transform on the graphic device.

Details

The output contains the (complex) values of the wavelet transform of the input signal. The format of the output can be

2D array (signal_size x nb_scales)

3D array (signal_size x noctave x nvoice)

Since Morlet's wavelet is not strictly speaking a wavelet (it is not of vanishing integral), artifacts may occur for certain signals.

Value

continuous (complex) wavelet transform

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

cwtp, cwtTh, DOG, gabor.

cwt

cwtimage

Examples

```
x <- 1:512
chirp <- sin(2*pi * (x + 0.002 * (x-256)^2 ) / 16)
retChirp <- cwt(chirp, noctave=5, nvoice=12)</pre>
```

cwtimage

Continuous Wavelet Transform Display

Description

Converts the output (modulus or argument) of cwtpolar to a 2D array and displays on the graphic device.

Usage

cwtimage(input)

Arguments

input

3D array containing a continuous wavelet transform

Details

The output contains the (complex) values of the wavelet transform of the input signal. The format of the output can be

2D array (signal_size x nb_scales)

3D array (signal_size x noctave x nvoice)

Value

2D array continuous (complex) wavelet transform

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

cwtpolar, cwt, DOG.

Examples

```
x <- 1:512
chirp <- sin(2*pi * (x + 0.002 * (x-256)^2 ) / 16)
retChirp <- cwt(chirp, noctave=5, nvoice=12, twoD=FALSE, plot=FALSE)
retPolar <- cwtpolar(retChirp)
retImageMod <- cwtimage(retPolar$modulus)
retImageArg <- cwtimage(retPolar$argument)</pre>
```

Description

Computes the continuous wavelet transform with (complex-valued) Morlet wavelet and its phase derivative.

Usage

cwtp(input, noctave, nvoice=1, w0=2 * pi, twoD=TRUE, plot=TRUE)

Arguments

input	input signal (possibly complex-valued)
noctave	number of powers of 2 for the scale variable
nvoice	number of scales in each octave (i.e., between two consecutive powers of 2).
w0	central frequency of the wavelet.
twoD	logical variable set to T to organize the output as a 2D array (signal size \times nb scales), otherwise, the output is a 3D array (signal size \times noctave \times nvoice).
plot	if set to TRUE, display the modulus of the continuous wavelet transform on the graphic device.

Value

list containing the continuous (complex) wavelet transform and the phase derivative

wt	array of complex numbers for the values of the continuous wavelet transform.
f	array of the same dimensions containing the values of the derivative of the phase of the continuous wavelet transform.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

cgt, cwt, cwtTh, DOG for wavelet transform, and gabor for continuous Gabor transform.

Examples

```
## discards imaginary part with error,
## c code does not account for Im(input)
x <- 1:512
chirp <- sin(2*pi * (x + 0.002 * (x-256)^2 ) / 16)
chirp <- chirp + 1i * sin(2*pi * (x + 0.004 * (x-256)^2 ) / 16)
retChirp <- cwtp(chirp, noctave=5, nvoice=12)</pre>
```

cwtp

cwtpolar

Description

Converts one of the possible outputs of the function cwt to modulus and phase.

Usage

```
cwtpolar(cwt, threshold=0)
```

Arguments

cwt	3D array containing the values of a continuous wavelet transform in the format (signal size \times noctave \times nvoice) as in the output of the function cwt with the logical flag twodimension set to FALSE.
threshold	value of a level for the absolute value of the modulus below which the value of the argument of the output is set to $-\pi$.

Details

The output contains the (complex) values of the wavelet transform of the input signal. The format of the output can be

2D array (signal size \times nb_scales)

3D array (signal size \times noctave \times nvoice)

Value

Modulus and Argument of the values of the continuous wavelet transform

output1	3D array giving the values (in the same format as the input) of the modulus of
	the input.
output2	3D array giving the values of the argument of the input.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

cwt, DOG, cwtimage.

Examples

```
x <- 1:512
chirp <- sin(2*pi * (x + 0.002 * (x-256)^2 ) / 16)
retChirp <- cwt(chirp, noctave=5, nvoice=12, twoD=FALSE, plot=FALSE)
retPolar <- cwtpolar(retChirp)</pre>
```

cwtsquiz

Description

Computes the synchrosqueezed continuous wavelet transform with the (complex-valued) Morlet wavelet.

Usage

```
cwtsquiz(input, noctave, nvoice=1, w0=2 * pi, twoD=TRUE, plot=TRUE)
```

Arguments

input	input signal (possibly complex-valued)
noctave	number of powers of 2 for the scale variable
nvoice	number of scales in each octave (i.e. between two consecutive powers of 2).
wØ	central frequency of the wavelet.
twoD	logical variable set to T to organize the output as a 2D array (signal size \times nb scales), otherwise, the output is a 3D array (signal size \times noctave \times nvoice).
plot	logical variable set to T to T to display the modulus of the squeezed wavelet transform on the graphic device.

Details

The output contains the (complex) values of the squeezed wavelet transform of the input signal. The format of the output can be

2D array (signal size \times nb scales),

3D array (signal size \times noctave \times nvoice).

Value

synchrosqueezed continuous (complex) wavelet transform

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

cwt, cwtp, DOG, cgt.

cwtTh

Description

Compute the continuous wavelet transform with (complex-valued) Cauchy's wavelet.

Usage

cwtTh(input, noctave, nvoice=1, moments, twoD=TRUE, plot=TRUE)

Arguments

input	input signal (possibly complex-valued).
noctave	number of powers of 2 for the scale variable.
nvoice	number of scales in each octave (i.e. between two consecutive powers of 2).
moments	number of vanishing moments.
twoD	logical variable set to T to organize the output as a 2D array (signal size x nb scales), otherwise, the output is a 3D array (signal size x noctave x nvoice).
plot	if set to T, display the modulus of the continuous wavelet transform on the graphic device.

Details

The output contains the (complex) values of the wavelet transform of the input signal. The format of the output can be

2D array (signal size \times nb scales)

3D array (signal size \times noctave \times nvoice)

Value

continuous (complex) wavelet transform.

References

tmp

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

cwt, cwtp, DOG, gabor.

Examples

```
x <- 1:512
chirp <- sin(2*pi * (x + 0.002 * (x-256)^2 ) / 16)
retChirp <- cwtTh(chirp, noctave=5, nvoice=12, moments=20)</pre>
```

D0

Description

Transient signal.

Usage

data(D0)

Format

A vector containing 1024 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

D4

Transient Signal

Description

Transient signal.

Usage

data(D4)

Format

A vector containing 1024 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

Description

DOG

Computes the continuous wavelet transform with for (complex-valued) derivative of Gaussian wavelets.

Usage

DOG(input, noctave, nvoice=1, moments, twoD=TRUE, plot=TRUE)

Arguments

input	input signal (possibly complex-valued).
noctave	number of powers of 2 for the scale variable.
moments	number of vanishing moments of the wavelet (order of the derivative).
nvoice	number of scales in each octave (i.e. between two consecutive powers of 2)
twoD	logical variable set to T to organize the output as a 2D array (signal_size x nb_scales), otherwise, the output is a 3D array (signal_size x noctave x nvoice)
plot	if set to T, display the modulus of the continuous wavelet transform on the graphic device

Details

The output contains the (complex) values of the wavelet transform of the input signal. The format of the output can be

2D array (signal_size x nb_scales)

3D array (signal_size x noctave x nvoice)

Value

continuous (complex) wavelet transform

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

cwt, cwtp, cwtsquiz, cgt.

dwinverse

Description

Invert the dyadic wavelet transform.

Usage

dwinverse(wt, filtername="Gaussian1")

Arguments

wt	dyadic wavelet transform
filtername	filters used. ("Gaussian1" stands for the filters corresponds to those of Mallat
	and Zhong's wavlet. And "Haar" stands for the filters of Haar basis.

Value

Reconstructed signal

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

mw, ext, mrecons.

```
Ekg
```

Heart Rate Data

Description

Successive beat-to-beat intervals for a normal patient.

Usage

data(Ekg)

Format

A vector containing 16,042 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

epl

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

epl

Plot Dyadic Wavelet Transform Extrema

Description

Plot dyadic wavelet transform extrema (output of ext).

