The Statistical Sleuth in R: Chapter 12

Linda Loi Kate Aloisio Ruobing Zhang Nicholas J. Horton*
October 24, 2024

Contents

1	Intr	roduction	1
2	State Average SAT Scores		2
	2.1	Summary statistics	2
	2.2	Dealing with Many Explanatory Variables	3
	2.3	Sequential Variable Selection	7
	2.4	Model Selection Among All Subsets	10
	2.5	Contribution of Expend	11
3	Sex	Discrimination in Employment	12
	3.1	Summary Statistics	12
	3.2	Model Selection	13
	3.3	Evaluating the Sex Effect	15

1 Introduction

This document is intended to help describe how to undertake analyses introduced as examples in the Third Edition of the *Statistical Sleuth* (2013) by Fred Ramsey and Dan Schafer. More information about the book can be found at http://www.proaxis.com/~panorama/home.htm. This file as well as the associated knitr reproducible analysis source file can be found at http://www.math.smith.edu/~nhorton/sleuth3.

This work leverages initiatives undertaken by Project MOSAIC (http://www.mosaic-web.org), an NSF-funded effort to improve the teaching of statistics, calculus, science and computing in the undergraduate curriculum. In particular, we utilize the mosaic package, which was written to simplify the use of R for introductory statistics courses. A short summary of the R needed to teach introductory statistics can be found in the mosaic package vignette (http://cran.r-project.org/web/packages/mosaic/vignettes/MinimalR.pdf).

To use a package within R, it must be installed (one time), and loaded (each session). The package can be installed using the following command:

^{*}Department of Mathematics and Statistics, Smith College, nhorton@smith.edu

```
> install.packages('mosaic') # note the quotation marks
```

Once this is installed, it can be loaded by running the command:

```
> require(mosaic)
```

This needs to be done once per session.

In addition the data files for the *Sleuth* case studies can be accessed by installing the **Sleuth3** package.

```
> install.packages('Sleuth3') # note the quotation marks
```

```
> require(Sleuth3)
```

We also set some options to improve legibility of graphs and output.

```
> trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice
> options(digits=4)
```

The specific goal of this document is to demonstrate how to calculate the quantities described in Chapter 12: Strategies for Variable Selection using R.

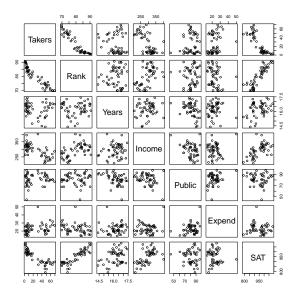
2 State Average SAT Scores

What variables are associated with state SAT scores? This is the question addressed in case study 12.1 in the *Sleuth*.

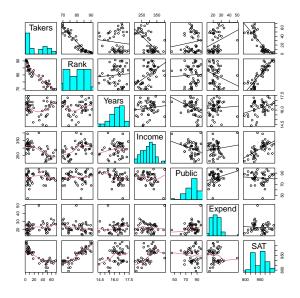
2.1 Summary statistics

We begin by reading the data and summarizing the variables.

```
> summary(case1201)
                      SAT
        State
                                    Takers
                                                     Income
                                                                   Years
 Alabama
                 Min.
                        : 790
                                Min.
                                       : 2.00
                                                 Min.
                                                        :208
                                                               Min.
                                                                      :14.4
 Alaska
                 1st Qu.: 889
                                1st Qu.: 6.25
                                                 1st Qu.:262
                                                               1st Qu.:15.9
                 Median: 966
                                Median :16.00
                                                 Median:295
                                                               Median:16.4
 Arizona
                                                                      :16.2
 Arkansas : 1
                 Mean
                        : 948
                                Mean
                                        :26.22
                                                 Mean :294
                                                               Mean
California: 1
                 3rd Qu.: 998
                                3rd Qu.:47.75
                                                 3rd Qu.:325
                                                               3rd Qu.:16.8
 Colorado : 1
                 Max.
                        :1088
                                Max.
                                        :69.00
                                                 Max. :401
                                                               Max.
                                                                      :17.4
 (Other)
           :44
     Public
                    Expend
                                    Rank
        :44.8
                Min. :13.8
                               Min.
                                       :69.8
 1st Qu.:76.9
                1st Qu.:19.6
                               1st Qu.:74.0
```

