Arbitrarily Accurate Computation with R: The Rmpfr Package

Martin Mächler
ETH Zurich

Abstract

The R package $\mathbf{R m p f r}$ allows to use arbitrarily precise numbers instead of R's double precision numbers in many R computations and functions. This is achieved by defining S 4 classes of such numbers and vectors, matrices, and arrays thereof, where all arithmetic and mathematical functions work via the (GNU) MPFR C library, where MPFR is acronym for "Multiple Precision Floating-Point Reliably". MPFR is Free Software, available under the LGPL license, and itself is built on the free GNU Multiple Precision arithmetic library (GMP).

Consequently, by using Rmpfr, you can often call your R function or numerical code with mpfr-numbers instead of simple numbers, and all results will automatically be much more accurate.

Applications by the package author include testing of Bessel or polylog functions and distribution computations, e.g. for (α-)stable distributions and Archimedean Copulas. In addition, the Rmpfr has been used on the R-help or R-devel mailing list for highaccuracy computations, e.g., in comparison with results from other software, and also in improving existing R functionality, e.g., fixing R bug PR\#14491.

Keywords: MPFR, Abitrary Precision, Multiple Precision Floating-Point, R.

1. Introduction

There are situations, notably in researching better numerical algorithms for non-trivial mathematical functions, say the F-distribution function, where it is interesting and very useful to be able to rerun computations in R in (potentially much) higher precision.
For example, if you are interested in Euler's e, the base of natural logarithms, and given, e.g., by $e^{x}=\exp (x)$, you will look into
$R>\exp (1)$
[1] 2.718282
which typically uses 7 digits for printing, as getOption("digits") is 7. To see R's internal accuracy fully, you can use
R> print (exp(1), digits = 17)
[1] 2.7182818284590451
With Rmpfr you can now simply use "mpfr - numbers" and get more accurate results automatically, here using a vector of numbers as is customary in R:

```
R> require("Rmpfr") # after having installed the package ...
R> (one <- mpfr(1, 120))
1 'mpfr' number of precision 120 bits
[1] 1
R> exp(one)
1 'mpfr' number of precision 120 bits
[1] 2.7182818284590452353602874713526624979
```

In combinatorics, number theory or when computing series, you may occasionally want to work with exact factorials or binomial coefficients, where e.g. you may need all factorials k !, for $k=1,2, \ldots, 24$ or a full row of Pascal's triangle, i.e., want all $\binom{n}{k}$ for $n=80$.
With R's double precision, and standard printing precision

```
R> ns <- 1:24 ; factorial(ns)
    [1] 1.000000e+00 2.000000e+00 6.000000e+00 2.400000e+01 1.200000e+02
    [6] 7.200000e+02 5.040000e+03 4.032000e+04 3.628800e+05 3.628800e+06
[11] 3.991680e+07 4.790016e+08 6.227021e+09 8.717829e+10 1.307674e+12
[16] 2.092279e+13 3.556874e+14 6.402374e+15 1.216451e+17 2.432902e+18
[21] 5.109094e+19 1.124001e+21 2.585202e+22 6.204484e+23
```

the full precision of 24 ! is clearly not printed. However, if you display it with more than its full internal precision,
R> noquote(sprintf("\%-30.0f", factorial(24)))
[1] 620448401733239409999872
it is obviously wrong in the last couple of digits as they are known to be 0 . However, you can easily get full precision results with Rmpfr, by replacing "simple" numbers by mpfr-numbers:

R> ns <- mpfr $(1: 24, ~ 120)$	$;$ factorial (ns)	
24 'mpfr'	numbers of precision	120 bits
[1]	1	2
[3]	6	24
[5]	120	720
[7]	5040	40320
[9]	362880	3628800
[11]	39916800	479001600
[13]	6227020800	87178291200
[15]	1307674368000	20922789888000
[17]	355687428096000	6402373705728000
[19]	121645100408832000	2432902008176640000
[21]	51090942171709440000	1124000727777607680000
[23]	25852016738884976640000	620448401733239439360000

Or for the 80 -th Pascal triangle row, $\binom{n}{k}$ for $n=80$ and $k=1, \ldots, n$,
R> chooseMpfr.all ($n=80$)

80 'mpfr' numbers of precision	77	bits	
[1]	80		3160
[3]	82160		1581580
[5]	24040016	300500200	
[7]	3176716400	28987537150	

$[23]$	68310851714568382400	162238272822099908200
$[25]$	363413731121503794368	768759815833950334240
$[27]$	1537519631667900668480	2910305017085669122480
$[29]$	5218477961670854978240	8871412534840453463008
$\ldots \ldots$.		
$\ldots \ldots$.		
$[77]$	82160	3160
$[79]$	80	1

S4 classes and methods: S4 allows "multiple dispatch" which means that the method that is called for a generic function may not just depend on the first argument of the function (as in S3 or in traditional class-based OOP), but on a "signature" of multiple arguments. For example, $a+b$ is the same as ' + ' (a, b), i.e., calling a function with two arguments.