Usage

epl(dwext)

Arguments

dwext dyadic wavelet transform (output of ext).

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

mw, ext, wpl.

ext

Extrema of Dyadic Wavelet Transform

Description

Compute the local extrema of the dyadic wavelet transform modulus.

Usage

ext(wt, scale=FALSE, plot=TRUE)

Arguments

wt	dyadic wavelet transform.
scale	flag indicating if the extrema at each resolution will be plotted at the same scale.
plot	if set to TRUE, displays the transform on the graphics device.

Value

Structure containing:

original	original signal.
extrema	extrema representation.
Sf	coarse resolution of signal.
maxresoln	number of decomposition scales.
np	size of signal.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

mw, mrecons.

fastgkernel

Kernel for Reconstruction from Gabor Ridges

Description

Computes the cost from the sample of points on the estimated ridge and the matrix used in the reconstruction of the original signal, using simple trapezoidal rule for integrals.

Usage

```
fastgkernel(node, phinode, freqstep, scale, x.inc=1, x.min=node[1],
x.max=node[length(node)], plot=FALSE)
```

Arguments

node	values of the variable b for the nodes of the ridge
phinode	values of the frequency variable ω for the nodes of the ridge
freqstep	sampling rate for the frequency axis
scale	size of the window
x.inc	step unit for the computation of the kernel.
x.min	minimal value of x for the computation of G_2 .
x.max	maximal value of x for the computation of G_2 .
plot	if set to TRUE, displays the modulus of the matrix of G_2 .

Details

Uses trapezoidal rule (instead of Romberg's method) to evaluate the kernel.

30

fastkernel

Value

matrix of the G_2 kernel.

References

See discussions in the text of "Time-Frequency Analysis".

See Also

gkernel, fastkernel, rkernel, zerokernel.

fastkernel

Kernel for Reconstruction from Wavelet Ridges

Description

Computes the cost from the sample of points on the estimated ridge and the matrix used in the reconstruction of the original signal, using simple trapezoidal rule for integrals.

Usage

```
fastkernel(node, phinode, nvoice, x.inc=1, x.min=node[1],
x.max=node[length(node)], w0=2 * pi, plot=FALSE)
```

Arguments

node	values of the variable b for the nodes of the ridge.
phinode	values of the scale variable a for the nodes of the ridge.
nvoice	number of scales within 1 octave.
x.inc	step unit for the computation of the kernel
x.min	minimal value of x for the computation of Q_2 .
x.max	maximal value of x for the computation of Q_2 .
w0	central frequency of the wavelet
plot	if set to TRUE, displays the modulus of the matrix of Q_2 .

Details

Uses trapezoidal rule (instead of Romberg's method) to evaluate the kernel.

Value

matrix of the Q_2 kernel.

References

See discussions in the text of "Practical Time-Frequency Analysis".

fastkernel

See Also

kernel, rkernel, gkernel, zerokernel.

Examples

```
# The function is currently defined as
function(node, phinode, nvoice, x.inc = 1, x.min = node[1], x.max = node[length(node)], w0 = 2 * pi, plot = F)
{
#
     fastkernel:
#
     _____
#
    Same as kernel, except that the kernel is computed
#
      using Riemann sums instead of Romberg integration.
#
#
     Input:
     _____
#
      node: values of the variable b for the nodes of the ridge
#
      phinode: values of the scale variable a for the nodes of the ridge
#
      nvoice: number of scales within 1 octave
#
#
      x.inc: step unit for the computation of the kernel
      x.min: minimal value of x for the computation of Q2
#
      x.max: maximal value of x for the computation of Q2
#
      w0: central frequency of the wavelet
#
      plot: if set to TRUE, displays the modulus of the matrix of Q2
#
#
#
     Output:
#
     _____
      ker: matrix of the Q2 kernel
#
#
lng <- as.integer((x.max - x.min)/x.inc) + 1</pre>
nbnode <- length(node)</pre>
b.start <- x.min - 50
b.end <- x.max + 50
ker.r <- matrix(0, lng, lng)</pre>
ker.i <- matrix(0, lng, lng)</pre>
dim(ker.r) <- c(lng * lng, 1)</pre>
dim(ker.i) <- c(lng * lng, 1)
phinode <- 2 * 2^(phinode/nvoice)</pre>
z <- .C(fastkernel,</pre>
 ker.r = as.double(ker.r),
 ker.i = as.double(ker.i),
 as.integer(x.min),
 as.integer(x.max),
 as.integer(x.inc),
 as.integer(lng),
 as.double(node),
 as.double(phinode),
 as.integer(nbnode),
 as.double(w0),
 as.double(b.start),
 as.double(b.end))
```

gabor

```
ker.r <- z$ker.r
ker.i <- z$ker.i
dim(ker.r) <- c(lng, lng)
dim(ker.i) <- c(lng, lng)
ker <- matrix(0, lng, lng)
i <- sqrt(as.complex(-1))
ker <- ker.r + i * ker.i
if(plot == T) {
    par(mfrow = c(1, 1))
    image(Mod(ker))
    title("Matrix of the reconstructing kernel (modulus)")
}
ker
}</pre>
```

gabor

Generate Gabor function

Description

Generates a Gabor for given location and frequency.

Usage

```
gabor(sigsize, location, frequency, scale)
```

Arguments

sigsize	length of the Gabor function.
location	position of the Gabor function.
frequency	frequency of the Gabor function.
scale	size parameter for the Gabor function.

Value

complex 1D array of size sigsize.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

morlet.

gcrcrec

Description

Reconstructs a real-valued signal from ridges found by crazy climbers on a Gabor transform.

Usage

Arguments

siginput	original signal.
inputgt	Gabor transform.
beemap	occupation measure, output of crc.
nvoice	number of frequencies.
freqstep	sampling step for frequency axis.
scale	size of windows.
compr	compression rate to be applied to the ridges.
bstep	size (in the time direction) of the steps for chaining.
ptile	threshold of ridge
epsilon	constant in front of the smoothness term in penalty function.
fast	if set to TRUE, uses trapezoidal rule to evaluate Q_2 .
para	scale parameter for extrapolating the ridges.
minnbnodes	minimal number of points per ridge.
hflag	if set to FALSE, uses the identity as first term in the kernel. If not, uses Q_1 instead.
real	if set to TRUE, uses only real constraints.
plot	1 displays signal, components, and reconstruction one after another.
	2 displays signal, components and reconstruction.

Details

When ptile is high, boundary effects may appear. para controls extrapolation of the ridge.

Value

Returns a structure containing the following elements:

rec	reconstructed signal.
ordered	image of the ridges (with different colors).
comp	2D array containing the signals reconstructed from ridges.

gkernel

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

crc, cfamily, crcrec, scrcrec.

gkernel

Kernel for Reconstruction from Gabor Ridges

Description

Computes the cost from the sample of points on the estimated ridge and the matrix used in the reconstruction of the original signal.

Usage

```
gkernel(node, phinode, freqstep, scale, x.inc=1, x.min=node[1],
x.max=node[length(node)], plot=FALSE)
```

Arguments

node	values of the variable b for the nodes of the ridge.
phinode	values of the scale variable a for the nodes of the ridge.
freqstep	sampling rate for the frequency axis.
scale	size of the window.
x.inc	step unit for the computation of the kernel.
x.min	minimal value of x for the computation of Q_2 .
x.max	maximal value of x for the computation of Q_2 .
plot	if set to TRUE, displays the modulus of the matrix of Q_2 .

Value

matrix of the Q_2 kernel

References

See discussions in the text of "Time-Frequency Analysis".

See Also

fastgkernel, kernel, rkernel, fastkernel, zerokernel.

gregrec

Description

Reconstructs signal from a "regularly sampled" ridge, in the Gabor case.

Usage

```
gregrec(siginput, gtinput, phi, nbnodes, nvoice, freqstep, scale,
epsilon=0, fast=FALSE, plot=FALSE, para=0, hflag=FALSE, real=FALSE,
check=FALSE)
```

Arguments

siginput	input signal.
gtinput	Gabor transform, output of cgt.
phi	unsampled ridge.
nbnodes	number of nodes used for the reconstruction.
nvoice	number of different scales per octave
freqstep	sampling rate for the frequency axis
scale	size parameter for the Gabor function.
epsilon	coefficient of the Q_2 term in reconstruction kernel
fast	if set to T, the kernel is computed using trapezoidal rule.
plot	if set to TRUE, displays original and reconstructed signals
para	scale parameter for extrapolating the ridges.
hflag	if set to TRUE, uses Q_1 as first term in the kernel.
real	if set to TRUE, uses only real constraints on the transform.
check	if set to TRUE, computes cwt of reconstructed signal.
check	if set to TRUE, computes cwt of reconstructed signal.