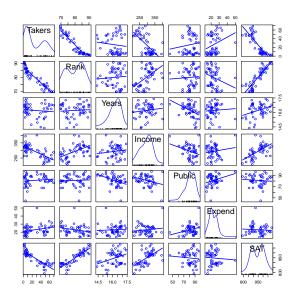

```
Median:80.8
              Median:21.6
                             Median:80.8
Mean :81.2
                    :23.0
              Mean
                             Mean
                                    :80.0
3rd Qu.:88.2
              3rd Qu.:26.4
                             3rd Qu.:85.8
Max.
       :97.0
              Max.
                     :50.1
                                    :90.6
                             Max.
```

The data are shown on page 347 (display 12.1). A total of 50 state average SAT scores are included in this data.


2.2 Dealing with Many Explanatory Variables

The following graph is presented as Display 12.4, page 356.

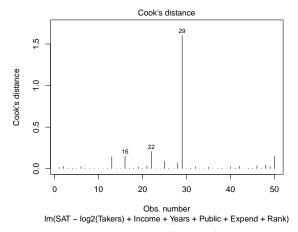
```
> pairs(~ Takers+Rank+Years+Income+Public+Expend+SAT, data=case1201)
```



We can get a fancier graph using following code:

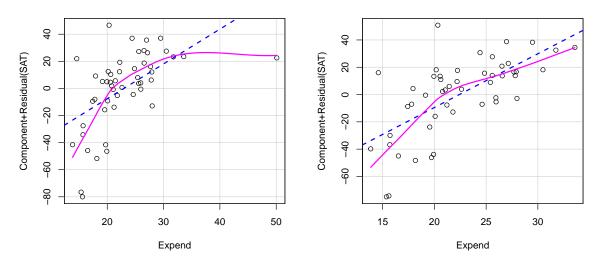
An alternative graph can be generated using the car package.

```
> require(car)
> scatterplotMatrix(~ Takers+Rank+Years+Income+Public+Expend+SAT, diagonal="histogram", smoother
Warning in applyDefaults(diagonal, defaults = list(method = "adaptiveDensity"), : unnamed
diag arguments, will be ignored
```



Based on the scatterplot, we choose the logarithm of percentage of SAT takers and median class rank to fit our first model (page 355-357):

```
> lm1 = lm(SAT ~ Rank+log(Takers), data=case1201)
> summary(lm1)
Call:
lm(formula = SAT ~ Rank + log(Takers), data = case1201)
Residuals:
  Min
       1Q Median
                        3Q
                              Max
-94.46 -17.31 5.32 22.82 48.47
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
             882.08
                        224.13
                                  3.94 0.00027
Rank
               2.40
                          2.33
                                  1.03 0.30898
             -45.19
                         14.06
                                 -3.21 0.00236
log(Takers)
Residual standard error: 31.1 on 47 degrees of freedom
Multiple R-squared: 0.815, Adjusted R-squared: 0.807
F-statistic: 103 on 2 and 47 DF, p-value: <2e-16
```

From the regression output, we observe that these two variables can explain 81.5% of the variation.