Value

Returns a list containing:

sol	reconstruction from a ridge.
A	<gaborlets,dualgaborlets> matrix.</gaborlets,dualgaborlets>
lam	coefficients of dual wavelets in reconstructed signal.
dualwave	array containing the dual wavelets.
gaborets	array containing the wavelets on sampled ridge.
solskel	Gabor transform of sol, restricted to the ridge.
inputskel	Gabor transform of signal, restricted to the ridge.
Q2	second part of the reconstruction kernel.

gridrec

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

regrec.

gridrec

Reconstruction from a Ridge

Description

Reconstructs signal from sample of a ridge, in the Gabor case.

Usage

```
gridrec(gtinput, node, phinode, nvoice, freqstep, scale, Qinv,
epsilon, np, real=FALSE, check=FALSE)
```

Arguments

gtinput	Gabor transform, output of cgt.
node	time coordinates of the ridge samples.
phinode	frequency coordinates of the ridge samples.
nvoice	number of different frequencies.
freqstep	sampling rate for the frequency axis.
scale	scale of the window.
Qinv	inverse of the matrix Q of the quadratic form.
epsilon	coefficient of the Q_2 term in reconstruction kernel
np	number of samples of the reconstructed signal.
real	if set to TRUE, uses only constraints on the real part of the transform.
check	if set to TRUE, computes cgt of reconstructed signal.

Value

Returns a list containing the reconstructed signal and the chained ridges.

sol	reconstruction from a ridge.
A	<gaborlets,dualgaborlets> matrix.</gaborlets,dualgaborlets>
lam	coefficients of dual gaborlets in reconstructed signal.
dualwave	array containing the dual gaborlets.
gaborets	array of gaborlets located on the ridge samples.
solskel	Gabor transform of sol, restricted to the ridge.
inputskel	Gabor transform of signal, restricted to the ridge.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

sridrec, gregrec, regrec, regrec2.

gsampleOne

Sampled Identity

Description

Generate a sampled identity matrix.

Usage

gsampleOne(node, scale, np)

Arguments

node	location of the reconstruction gabor functions.
scale	scale of the gabor functions.
np	size of the reconstructed signal.

Value

diagonal of the "sampled" Q_1 term (1D vector)

References

See discussions in the text of "Time-Frequency Analysis".

See Also

kernel, gkernel.

38

gwave

Description

Generation of Gabor functions located on the ridge.

Usage

gwave(bridge, omegaridge, nvoice, freqstep, scale, np, N)

Arguments

bridge	time coordinates of the ridge samples
omegaridge	frequency coordinates of the ridge samples
nvoice	number of different scales per octave
freqstep	sampling rate for the frequency axis
scale	scale of the window
np	size of the reconstruction kernel
Ν	number of complex constraints

Value

Array of Gabor functions located on the ridge samples

References

See discussions in the text of "Time-Frequency Analysis".

See Also

gwave2, morwave, morwave2.

gwave2

Real Gabor Functions on a Ridge

Description

Generation of the real parts of gabor functions located on a ridge. (modification of gwave.)

Usage

```
gwave2(bridge, omegaridge, nvoice, freqstep, scale, np, N)
```

Arguments

bridge	time coordinates of the ridge samples
omegaridge	frequency coordinates of the ridge samples
nvoice	number of different scales per octave
freqstep	sampling rate for the frequency axis
scale	scale of the window
np	size of the reconstruction kernel
Ν	number of complex constraints

Value

Array of real Gabor functions located on the ridge samples

References

See discussions in the text of "Time-Frequency Analysis".

See Also

gwave, morwave, morwave2.

HOWAREYOU

How Are You?

Description

Example of speech signal.

Usage

data(HOWAREYOU)

Format

A vector containing 5151 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

40

hurst.est

Description

Estimates Hurst exponent from a wavelet transform.

Usage

hurst.est(wspec, range, nvoice, plot=TRUE)

Arguments

wspec	wavelet spectrum (output of tfmean)
range	range of scales from which estimate the exponent.
nvoice	number of scales per octave of the wavelet transform.
plot	if set to TRUE, displays regression line on current plot.

Value

complex 1D array of size sigsize.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

tfmean, wspec.pl.

Examples

```
# White Noise Hurst Exponent: The plots on the top row of Figure 6.8
# were produced by the folling S-commands. These make use of the two
# functions Hurst.est (estimation of Hurst exponent from CWT) and
# wspec.pl (display wavelet spectrum).
```

```
# Compare the periodogram and the wavelet spectral estimate.
wnoise <- rnorm(8192)
plot.ts(wnoise)
spwnoise <- fft(wnoise)
spwnoise <- Mod(spwnoise)
spwnoise <- spwnoise*spwnoise
plot(spwnoise[1:4096], log="xy", type="l")
lswnoise <- lsfit(log10(1:4096), log10(spwnoise[1:4096]))
abline(lswnoise$coef)
cwtwnoise <- DOG(wnoise, 10, 5, 1, plot=FALSE)
mcwtwnoise <- Mod(cwtwnoise)</pre>
```

42

```
mcwtwnoise <- mcwtwnoise*mcwtwnoise
wspwnoise <- tfmean(mcwtwnoise, plot=FALSE)
wspec.pl(wspwnoise, 5)
hurst.est(wspwnoise, 1:50, 5)</pre>
```

icm

Ridge Estimation by ICM Method

Description

Estimate a (single) ridge from a time-frequency representation, using the ICM minimization method.

Usage

```
icm(modulus, guess, tfspec=numeric(dim(modulus)[2]), subrate=1,
mu=1, lambda=2 * mu, iteration=100)
```

Arguments

modulus	Time-Frequency representation (real valued).
guess	Initial guess for the algorithm.
tfspec	Estimate for the contribution of the noise to modulus.
subrate	Subsampling rate for ridge estimation.
mu	Coefficient of the ridge's second derivative in cost function.
lambda	Coefficient of the ridge's derivative in cost function.
iteration	Maximal number of moves.

Details

To accelerate convergence, it is useful to preprocess modulus before running annealing method. Such a preprocessing (smoothing and subsampling of modulus) is implemented in icm. The parameter subrate specifies the subsampling rate.

Value

Returns the estimated ridge and the cost function.

ridge	1D array (of same length as the signal) containing the ridge.
cost	1D array containing the cost function.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

corona, coronoid, and snake, snakoid.

Description

Computes the cost from the sample of points on the estimated ridge and the matrix used in the reconstruction of the original signal

Usage

```
kernel(node, phinode, nvoice, x.inc=1, x.min=node[1],
x.max=node[length(node)], w0=2 * pi, plot=FALSE)
```

Arguments

node	values of the variable b for the nodes of the ridge.
phinode	values of the scale variable a for the nodes of the ridge.
nvoice	number of scales within 1 octave.
x.inc	step unit for the computation of the kernel.
x.min	minimal value of x for the computation of Q_2 .
x.max	maximal value of x for the computation of Q_2 .
wØ	central frequency of the wavelet.
plot	if set to TRUE, displays the modulus of the matrix of Q_2 .

Details

The kernel is evaluated using Romberg's method.

Value

matrix of the Q_2 kernel

References

See discussions in the text of "Time-Frequency Analysis".

See Also

gkernel, rkernel, zerokernel.

mbtrim

Description

Trimming of dyadic wavelet transform local extrema, using bootstrapping.

Usage

mbtrim(extrema, scale=FALSE, prct=0.95)

Arguments

extrema	dyadic wavelet transform extrema (output of ext).
scale	when set, the wavelet transform at each scale will be plotted with the same scale.
prct	percentage critical value used for thresholding

Details

The distribution of extrema of dyadic wavelet transform at each scale is generated by bootstrap method, and the 95% critical value is used for thresholding the extrema of the signal.

Value

Structure containing

original	original signal.
extrema	trimmed extrema representation.
Sf	coarse resolution of signal.
maxresoln	number of decomposition scales.
np	size of signal.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

mntrim, mrecons, ext.

mntrim

Description

Trimming of dyadic wavelet transform local extrema, assuming normal distribution.

Usage

mntrim(extrema, scale=FALSE, prct=0.95)

Arguments

extrema	dyadic wavelet transform extrema (output of ext).
scale	when set, the wavelet transform at each scale will be plotted with the same scale.
prct	percentage critical value used for thresholding

Details

The distribution of extrema of dyadic wavelet transform at each scale is generated by simulation, assuming a normal distribution, and the 95% critical value is used for thresholding the extrema of the signal.

Value

Structure containing

original	original signal.
extrema	trimmed extrema representation.
Sf	coarse resolution of signal.
maxresoln	number of decomposition scales.
np	size of signal.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

mbtrim, mrecons, ext.

morlet

Description

Computes a Morlet wavelet at the point of the time-scale plane given in the input

Usage

```
morlet(sigsize, location, scale, w0=2 * pi)
```

Arguments

sigsize	length of the output.
location	time location of the wavelet.
scale	scale of the wavelet.
wØ	central frequency of the wavelet.

Details

The details of this construction (including the definition formulas) are given in the text.

Value

Returns the values of the complex Morlet wavelet at the point of the time-scale plane given in the input

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

gabor.

morwave

Description

Generates the Morlet wavelets at the sample points of the ridge.

Usage

morwave(bridge, aridge, nvoice, np, N, w0=2 * pi)

Arguments

bridge	time coordinates of the ridge samples.
aridge	scale coordinates of the ridge samples.
nvoice	number of different scales per octave.
np	number of samples in the input signal.
Ν	size of reconstructed signal.
w0	central frequency of the wavelet.

Value

Returns the Morlet wavelets at the samples of the time-scale plane given in the input: complex array of Morlet wavelets located on the ridge samples

References

See discussions in the text of "Time-Frequency Analysis".

See Also

morwave2, gwave, gwave2.

morwave2 Real Ridge Morvelets	
-------------------------------	--

Description

Generates the real parts of the Morlet wavelets at the sample points of a ridge

Usage

```
morwave2(bridge, aridge, nvoice, np, N, w0=2 * pi)
```

mrecons

Arguments

bridge	time coordinates of the ridge samples.
aridge	scale coordinates of the ridge samples.
nvoice	number of different scales per octave.
np	number of samples in the input signal.
Ν	size of reconstructed signal.
wØ	central frequency of the wavelet.

Value

Returns the real parts of the Morlet wavelets at the samples of the time-scale plane given in the input: array of Morlet wavelets located on the ridge samples

References

See discussions in the text of "Time-Frequency Analysis".

See Also

morwave, gwave, gwave2.

mrecons

Reconstruct from Dyadic Wavelet Transform Extrema

Description

Reconstruct from dyadic wavelet transform modulus extrema. The reconstructed signal preserves locations and values at extrema.

Usage

mrecons(extrema, filtername="Gaussian1", readflag=FALSE)

Arguments

extrema	the extrema representation.
filtername	filter used for dyadic wavelet transform.
readflag	if set to T, read reconstruction kernel from precomputed file. This is not supported in the current package, and will cause an error.

Details

The reconstruction involves only the wavelet coefficients, without taking care of the coarse scale component. The latter may be added a posteriori.

mw

Value

Structure containing		
f	the reconstructed signal.	
g	reconstructed signal plus mean of original signal.	
h	reconstructed signal plus coarse scale component of original signal.	

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

mw, ext.

mw

Dyadic Wavelet Transform

Description

Dyadic wavelet transform, with Mallat's wavelet. The reconstructed signal preserves locations and values at extrema.

Usage

```
mw(inputdata, maxresoln, filtername="Gaussian1", scale=FALSE, plot=TRUE)
```

Arguments

inputdata	either a text file or an R object containing data.
maxresoln	number of decomposition scales.
filtername	name of filter (either Gaussian1 for Mallat and Zhong's wavelet or Haar wavelet).
scale	when set, the wavelet transform at each scale is plotted with the same scale.
plot	indicate if the wavelet transform at each scale will be plotted.

Details

The decomposition goes from resolution 1 to the given maximum resolution.

Value

Structure containing

original	original signal.
Wf	dyadic wavelet transform of signal.
Sf	multiresolution of signal.
maxresoln	number of decomposition scales.
np	size of signal.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

dwinverse, mrecons, ext.

noisywave

Noisy Gravitational Wave

Description

Noisy gravitational wave.

Usage

data(noisywave)

Format

A vector containing 8192 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

npl

Prepare Graphics Environment

Description

Splits the graphics device into prescrivbed number of windows.

Usage

npl(nbrow)

Arguments

nbrow

number of plots.

plotResult

Description

Plot extrema of dyadic wavelet transform.

Usage

```
plotResult(result, original, maxresoln, scale=FALSE, yaxtype="s")
```

Arguments

result	result.
original	input signal.
maxresoln	number of decomposition scales.
scale	when set, the extrema at each scale is plotted withe the same scale.
yaxtype	y axis type (see R manual).

References

See discussions in the text of "Time-Frequency Analysis".

See Also

plotwt, epl, wpl.

plotwt

Plot Dyadic Wavelet Transform

Description

Plot dyadic wavelet transform.

Usage

```
plotwt(original, psi, phi, maxresoln, scale=FALSE, yaxtype="s")
```

Arguments

original	input signal.
psi	dyadic wavelet transform.
phi	scaling function transform at last resolution.
maxresoln	number of decomposition scales.
scale	when set, the wavelet transform at each scale is plotted with the same scale.
yaxtype	axis type (see R manual).

References

See discussions in the text of "Time-Frequency Analysis".

See Also

plotResult, epl, wpl.

purwave

Pure Gravitational Wave

Description

Pure gravitational wave.

Usage

data(purwave)

Format

A vector containing 8192 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

regrec

Reconstruction from a Ridge

Description

Reconstructs signal from a "regularly sampled" ridge, in the wavelet case.

Usage

```
regrec(siginput, cwtinput, phi, compr, noct, nvoice, epsilon=0,
w0=2 * pi, fast=FALSE, plot=FALSE, para=0, hflag=FALSE,
check=FALSE, minnbnodes=2, real=FALSE)
```

52

regrec

Arguments

siginput	input signal.
cwtinput	wavelet transform, output of cwt.
phi	unsampled ridge.
compr	subsampling rate for the wavelet coefficients (at scale 1)
noct	number of octaves (powers of 2)
nvoice	number of different scales per octave
epsilon	coefficient of the Q_2 term in reconstruction kernel
wØ	central frequency of Morlet wavelet
fast	if set to TRUE, the kernel is computed using trapezoidal rule.
plot	if set to TRUE, displays original and reconstructed signals
para	scale parameter for extrapolating the ridges.
hflag	if set to TRUE, uses Q_1 as first term in the kernel.
check	if set to TRUE, computes cwt of reconstructed signal.
minnbnodes	minimum number of nodes for the reconstruction.
real	if set to TRUE, uses only real constraints on the transform.

Value

Returns a list containing:

sol	reconstruction from a ridge.
A	<wavelets,dualwavelets> matrix.</wavelets,dualwavelets>
lam	coefficients of dual wavelets in reconstructed signal.
dualwave	array containing the dual wavelets.
morvelets	array containing the wavelets on sampled ridge.
solskel	wavelet transform of sol, restricted to the ridge.
inputskel	wavelet transform of signal, restricted to the ridge.
Q2	second part of the reconstruction kernel.
nbnodes	number of nodes used for the reconstruction.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

regrec2, ridrec, gregrec, gridrec.

regrec2

Description

Reconstructs signal from a "regularly sampled" ridge, in the wavelet case, from a precomputed kernel.

Usage

```
regrec2(siginput, cwtinput, phi, nbnodes, noct, nvoice, Q2,
epsilon=0.5, w0=2 * pi, plot=FALSE)
```

Arguments

siginput	input signal.
cwtinput	wavelet transform, output of cwt.
phi	unsampled ridge.
nbnodes	number of samples on the ridge
noct	number of octaves (powers of 2)
nvoice	number of different scales per octave
Q2	second term of the reconstruction kernel
epsilon	coefficient of the Q_2 term in reconstruction kernel
w0	central frequency of Morlet wavelet
plot	if set to TRUE, displays original and reconstructed signals

Details

The computation of the kernel may be time consuming. This function avoids recomputing it if it was computed already.