Next we fit a linear regression model using all variables and create the partial residual plot presented on page 357 as Display 12.5:

```
> lm2 = lm(SAT ~ log2(Takers)+Income+Years+Public+Expend+Rank, data=case1201)
> summary(lm2)
Call:
lm(formula = SAT ~ log2(Takers) + Income + Years + Public + Expend +
   Rank, data = case1201)
Residuals:
  Min
       1Q Median
                        3Q
                           Max
-61.11 -8.60 2.86 14.77 53.40
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 407.5399 282.7633
                                1.44
                                        0.1567
log2(Takers) -26.6429
                                  -2.41
                       11.0572
                                         0.0203
Income
             -0.0359
                        0.1301
                                -0.28
                                        0.7841
Years
             17.2181
                        6.3201
                                 2.72
                                        0.0093
             -0.1130
Public
                        0.5624
                                  -0.20
                                         0.8417
Expend
              2.5669
                        0.8064
                                  3.18
                                         0.0027
Rank
              4.1143
                         2.5017
                                   1.64
                                          0.1073
Residual standard error: 24.9 on 43 degrees of freedom
Multiple R-squared: 0.892, Adjusted R-squared: 0.877
F-statistic: 59.2 on 6 and 43 DF, p-value: <2e-16
> plot(lm2, which=4)
```


According to the Cook's distance plot, obs 29 (Alaska) seems to be an influential outlier. We may consider removing this observation from the dataset.

```
> case1201r = case1201[-c(29),]
> lm3 = lm(SAT ~ log2(Takers) + Income+ Years + Public + Expend + Rank, data=case1201r)
> anova(lm3)
Analysis of Variance Table
Response: SAT
             Df Sum Sq Mean Sq F value
                                         Pr(>F)
log2(Takers)
              1 199007
                         199007
                                 390.63 < 2e-16
Income
              1
                    785
                            785
                                   1.54
                                         0.2214
Years
              1
                   5910
                           5910
                                  11.60
                                          0.0015
Public
              1
                  5086
                           5086
                                   9.98
                                          0.0029
Expend
                                  20.64 4.6e-05
              1
                 10513
                          10513
Rank
              1
                   2679
                           2679
                                   5.26
                                          0.0269
Residuals
             42
                 21397
                            509
> crPlots(lm2, term = ~ Expend) # with Alaska
> crPlots(1m3, term = ~ Expend) # without Alaska
```


The difference between these two slopes indicates that Alaska is an influential observation. We decide to remove it from the original dataset.

2.3 Sequential Variable Selection

The book uses F-statistics as the criterion to perform the procedures of forward selection and backward elimination presented on page 359. As mentioned on page 359, the entire forward selection procedure required the fitting of only 16 of the 64 possible models presented on Display 12.6 (page 360). These 16 models utilized Expenditure and log(Takers) to predict SAT scores. Further, as mentioned on page 359, the entire backward selection procedure required the fitting of only 3

models of the 64 possible models. These 3 models used Year, Expenditure, Rank and log(Takers) to predict SAT scores.

To the best of our knowledge, RStudio is not equipped to perform stepwise regressions using F-statistics. Instead, we demonstrate this proceduring using AIC criterion and get the final model using the following code. Note that we choose log(Taker) as our preliminary predictor for forward selection, because it has the largest F-value when we fitted lm3.

```
> # Forward Selection
> lm4 = lm(SAT \sim log2(Takers), data=case1201r)
> stepAIC(lm4, scope=list(upper=lm3, lower=~1),
   direction="forward", trace=FALSE)$anova
Stepwise Model Path
Analysis of Deviance Table
Initial Model:
SAT ~ log2(Takers)
Final Model:
SAT ~ log2(Takers) + Expend + Years + Rank
      Step Df Deviance Resid. Df Resid. Dev
                                            AIC
1
                             47
                                   46369 339.8
2 + Expend 1
                20523
                             46
                                     25846 313.1
3 + Years 1
                             45
                 1248
                                    24598 312.7
                             44
                                   21922 309.1
 + Rank 1
                 2676
> # Backward Elimination
> stepAIC(lm3, direction="backward", trace=FALSE)$anova
Stepwise Model Path
Analysis of Deviance Table
Initial Model:
SAT ~ log2(Takers) + Income + Years + Public + Expend + Rank
Final Model:
SAT ~ log2(Takers) + Years + Expend + Rank
      Step Df Deviance Resid. Df Resid. Dev
                                            AIC
1
                             42
                                     21397 311.9
2 - Public 1
                 20.0
                             43
                                     21417 309.9
3 - Income 1
                             44
                505.4
                                     21922 309.1
```

```
> # Stepwise Regression
> stepAIC(lm3, direction="both", trace=FALSE)$anova
Stepwise Model Path
Analysis of Deviance Table
Initial Model:
SAT ~ log2(Takers) + Income + Years + Public + Expend + Rank
Final Model:
SAT ~ log2(Takers) + Years + Expend + Rank
     Step Df Deviance Resid. Df Resid. Dev AIC
1
                             42
                                     21397 311.9
2 - Public 1
                 20.0
                             43
                                     21417 309.9
3 - Income 1 505.4
                          44
                                     21922 309.1
```