Value

Returns a list containing:

reconstruction from a ridge.
<wavelets,dualwavelets> matrix.</wavelets,dualwavelets>
coefficients of dual wavelets in reconstructed signal.
array containing the dual wavelets.
array containing the wavelets on sampled ridge.
wavelet transform of sol, restricted to the ridge.
wavelet transform of signal, restricted to the ridge.
number of nodes used for the reconstruction.

RidgeSampling

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

regrec, gregrec, ridrec, sridrec.

RidgeSampling Sampling Gabor Ridge

Description

Given a ridge phi (for the Gabor transform), returns a (regularly) subsampled version of length nbnodes.

Usage

RidgeSampling(phi, nbnodes)

Arguments

phi	ridge (1D array).
nbnodes	number of samples.

Details

Gabor ridges are sampled uniformly.

Value

Returns a list containing the discrete values of the ridge.

node	time coordinates of the ridge samples.
phinode	frequency coordinates of the ridge samples.

References

See discussions in the text of "Time-Frequency Analysis".

See Also

wRidgeSampling.

ridrec

Description

Reconstructs signal from sample of a ridge, in the wavelet case.

Usage

```
ridrec(cwtinput, node, phinode, noct, nvoice, Qinv, epsilon, np,
w0=2 * pi, check=FALSE, real=FALSE)
```

Arguments

cwtinput	wavelet transform, output of cwt.
node	time coordinates of the ridge samples.
phinode	scale coordinates of the ridge samples.
noct	number of octaves (powers of 2).
nvoice	number of different scales per octave.
Qinv	inverse of the matrix Q of the quadratic form.
epsilon	coefficient of the Q_2 term in reconstruction kernel
np	number of samples of the reconstructed signal.
wØ	central frequency of Morlet wavelet.
check	if set to TRUE, computes cwt of reconstructed signal.
real	if set to TRUE, uses only constraints on the real part of the transform.

Value

Returns a list containing the reconstructed signal and the chained ridges.

sol	reconstruction from a ridge
A	<wavelets,dualwavelets> matrix</wavelets,dualwavelets>
lam	coefficients of dual wavelets in reconstructed signal.
dualwave	array containing the dual wavelets.
morvelets	array of morlet wavelets located on the ridge samples.
solskel	wavelet transform of sol, restricted to the ridge
inputskel	wavelet transform of signal, restricted to the ridge

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

sridrec, regrec, regrec2.

Description

Computes the cost from the sample of points on the estimated ridge and the matrix used in the reconstruction of the original signal, in the case of real constraints. Modification of the function kernel.

Usage

```
rkernel(node, phinode, nvoice, x.inc=1, x.min=node[1],
x.max=node[length(node)], w0=2 * pi, plot=FALSE)
```

Arguments

node	values of the variable b for the nodes of the ridge.
phinode	values of the scale variable a for the nodes of the ridge.
nvoice	number of scales within 1 octave.
x.inc	step unit for the computation of the kernel.
x.min	minimal value of x for the computation of Q_2 .
x.max	maximal value of x for the computation of Q_2 .
wØ	central frequency of the wavelet.
plot	if set to TRUE, displays the modulus of the matrix of Q_2 .

Details

Uses Romberg's method for computing the kernel.

Value

matrix of the Q_2 kernel

References

See discussions in the text of "Time-Frequency Analysis".

See Also

kernel, fastkernel, gkernel, zerokernel.

scrcrec

Description

Reconstructs signal from ridges obtained by crc, using the restriction of the transform to the ridge.

Usage

```
scrcrec(siginput, tfinput, beemap, bstep=5, ptile=0.01, plot=2)
```

Arguments

siginput	input signal.
tfinput	time-frequency representation (output of cwt or cgt.
beemap	output of crazy climber algorithm
bstep	used for the chaining (see cfamily).
ptile	threshold on the measure beemap (see cfamily).
plot	 1: displays signal, components, and reconstruction one after another. 2: displays signal, components and reconstruction. Else, no plot.

Value

Returns a list containing the reconstructed signal and the chained ridges.

rec	reconstructed signal
ordered	image of the ridges (with different colors)
comp	2D array containing the signals reconstructed from ridges

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

crc,cfamily for crazy climbers method, crcrec for reconstruction methods.

signal_W_tilda.1 File from historical Swave package.

Description

The package maintainer believes this file was read or written by a C function (signal_W_tilda) called from mrecons, and was a precomputed kernel. All C function disk reads and writes have been disabled, but the files are preserved for historical purposes.

Usage

```
data(signal_W_tilda.1)
```

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

See Also

mrecons.

signal_W_tilda.2 File from historical Swave package.

Description

The package maintainer believes this file was read or written by a C function (signal_W_tilda) called from mrecons, and was a precomputed kernel. All C function disk reads and writes have been disabled, but the files are preserved for historical purposes.

Usage

```
data(signal_W_tilda.1)
```

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

See Also

mrecons.

signal_W_tilda.3 File from historical Swave package.

Description

The package maintainer believes this file was read or written by a C function (signal_W_tilda) called from mrecons, and was a precomputed kernel. All C function disk reads and writes have been disabled, but the files are preserved for historical purposes.

Usage

data(signal_W_tilda.1)

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

See Also

mrecons.

signal_W_tilda.4 File from historical Swave package.

Description

The package maintainer believes this file was read or written by a C function (signal_W_tilda) called from mrecons, and was a precomputed kernel. All C function disk reads and writes have been disabled, but the files are preserved for historical purposes.

Usage

```
data(signal_W_tilda.1)
```

Source

See discussions in the text of "Practical Time-Frequency Analysis".

60

signal_W_tilda.5

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

See Also

mrecons.

signal_W_tilda.5 *File from historical Swave package.*

Description

The package maintainer believes this file was read or written by a C function (signal_W_tilda) called from mrecons, and was a precomputed kernel. All C function disk reads and writes have been disabled, but the files are preserved for historical purposes.

Usage

data(signal_W_tilda.1)

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

See Also

mrecons.

signal_W_tilda.6 File from historical Swave package.

Description

The package maintainer believes this file was read or written by a C function (signal_W_tilda) called from mrecons, and was a precomputed kernel. All C function disk reads and writes have been disabled, but the files are preserved for historical purposes.

Usage

data(signal_W_tilda.1)

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

See Also

mrecons.

signal_W_tilda.7 *File from historical Swave package.*

Description

The package maintainer believes this file was read or written by a C function (signal_W_tilda) called from mrecons, and was a precomputed kernel. All C function disk reads and writes have been disabled, but the files are preserved for historical purposes.

Usage

data(signal_W_tilda.1)

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

See Also

mrecons.

signal_W_tilda.8 File from historical Swave package.

Description

The package maintainer believes this file was read or written by a C function (signal_W_tilda) called from mrecons, and was a precomputed kernel. All C function disk reads and writes have been disabled, but the files are preserved for historical purposes.

Usage

```
data(signal_W_tilda.1)
```

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

See Also

mrecons.

signal_W_tilda.9 File from historical Swave package.

Description

The package maintainer believes this file was read or written by a C function (signal_W_tilda) called from mrecons, and was a precomputed kernel. All C function disk reads and writes have been disabled, but the files are preserved for historical purposes.

Usage

```
data(signal_W_tilda.1)
```

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

See Also

mrecons.

sig_W_tilda.1 File from historical Swave package.

Description

The package maintainer believes this file was read or written by a C function (signal_W_tilda) called from mrecons, and was a precomputed kernel. All C function disk reads and writes have been disabled, but the files are preserved for historical purposes.

Usage

data(sig_W_tilda.1)

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

See Also

mrecons, signal_W_tilda.1.

sig_W_tilda.2 File from historical Swave package.

Description

The package maintainer believes this file was read or written by a C function (signal_W_tilda) called from mrecons, and was a precomputed kernel. All C function disk reads and writes have been disabled, but the files are preserved for historical purposes.