Thus, the final model includes log(Takers), Expenditure, Years and Rank.

```
> lm5 = lm(SAT ~ log2(Takers) + Expend + Years + Rank, data=case1201r)
> summary(lm5)
lm(formula = SAT ~ log2(Takers) + Expend + Years + Rank, data = case1201r)
Residuals:
  Min 1Q Median 3Q Max
-52.30 -9.92 0.60 11.88 59.20
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 399.115 232.372 1.72 0.0929
log2(Takers) -26.409 8.259 -3.20 0.0026
             3.996 0.764 5.23 4.5e-06
13.147 5.478 2.40 0.0207
Expend
Years
                     1.899 2.32 0.0252
             4.400
Rank
Residual standard error: 22.3 on 44 degrees of freedom
Multiple R-squared: 0.911, Adjusted R-squared: 0.903
F-statistic: 112 on 4 and 44 DF, p-value: <2e-16
```

The final model can explain 91.1% percent or the variation of SAT. All of the explanatory variables are statistically significant at the $\alpha = .05$ level.

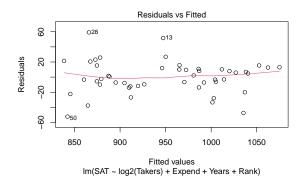
2.4 Model Selection Among All Subsets

The Cp-statistic can be an useful criterion to select model among all subsets. We'll give an example about how to calculate this statistic for one model, which includes log(Takers), Expenditure, Years and Rank.

```
> sigma5 = summary(lm5)$sigma^2 # sigma-squared of chosen model
> sigma3 = summary(lm3)$sigma^2 # sigma-squared of full model
> n = 49 # sample size
> p = 4+1 # number of coefficients in model
> Cp=(n-p)*sigma5/sigma3+(2*p-n)
> Cp
[1] 4.031
```

The Cp statistic for this model is 4.0312.

Alternatively, the Cp statistic can be calculated using the following command:


This means that the 27th fitting model includes log(Takers), Years and Expend.

```
> with(case1201r, leaps(explanatory, SAT, method="Cp"))$Cp[27]
[1] 4.031
```

The Cp statistic for this model is 4.0312. This will be the "tyer" point on the Display 12.9, page 365.

We use the following code to generate the graph presented as Display 12.14 on page 372.

```
> plot(lm5, which=1)
```


Statistical Sleuth in R: Chapter 12

From the scatterplot, we see that obs 28 (New Hampshire) has the largest residual, while obs 50 (Sorth Carolina) has the smallest.