Usage

data(sig_W_tilda.1)

Source

See discussions in the text of "Practical Time-Frequency Analysis".

64

sig_W_tilda.3

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

See Also

mrecons, signal_W_tilda.1.

sig_W_tilda.3 File from historical Swave package.

Description

The package maintainer believes this file was read or written by a C function (signal_W_tilda) called from mrecons, and was a precomputed kernel. All C function disk reads and writes have been disabled, but the files are preserved for historical purposes.

Usage

data(sig_W_tilda.1)

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

See Also

mrecons, signal_W_tilda.1.

sig_W_tilda.4 File from historical Swave package.

Description

The package maintainer believes this file was read or written by a C function (signal_W_tilda) called from mrecons, and was a precomputed kernel. All C function disk reads and writes have been disabled, but the files are preserved for historical purposes.

Usage

data(sig_W_tilda.1)

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

See Also

mrecons, signal_W_tilda.1.

sig_W_tilda.5 File from historical Swave package.

Description

The package maintainer believes this file was read or written by a C function (signal_W_tilda) called from mrecons, and was a precomputed kernel. All C function disk reads and writes have been disabled, but the files are preserved for historical purposes.

Usage

data(sig_W_tilda.1)

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

See Also

mrecons, signal_W_tilda.1.

skeleton

Description

Computes the reconstructed signal from the ridge, given the inverse of the matrix Q.

Usage

```
skeleton(cwtinput, Qinv, morvelets, bridge, aridge, N)
```

Arguments

cwtinput	continuous wavelet transform (as the output of cwt)
Qinv	inverse of the reconstruction kernel (2D array)
morvelets	array of Morlet wavelets located at the ridge samples
bridge	time coordinates of the ridge samples
aridge	scale coordinates of the ridge samples
Ν	size of reconstructed signal

Value

Returns a list of the elements of the reconstruction of a signal from sample points of a ridge

sol	reconstruction from a ridge
A	matrix of the inner products
lam	coefficients of dual wavelets in reconstructed signal. They are the Lagrange multipliers λ 's of the text.
dualwave	array containing the dual wavelets.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

skeleton2, zeroskeleton, zeroskeleton2.

skeleton2

Description

Computes the reconstructed signal from the ridge in the case of real constraints.

Usage

```
skeleton2(cwtinput, Qinv, morvelets, bridge, aridge, N)
```

Arguments

cwtinput	continuous wavelet transform (as the output of cwt).
Qinv	inverse of the reconstruction kernel (2D array).
morvelets	array of Morlet wavelets located at the ridge samples.
bridge	time coordinates of the ridge samples.
aridge	scale coordinates of the ridge samples.
Ν	size of reconstructed signal.

Value

Returns a list of the elements of the reconstruction of a signal from sample points of a ridge

sol	reconstruction from a ridge.
A	matrix of the inner products.
lam	coefficients of dual wavelets in reconstructed signal. They are the Lagrange multipliers λ 's of the text.
dualwave	array containing the dual wavelets.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

skeleton.

smoothts

Description

Smooth a time series by averaging window.

Usage

```
smoothts(ts, windowsize)
```

Arguments

ts	Time series.
windowsize	Length of smoothing window.

Value

Smoothed time series (1D array).

References

See discussions in the text of "Time-Frequency Analysis".

smoothwt

Smoothing and Time Frequency Representation

Description

smooth the wavelet (or Gabor) transform in the time direction.

Usage

```
smoothwt(modulus, subrate, flag=FALSE)
```

Arguments

modulus	Time-Frequency representation (real valued).
subrate	Length of smoothing window.
flag	If set to TRUE, subsample the representation.

Value

2D array containing the smoothed transform.

References

See discussions in the text of "Time-Frequency Analysis".

See Also

corona, coronoid, snake, snakoid.

snake

Ridge Estimation by Snake Method

Description

Estimate a ridge from a time-frequency representation, using the snake method.

Usage

```
snake(tfrep, guessA, guessB, snakesize=length(guessB),
tfspec=numeric(dim(modulus)[2]), subrate=1, temprate=3, muA=1,
muB=muA, lambdaB=2 * muB, lambdaA=2 * muA, iteration=1000000,
seed=-7, costsub=1, stagnant=20000, plot=TRUE)
```

Arguments

tfrep	Time-Frequency representation (real valued).
guessA	Initial guess for the algorithm (frequency variable).
guessB	Initial guess for the algorithm (time variable).
snakesize	the length of the initial guess of time variable.
tfspec	Estimate for the contribution of the noise to modulus.
subrate	Subsampling rate for ridge estimation.
temprate	Initial value of temperature parameter.
muA	Coefficient of the ridge's derivative in cost function (frequency component).
muB	Coefficient of the ridge's derivative in cost function (time component).
lambdaB	Coefficient of the ridge's second derivative in cost function (time component).
lambdaA	Coefficient of the ridge's second derivative in cost function (frequency component).
iteration	Maximal number of moves.
seed	Initialization of random number generator.
costsub	Subsampling of cost function in output.
stagnant	maximum number of steps without move (for the stopping criterion)
plot	when set (by default), certain results will be displayed

snake

snakeview

Value

Returns a structure containing:

ridge	1D array (of same length as the signal) containing the ridge.
cost	1D array containing the cost function.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

corona, coronoid, icm, snakoid.

snakeview

Restriction to a Snake

Description

Restrict time-frequency transform to a snake.

Usage

snakeview(modulus, snake)

Arguments

modulus	Time-Frequency representation (real valued).
snake	Time and frequency components of a snake.

Details

Recall that a snake is a (two components) R structure.

Value

2D array containing the restriction of the transform modulus to the snake.

References

See discussions in the text of "Time-Frequency Analysis".

snakoid

Description

Estimate a ridge from a time-frequency representation, using the modified snake method (modified cost function).

Usage

```
snakoid(modulus, guessA, guessB, snakesize=length(guessB),
tfspec=numeric(dim(modulus)[2]), subrate=1, temprate=3, muA=1,
muB=muA, lambdaB=2 * muB, lambdaA=2 * muA, iteration=1000000,
seed=-7, costsub=1, stagnant=20000, plot=TRUE)
```

Arguments

modulus	Time-Frequency representation (real valued).
guessA	Initial guess for the algorithm (frequency variable).
guessB	Initial guess for the algorithm (time variable).
snakesize	The length of the first guess of time variable.
tfspec	Estimate for the contribution of srthe noise to modulus.
subrate	Subsampling rate for ridge estimation.
temprate	Initial value of temperature parameter.
muA	Coefficient of the ridge's derivative in cost function (frequency component).
muB	Coefficient of the ridge's derivative in cost function (time component).
lambdaB	Coefficient of the ridge's second derivative in cost function (time component).
lambdaA	Coefficient of the ridge's second derivative in cost function (frequency component).
iteration	Maximal number of moves.
seed	Initialization of random number generator.
costsub	Subsampling of cost function in output.
stagnant	Maximum number of stationary iterations before stopping.
plot	when set(default), some results will be displayed

Value

Returns a structure containing:

ridge	1D array (of same length as the signal) containing the ridge.
cost	1D array containing the cost function.
plot	when set(default), some results will be displayed.

sridrec

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

corona, coronoid, icm, snake.

sridrec

Simple Reconstruction from Ridge

Description

Simple reconstruction of a real valued signal from a ridge, by restriction of the transform to the ridge.

Usage

sridrec(tfinput, ridge)

Arguments

tfinput	time-frequency representation.
ridge	ridge (1D array).

Value

(real) reconstructed signal (1D array)

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

ridrec, gridrec.

Description

Computes singular value decomposition of a matrix.

Usage

SVD(a)

Arguments

input matrix.

Details

R interface for Numerical Recipes singular value decomposition routine.

Value

a structure containing the 3 matrices of the singular value decomposition of the input.

References

See discussions in the text of "Time-Frequency Analysis".

tfgmax

Time-Frequency Transform Global Maxima

Description

Computes the maxima (for each fixed value of the time variable) of the modulus of a continuous wavelet transform.

Usage

tfgmax(input, plot=TRUE)

Arguments

input	wavelet transform (as the output of the function cwt)
plot	if set to TRUE, displays the values of the energy as a function of the scale.