2.5 Contribution of Expend

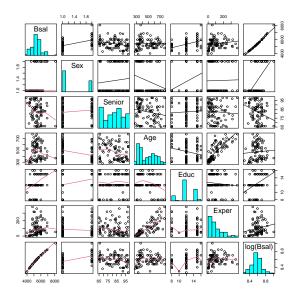
Display 12.13 (page 363) shows the contribution of Expend to the model.

```
> lm7 = lm(SAT ~ Expend, data=case1201r)
> summary(lm7)
Call:
lm(formula = SAT ~ Expend, data = case1201r)
Residuals:
  Min 1Q Median 3Q Max
-162.5 -57.7 17.0 46.6 141.4
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 961.724 49.888 19.28 <2e-16
Expend
           -0.592
                      2.178 -0.27
                                       0.79
Residual standard error: 72.2 on 47 degrees of freedom
Multiple R-squared: 0.00157, Adjusted R-squared: -0.0197
F-statistic: 0.074 on 1 and 47 DF, p-value: 0.787
> lm8 = lm(SAT ~ Income + Expend, data=case1201r)
> summary(lm8)
Call:
lm(formula = SAT ~ Income + Expend, data = case1201r)
Residuals:
  Min 1Q Median 3Q Max
-91.15 -38.41 -2.58 27.29 159.52
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 604.682 73.209 8.26 1.2e-10
                      0.196 5.73 7.2e-07
Income
             1.127
Expend
              0.672
                       1.695 0.40 0.69
Residual standard error: 55.7 on 46 degrees of freedom
Multiple R-squared: 0.418, Adjusted R-squared: 0.392
F-statistic: 16.5 on 2 and 46 DF, p-value: 3.95e-06
```

3 Sex Discrimination in Employment

Do females receive lower starting salaries than similarly qualified and similarly experience males and did females receive smaller pay increases than males? These are the questions explored in case 12.2 in the *Sleuth*.

3.1 Summary Statistics


We begin by summarizing the data.

```
> summary(case1202)
     Bsal
                  Sal77
                                  Sex
                                             Senior
                                                            Age
Min.
       :3900
              Min. : 7860
                              Female:61
                                         Min. :65.0
                                                       Min.
                                                              :280
1st Qu.:4980
               1st Qu.: 9000
                                         1st Qu.:74.0
                                                       1st Qu.:349
                              Male :32
Median:5400
               Median :10020
                                         Median:84.0
                                                       Median:468
Mean :5420
              Mean :10393
                                         Mean :82.3
                                                        Mean :474
3rd Qu.:6000
               3rd Qu.:11220
                                         3rd Qu.:90.0
                                                        3rd Qu.:590
                                         Max. :98.0
Max. :8100
               Max. :16320
                                                       Max. :774
     Educ
                  Exper
Min. : 8.0
               Min. : 0.0
1st Qu.:12.0
               1st Qu.: 35.5
Median:12.0
               Median: 70.0
Mean :12.5
               Mean :100.9
3rd Qu.:15.0
               3rd Qu.:144.0
Max. :16.0
               Max. :381.0
```

The data is shown on page 350-351 as display 12.3. A total of 93 employee salaries are included: 61 females and 32 males.

Next we present a full graphical display for the variables within the dataset and the log of the beginning salary variable.

```
> pairs(~ Bsal+Sex+Senior+Age+Educ+Exper+log(Bsal),
        lower.panel=panel.smooth, diag.panel=panel.hist,
        upper.panel=panel.lm, data=case1202)
Warning in par(usr):
                      argument 1 does not name a graphical parameter
Warning in par(usr):
                      argument 1 does not name a graphical parameter
Warning in par(usr):
                      argument 1 does not name a graphical parameter
Warning in par(usr):
                      argument 1 does not name a graphical parameter
Warning in par(usr):
                      argument 1 does not name a graphical parameter
                      argument 1 does not name a graphical parameter
Warning in par(usr):
Warning in par(usr):
                     argument 1 does not name a graphical parameter
```


Through these scatterplots it appears that beginning salary should be on the log scale and the starting model without the effects of gender will be a saturated second-order model with 14 variables including Seniority, Age, Education, Experience, as main effects, quadratic terms, and their full interactions.

3.2 Model Selection

To determine the best subset of these variables we first compared Cp statistics. Display 12.11 shows the Cp statistics for models that meet 'good practice' and have small Cp values. We will demonstrate how to calculate the Cp statistics for the two models with the lowest Cp statistics discussed in "Identifying Good Subset Models" on pages 367-368.