SVD

tflmax

Value

output	values of the maxima (1D array)
pos	positions of the maxima (1D array)

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

tflmax.

tflmax

Time-Frequency Transform Local Maxima

Description

Computes the local maxima (for each fixed value of the time variable) of the modulus of a time-frequency transform.

Usage

tflmax(input, plot=TRUE)

Arguments

input	time-frequency transform (real 2D array).
plot	if set to T, displays the local maxima on the graphic device.

Value

values of the maxima (2D array).

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

tfgmax.

tfmean

Description

Compute the mean of time-frequency representation frequency by frequency.

Usage

tfmean(input, plot=TRUE)

Arguments

input	time-frequency transform (output of cwt or cgt).
plot	if set to T, displays the values of the energy as a function of the scale (or fre-
	quency).

Value

1D array containing the noise estimate.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

tfpct,tfvar.

```
tfpct
```

Percentile frequency by frequency

Description

Compute a percentile of time-frequency representation frequency by frequency.

Usage

```
tfpct(input, percent=0.8, plot=TRUE)
```

Arguments

input	time-frequency transform (output of cwt or cgt).
percent	percentile to be retained.
plot	if set to T, displays the values of the energy as a function of the scale (or fre- quency).

tfvar

Value

1D array containing the noise estimate.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

tfmean,tfvar.

tfvar

Variance frequency by frequency

Description

Compute the variance of time-frequency representation frequency by frequency.

Usage

tfvar(input, plot=TRUE)

Arguments

input	time-frequency transform (output of cwt or cgt).
plot	if set to T, displays the values of the energy as a function of the scale (or fre- quency).

Value

1D array containing the noise estimate.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

tfmean,tfpct.

Undocumented

Description

Numerous functions were not documented in the original Swave help files.

References

See discussions in the text of "Practical Time-Frequency Analysis".

vDOG

DOG Wavelet Transform on one Voice

Description

Compute DOG wavelet transform at one scale.

Usage

vDOG(input, scale, moments)

Arguments

input	Input signal (1D array).
scale	Scale at which the wavelet transform is to be computed.
moments	number of vanishing moments.

Value

1D (complex) array containing wavelet transform at one scale.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

vgt, vwt.

vecgabor

Description

Generate Gabor functions at specified positions on a ridge.

Usage

vecgabor(sigsize, nbnodes, location, frequency, scale)

Arguments

sigsize	Signal size.
nbnodes	Number of wavelets to be generated.
location	b coordinates of the ridge samples (1D array of length nbnodes).
frequency	frequency coordinates of the ridge samples (1D array of length nbnodes).
scale	size parameter for the Gabor functions.

Value

size parameter for the Gabor functions.

See Also

vecmorlet.

vecmorlet

Morlet Wavelets on a Ridge

Description

Generate Morlet wavelets at specified positions on a ridge.

Usage

```
vecmorlet(sigsize, nbnodes, bridge, aridge, w0=2 * pi)
```

Arguments

sigsize	Signal size.
nbnodes	Number of wavelets to be generated.
bridge	b coordinates of the ridge samples (1D array of length nbnodes).
aridge	a coordinates of the ridge samples (1D array of length nbnodes).
w0	Center frequency of the wavelet.

Value

2D (complex) array containing wavelets located at the specific points.

See Also

vecgabor.

vgt

Gabor Transform on one Voice

Description

Compute Gabor transform for fixed frequency.

Usage

vgt(input, frequency, scale, plot=FALSE)

Arguments

input	Input signal (1D array).
frequency	frequency at which the Gabor transform is to be computed.
scale	frequency at which the Gabor transform is to be computed.
plot	if set to TRUE, plots the real part of cgt on the graphic device.

Value

1D (complex) array containing Gabor transform at specified frequency.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

vwt, vDOG.

vwt

Description

Compute Morlet's wavelet transform at one scale.

Usage

vwt(input, scale, w0=2 * pi)

Arguments

input	Input signal (1D array).
scale	Scale at which the wavelet transform is to be computed.
wØ	Center frequency of the wavelet.

Value

1D (complex) array containing wavelet transform at one scale.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

vgt, vDOG.

wpl

Plot Dyadic Wavelet Transform.

Description

Plot dyadic wavelet transform(output of mw).

Usage

wpl(dwtrans)

Arguments

dwtrans dyadic wavelet transform (output of mw).

See Also

mw, ext,epl.

wRidgeSampling

Description

Given a ridge ϕ (for the wavelet transform), returns a (appropriately) subsampled version with a given subsampling rate.

Usage

wRidgeSampling(phi, compr, nvoice)

Arguments

phi	ridge (1D array).
compr	subsampling rate for the ridge.
nvoice	number of voices per octave.

Details

To account for the variable sizes of wavelets, the sampling rate of a wavelet ridge is not uniform, and is proportional to the scale.

Value

Returns a list containing the discrete values of the ridge.

node	time coordinates of the ridge samples.
phinode	scale coordinates of the ridge samples.
nbnode	number of nodes of the ridge samples.

See Also

RidgeSampling.

wspec.pl

Description

Displays normalized log of wavelet spectrum.

Usage

```
wspec.pl(wspec, nvoice)
```

Arguments

wspec	wavelet spectrum.
nvoice	number of voices.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

hurst.est.

WV Wigner-Ville function	
--------------------------	--

Description

Compute the Wigner-Ville transform, without any smoothing.

Usage

```
WV(input, nvoice, freqstep = (1/nvoice), plot = TRUE)
```

Arguments

input	input signal (possibly complex-valued)
nvoice	number of frequency bands
freqstep	sampling rate for the frequency axis
plot	if set to TRUE, displays the modulus of CWT on the graphic device.

Value

(complex) Wigner-Ville transform.

References

See discussions in the text of "Practical Time-Frequency Analysis".

ΥN

Logarithms of the Prices of Japanese Yen

Description

Logarithms of the prices of a contract of Japanese yen.

Usage

data(YN)

Format

A vector containing 500 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

YNdiff

Daily differences of Japanese Yen

Description

Daily differences of YN.

Usage

data(YNdiff)

Format

A vector containing 499 observations.

Source

See discussions in the text of "Practical Time-Frequency Analysis".

84

zerokernel

References

Carmona, R. A., W. L. Hwang and B Torresani (1998) *Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an Implementation in S*, Academic Press, San Diego.

zerokernel

Reconstruction from Wavelet Ridges

Description

Generate a zero kernel for reconstruction from ridges.

Usage

zerokernel(x.inc=1, x.min, x.max)

Arguments

x.min	minimal value of x for the computation of Q_2 .
x.max	maximal value of x for the computation of Q_2 .
x.inc	step unit for the computation of the kernel.

Value

matrix of the Q_2 kernel

See Also

kernel, fastkernel, gkernel, gkernel.

zeroskeleton Reconstruction from Dual Wavelets

Description

Computes the the reconstructed signal from the ridge when the epsilon parameter is set to zero

Usage

```
zeroskeleton(cwtinput, Qinv, morvelets, bridge, aridge, N)
```

Arguments

cwtinput	continuous wavelet transform (as the output of cwt).
Qinv	inverse of the reconstruction kernel (2D array).
morvelets	array of Morlet wavelets located at the ridge samples.
bridge	time coordinates of the ridge samples.
aridge	scale coordinates of the ridge samples.
Ν	size of reconstructed signal.

Details

The details of this reconstruction are the same as for the function skeleton. They can be found in the text

Value

Returns a list of the elements of the reconstruction of a signal from sample points of a ridge

sol	reconstruction from a ridge.
A	matrix of the inner products.
lam	coefficients of dual wavelets in reconstructed signal. They are the Lagrange multipliers λ 's of the text.
dualwave	array containing the dual wavelets.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

skeleton, skeleton2, zeroskeleton2.

zeroskeleton2 Reconstruction from Dual Wavelets

Description

Computes the the reconstructed signal from the ridge when the epsilon parameter is set to zero, in the case of real constraints.

Usage

```
zeroskeleton2(cwtinput, Qinv, morvelets, bridge, aridge, N)
```

zeroskeleton2

Arguments

cwtinput	continuous wavelet transform (output of cwt).
Qinv	inverse of the reconstruction kernel (2D array).
morvelets	array of Morlet wavelets located at the ridge samples.
bridge	time coordinates of the ridge samples.
aridge	scale coordinates of the ridge samples.
Ν	size of reconstructed signal.