The first model includes Seniority, Age, Education, Experience, and the interactions between Seniority and Education, Age and Education, and Age and Experience. The second model includes Seniority, Age, Education, Experience, and the interactions between Age and Education and Age and Experience.

```
> require(leaps)
> explanatory1 = with(case1202, cbind(Senior, Age, Educ, Exper, Senior*Educ, Age*Educ, Age*Exp
> # First model (saexnck)
> with(case1202, leaps(explanatory1, log(Bsal), method="Cp"))$which[55,]

1  2  3  4  5  6  7
TRUE TRUE TRUE TRUE TRUE TRUE TRUE
> with(case1202, leaps(explanatory1, log(Bsal), method="Cp"))$Cp[55]

[1] 8
> # second model (saexck)
> with(case1202, leaps(explanatory1, log(Bsal), method="Cp"))$which[49,]
```

This first model has a Cp statistic of 8. Compared to the second model with a Cp statistic of 8.12.

We can also compare models using the BIC, we will next compare the second model with a thrid model defined as saexyc = Seniority + Age + Education + Experience + Experience² + Age*Education.

```
> BIC(lm(log(Bsal) ~ Senior+Age+Educ+Exper+Age*Educ+Age*Exper, data=case1202))
[1] -140.2
> BIC(lm(log(Bsal) ~ Senior+Age+Educ+Exper+(Exper)^2+Age*Educ, data=case1202))
[1] -131.3
```

Thus our final model is the second model, summarized below.

```
> lm1 = lm(log(Bsal) ~ Senior + Age + Educ + Exper + Age*Educ + Age*Exper, data=case1202)
> summary(lm1)
Call:
lm(formula = log(Bsal) ~ Senior + Age + Educ + Exper + Age *
   Educ + Age * Exper, data = case1202)
Residuals:
   Min 1Q Median 3Q
-0.2817 -0.0476 0.0132 0.0605 0.2341
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.89e+00 2.45e-01 32.21 < 2e-16
Senior -3.15e-03 1.04e-03 -3.04 0.00313
Age
          1.24e-03 4.02e-04 3.09 0.00270
          7.20e-02 1.67e-02 4.31 4.3e-05
Educ
Exper
          2.86e-03 6.67e-04 4.28 4.8e-05
Age:Educ -1.02e-04 3.15e-05 -3.25 0.00166
Age:Exper -3.72e-06 1.02e-06 -3.65 0.00044
Residual standard error: 0.0974 on 86 degrees of freedom
```

```
Multiple R-squared: 0.469, Adjusted R-squared: 0.431
F-statistic: 12.6 on 6 and 86 DF, p-value: 3.58e-10
```

3.3 Evaluating the Sex Effect

After selecting the model saexck = Seniority + Age + Education + Experience + Age*Education + Age*Experience we can add the sex indicator variable as summarized on page 360.

```
> lm2 = lm(log(Bsal) ~ Senior + Age + Educ + Exper + Age*Educ + Age*Exper + Sex, data=case1202
> summary(lm2)
Call:
lm(formula = log(Bsal) ~ Senior + Age + Educ + Exper + Age *
   Educ + Age * Exper + Sex, data = case1202)
Residuals:
            1Q Median 3Q
                                     Max
-0.17822 -0.05197 -0.00203 0.05301 0.20466
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.16e+00 2.21e-01 36.99 < 2e-16
Senior -3.48e-03 9.09e-04 -3.83 0.00024
Age
          9.15e-04 3.57e-04 2.56 0.01218
Educ
          4.23e-02 1.57e-02 2.70 0.00836
Exper
          2.18e-03 5.98e-04 3.65 0.00045
SexMale
          1.20e-01 2.29e-02 5.22 1.3e-06
Age:Educ
          -5.46e-05 2.91e-05 -1.88 0.06402
Age:Exper -3.23e-06 8.96e-07 -3.61 0.00052
Residual standard error: 0.0853 on 85 degrees of freedom
Multiple R-squared: 0.598, Adjusted R-squared: 0.564
F-statistic: 18 on 7 and 85 DF, p-value: 1.79e-14
```

In contrast to the book, our reference group is Male, therefore the median male salary is estimated to be 1.13 times as large as the median female salary, adjusted for the other variables.