Details

The details of this reconstruction are the same as for the function skeleton. They can be found in the text

Value

Returns a list of the elements of the reconstruction of a signal from sample points of a ridge

sol	reconstruction from a ridge.
A	matrix of the inner products.
lam	coefficients of dual wavelets in reconstructed signal. They are the Lagrange multipliers λ 's of the text.
dualwave	array containing the dual wavelets.

References

See discussions in the text of "Practical Time-Frequency Analysis".

See Also

skeleton, skeleton2, zeroskeleton.

Index

* datasets A0, 4 A4, 5 amber7,6 amber8,6 amber9,7 B0, 7 B4, 8 back1.000,8 back1.180,9 back1.220,9 C0, 10 C4, 10 ch, 13 click, 14 D0, 26 D4, 26 Ekg, 28 HOWAREYOU, 40 noisywave, 50 purwave, 52 sig_W_tilda.1,64 sig_W_tilda.2,64 sig_W_tilda.3,65 sig_W_tilda.4,65 sig_W_tilda.5,66 signal_W_tilda.1,59 signal_W_tilda.2,59 signal_W_tilda.3,60 signal_W_tilda.4,60 signal_W_tilda.5,61 signal_W_tilda.6,61 signal_W_tilda.7,62 signal_W_tilda.8,63 signal_W_tilda.9,63 YN, 84 YNdiff, 84 * hplot wspec.pl, 83

* ts

adjust.length, 5 cfamily, 11 cgt, 12 check.maxresoln, 13 cleanph, 14 corona, 15 coronoid, 16 crc, 17 crcrec, 18 crfview, 19 cwt, 20 cwtimage, 21 cwtp, 22 cwtpolar, 23 cwtsquiz, 24 cwtTh, 25 DOG, 27 dwinverse, 28 epl, 29 ext, 29 fastgkernel, 30 fastkernel, 31 gabor, 33 gcrcrec, 34 gkernel, 35 gregrec, 36 gridrec, 37 gsampleOne, 38 gwave, 39 gwave2, 39 hurst.est, 41 icm, 42 kernel, 43 mbtrim, 44 mntrim, 45 morlet, 46 morwave, 47 morwave2, 47

mrecons, 48 mw, 49 npl, 50 plotResult, 51 plotwt, 51 regrec, 52 regrec2, 54 RidgeSampling, 55 ridrec, 56 rkernel, 57 scrcrec. 58 skeleton, 67 skeleton2, 68 smoothts, 69 smoothwt. 69 snake, 70 snakeview, 71 snakoid, 72 sridrec, 73 SVD, 74 tfgmax, 74 tflmax.75 tfmean, 76 tfpct, 76 tfvar, 77 Undocumented, 78 vD0G, 78 vecgabor, 79 vecmorlet, 79 vgt, 80 vwt, 81 wpl, 81 wRidgeSampling, 82 wspec.pl, 83 WV, 83 zerokernel, 85 zeroskeleton, 85 zeroskeleton2,86

A0, <mark>4</mark>

A4, 5 adjust.length, 5 amber7, 6 amber8, 6 amber9, 7

B0, 7

B4, 8 back1.000, 8 back1.180,9
back1.220,9
band (Undocumented),78

C0, 10 C4, 10 cfamily, 11, 11, 18, 19, 35, 58 cgt, 12, 22, 24, 27, 36, 37, 58, 76, 77 cgtRadar (Undocumented), 78 ch, 13 check.maxresoln, 13 cleanph, 14 click, 14 cloudXYZ (Undocumented), 78 confident (Undocumented), 78 corona, 15, 15, 17, 18, 42, 70, 71, 73 coronoid, 16, 16, 18, 42, 70, 71, 73 crc, 11, 17, 18, 19, 34, 35, 58 crcirgrec (Undocumented), 78 crcirrec (Undocumented), 78 crcrec, 11, 18, 18, 35, 58 crfview, 19 cwt, 12, 20, 21-25, 27, 36, 53, 54, 56, 58, 74, 76, 77, 86, 87 cwtimage, 21, 23 cwtp, 12, 20, 22, 24, 25, 27 cwtpolar, 21, 23 cwtsquiz, 12, 24, 27 cwtTh, 20, 22, 25

D0, 26 D4, 26 ddw (Undocumented), 78 DOG, *12*, *20*–*25*, 27 dw (Undocumented), 78 dwinverse, 28, *50*

Ekg, 28 epl, 29, 51, 52, 81 ext, 28, 29, 29, 44, 45, 49, 50, 81

fastgkernel, 30, 35 fastkernel, 31, 31, 35, 57, 85 fftshift (Undocumented), 78

gabor, 20, 22, 25, 33, 46 gcrcrec, 11, 18, 34 girregrec (Undocumented), 78 gkernel, 31, 32, 35, 38, 43, 57, 85

INDEX

gregrec, 36, 38, 53, 55 gridrec, 37, 53, 73 gsampleOne, 38 gwave, 39, 39, 40, 47, 48 gwave2, 39, 39, 47, 48

hescrc (Undocumented), 78 HOWAREYOU, 40 hurst.est, 41, 83

icm, *16–18*, *42*, *42*, *71*, *73* irregrec (Undocumented), 78

kernel, 32, 35, 38, 43, 57, 85

mbpval (Undocumented), 78 mbtrim, 44, 45 mcgt (Undocumented), 78 mnpval (Undocumented), 78 mntrim, 44, 45 morlet, 33, 46 morwave, 39, 40, 47, 48 morwave2, 39, 40, 47, 47 mrecons, 13, 28, 30, 44, 45, 48, 50, 59–66 mw, 13, 28–30, 49, 49, 81

noisywave, 50 npl, 50

pcacrc (Undocumented), 78 pcafamily (Undocumented), 78 pcamaxima (Undocumented), 78 pcamorwave (Undocumented), 78 pcarec (Undocumented), 78 pcaregrec (Undocumented), 78 PcaRidgeSampling (Undocumented), 78 pcaridrec (Undocumented), 78 pcazeroskeleton (Undocumented), 78 plotResult, 51, 52 plotwt, 51, 51 purwave, 52

regrec, *37*, *38*, *52*, *55*, regrec2, *38*, *53*, *54*, RidgeDist (Undocumented), RidgeSampling (Undocumented), RidgeSampling, *55*, ridrec, *53*, *55*, *56*, rkernel, *31*, *32*, *35*, *43*, robustrec (Undocumented), RunRec (Undocumented), 78 SampleGen (Undocumented), 78 Sausage (Undocumented), 78 scrcrec, 11, 18, 19, 35, 58 showRadar (Undocumented), 78 sig_W_tilda.1,64 sig_W_tilda.2,64 sig_W_tilda.3,65 sig_W_tilda.4,65 sig_W_tilda.5,66 signal_W_tilda.1, 59, 64-66 signal_W_tilda.2,59 signal_W_tilda.3,60 signal_W_tilda.4,60 signal_W_tilda.5,61 signal_W_tilda.6,61 signal_W_tilda.7,62 signal_W_tilda.8,63 signal_W_tilda.9,63 simplepcarec (Undocumented), 78 skeleton, 67, 68, 86, 87 skeleton2, 67, 68, 86, 87 smoothts, 69 smoothwt, 69 snake, 16-18, 42, 70, 70, 73 snakeview, 71 snakoid, 16-18, 42, 70, 71, 72 SpecGen (Undocumented), 78 sridrec, 38, 55, 56, 73 SVD. 74

tfgmax, 74, 75 tflmax, 75, 75 tfmean, 41, 76, 77 tfpct, 76, 76, 77 tfvar, 76, 77, 77

Undocumented, 78

vDOG, 78, *80*, *81* vecgabor, 79, *80* vecmorlet, *79*, 79 vgt, *78*, 80, *81* vwt, *78*, *80*, 81 vwtTh (Undocumented), 78

wpl, 29, 51, 52, 81 wRidgeSampling, 55, 82

90

INDEX

wspec.pl, *41*, 83 WV, 83

YN, *84*, 84 YNdiff, 84

zerokernel, *31, 32, 35, 43, 57,* 85 zeroskeleton, *67,* 85, *87* zeroskeleton2, *67, 86,* 86