1.1. The engine behind: MPFR and GMP

The package Rmpfr interfaces R to the C (GNU) library
MPFR, acronym for "Multiple Precision Floating-Point Reliably"
MPFR is Free Software, available under the LGPL license, see http://mpfr.org/ and Fousse, Hanrot, Lefèvre, Pélissier, and Zimmermann (2007) and the standard reference to MPFR, Fousse, Hanrot, Lefèvre, Pélissier, and Zimmermann (2011). MPFR itself is built on and requires the GNU Multiple Precision arithmetic library (GMP), see http://gmplib.org/ and Granlund and the GMP development team (2011). It can be obtained from there, or from your operating system vendor.
On some platforms, it is very simple, to install MPFR and GMP, something necessary before Rmpfr can be used. E.g., in Linux distributions Debian, Ubuntu and other Debian derivatives, it is sufficient (for both libraries) to simply issue

```
sudo apt-get install libmpfr-dev
```


2. Arithmetic with mpfr-numbers

```
R> (0:7) / 7 # k/7, for k= 0..7 printed with R's default precision
[1] 0.0000000 0.1428571 0.2857143 0.4285714 0.5714286 0.7142857 0.8571429
[8] 1.0000000
R> options(digits= 16)
R> (0:7) / 7 # in full double precision accuracy
[1] 0.0000000000000000 0.1428571428571428 0.2857142857142857
[4] 0.4285714285714285 0.5714285714285714 0.7142857142857143
[7] 0.8571428571428571 1.0000000000000000
R> options(digits= 7) # back to default
R> str(.Machine[c("double.digits","double.eps", "double.neg.eps")], digits=10)
```

```
List of 3
    $ double.digits : int 53
    $ double.eps : num 2.220446049e-16
    $ double.neg.eps: num 1.110223025e-16
R> 2^-(52:53)
[1] 2.220446e-16 1.110223e-16
```

In other words, the double precision numbers R uses have a 53 -bit mantissa, and the two "computer epsilons" are 2^{-52} and 2^{-53}, respectively.
Less technically, how many decimal digits can double precision numbers work with, $2^{-53}=$ $10^{-x} \Longleftrightarrow x=53 \log _{10}(2)$,
R> $53 * \log 10(2)$
[1] 15.95459
i.e., almost 16 digits.

If we want to compute some arithmetic expression with higher precision, this can now easily be achieved, using the Rmpfr package, by defining "mpfr-numbers" and then work with these.
Starting with simple examples, a more precise version of $k / 7, k=0, \ldots, 7$ from above:
$R>\mathrm{x}<-\operatorname{mpfr}(0: 7,80) / 7$ \# using 80 bits precision
$R>x$
8 'mpfr' numbers of precision 80 bits
[1] 00.14285714285714285714285708
[3] 0.285714285714285714285714170 .42857142857142857142857125
[5] 0.571428571428571428571428340 .71428571428571428571428583
[7] 0.8571428571428571428571425

$$
1
$$

R> $7 * x$
8 'mpfr' numbers of precision 80 bits
[1] 012234567
$R>7 * x-0: 7$
8 'mpfr' numbers of precision 80 bits
[1] 00000000
which here is even "perfect" - but that's "luck" only, and also the case here for "simple" double precision numbers, at least on our current platform. ${ }^{1}$

2.1. Mathematical Constants, $\operatorname{Pi}(\pi)$, gamma, etc

Our Rmpfr package also provides the mathematical constants which MPFR provides, via Const (., \langle prec \rangle), currently the 4 constants
$R>$ formals (Const) \$name
c("pi", "gamma", "catalan", "log2")
are available, where "gamma" is for Euler's gamma, $\gamma:=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{k}-\log (n) \approx 0.5777$, and "catalan" for Catalan's constant (see http://en.wikipedia.org/wiki/Catalan\'s_ constant).

[^0]```
R> Const("pi")
1 'mpfr' number of precision 120 bits
[1] 3.1415926535897932384626433832795028847
R> Const("log2")
1 'mpfr' number of precision 120 bits
[1] 0.69314718055994530941723212145817656831
```

where you may note a default precision of 120 digits, a bit more than quadruple precision, but also that 1000 digits of $\pi$ are available instantaneously,

```
R> system.time(Pi <- Const("pi", 1000 *log2(10)))
 user system elapsed
 0.000 0.000 0.001
R> Pi
1 'mpfr' number of precision 3321 bits
[1] 3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534
```

As nice example of using Mpfr arithmetic: On a wintery Sunday, Hans Borchers desired to have an exact $\pi$ constant in Rmpfr, and realized that of course mpfr (pi, 256) could not be the solution, as pi is the double precision version of $\pi$ and hence only about 53 bit accurate (and the mpfr () cannot do magic, recognizing "symbolic" $\pi$ ). As he overlooked the Const ("pi", .) solution above, he implemented the following function that computes pi applying Gauss' spectacular AGM-based (AGM := Arithmetic-Geometric Mean) approach [Borwein and Borwein (1987), Pi and the AGM]; I have added a verbose argument, explicit iteration counting and slightly adapted the style to my own:

```
R> piMpfr <- function(prec=256, itermax = 100, verbose=TRUE) {
 m2 <- mpfr(2, prec) # '2' as mpfr number
 ## -> all derived numbers are mpfr (with precision 'prec')
 p<- m2 + sqrt(m2) # 2 + sqrt(2) = 3.414..
 y <- sqrt(sqrt(m2)) # 2^ {1/4}
 x <- (y+1/y) / m2
 it <- OL
 repeat {
 p.old <- p
 it <- it+1L
 p <- p * (1+x) / (1+y)
 if(verbose) cat(sprintf("it=%2d, pi^ = %s, |.-.|/|.|=%e\n",
 it, formatMpfr(p, min(50, prec/log2(10))), 1-p.old/p))
 if (abs(p-p.old) <= m2^(-prec))
 break
 if(it > itermax) {
 warning("not converged in", it, "iterations") ; break
 }
 ## else
 s <- sqrt(x)
 y<- (y*s + 1/s) / (1+y)
 x <- (s+1/s)/2
 }
 p
 }
R> piMpfr()# indeed converges *quadratically* fast
```

```
it= 1, pi^ = 3.1426067539416226007907198236183018919713562462772, |.-.|/|.|=-8.642723e-02
it=2, pi^ = 3.1415926609660442304977522351203396906792842568645, |.-.|/|.|=-3.227958e-04
it= 3, pi^ = 3.1415926535897932386457739917571417940347896238675, |.-.|/|.|=-2.347934e-09
it= 4, pi^ = 3.1415926535897932384626433832795028841972241204666, |.-.|/|.|=-5.829228e-20
it= 5, pi^ = 3.1415926535897932384626433832795028841971693993751, |.-.|/|.|=-1.741826e-41
it= 6, pi^ = 3.1415926535897932384626433832795028841971693993751, |.-.|/|.|=0.000000e+00
1 'mpfr' number of precision }256\mathrm{ bits
[1] 3.141592653589793238462643383279502884197169399375105820974944592307816406286163
R> ## with relative error
R> relErr <- 1 - piMpfr(256, verbose=FALSE) / Const("pi",260)
R> ## in bits :
R> asNumeric(-log2(abs(relErr)))
```

[1] 255.2451

## 2.2. seqMpfr() for sequences:

In R, arithmetic sequences are constructed by seq(), the "sequence" function, which is not generic, and with its many ways and possible arguments is convenient, but straightforward to automatically generalize for mpfr numbers. Instead, we provide the seqMpfr function...

### 2.3. Rounding, roundMpfr(), asNumeric() etc:

In R, the round () and signif() functions belong to the Math2 group, and we provide "mpfr"class methods for them:
R> getGroupMembers("Math2")
[1] "round" "signif"
R> showMethods("Math2", classes=c("mpfr", "mpfrArray"))
Function: Math2 (package methods)
$\mathrm{x}=$ "mpfr"
For consistency reasons, however the resulting numbers keep the same number of precision bits, precBits:
R> i7 <- $1 / \operatorname{mpfr}(700,100)$
$R>c(i 7$, round(i7, digits $=6$ ), signif(i7, digits $=6)$ )
3 'mpfr' numbers of precision 100 bits
[1] 0.001428571428571428571428571428571
[2] 0.0014290000000000000000000000000001
[3] 0.0014285699999999999999999999999996
If you really want to "truncate" the precision to less digits or bits, you call roundMpfr(),
$R>$ roundMpfr (i7, precBits $=30$ )
1 'mpfr' number of precision 30 bits
[1] 0.0014285714278
$R>$ roundMpfr (i7, precBits = 15)
1 'mpfr' number of precision 15 bits
[1] 0.00142854
Note that 15 bits correspond to approximately $15 \cdot 0.3$, i.e., 4.5 digits, because $1 / \log _{2}(10) \approx$ 0.30103....
asNumeric(): Often used, e.g., to return to fast (R-internal) arithmetic, also as alternative to roundMpfr () is to "round to double precision" producing standard Rnumbers from "mpfr" numbers. We provide the function asNumeric(), a generic function with methods also for "mpfrArray" see below and the big integers and big rationals from package gmp,
R> showMethods(asNumeric)
Function: asNumeric (package gmp)
x="ANY"
x="bigq"
x="bigz"
$\mathrm{x}=$ "mpfr"
x="mpfrArray"
x="numeric"
(inherited from: x="ANY")
see, e.g., its use above.

Formatting: For explicit printing or plotting purposes, we provide an "mpfr" method for R's format() function, also as explicit utility function formatMpfr(x, digits) which provides results to digits significant digits,
$R>$ cbind( sapply(1:7, function(d) format(i7, digits=d)) )
[,1]
[1,] "0.001"
[2,] "0.0014"
[3,] "0.00143"
[4,] "0.001429"
[5,] "0.0014286"
[6,] "0.00142857"
[7,] "0.001428571"
There, digits = NULL is the default where the help has ("always") promised The default, NULL, uses enough digits to represent the full precision, often one or two digits more than you would expect. However, for large numbers, say $10^{20000}$, e.g., new("mpfr1", prec $=80$, exp $=$ $\mathrm{c}(66439,0), \operatorname{sign}=1, d=c(0,-1008336896,1315775171,-1124830946))$, all of formatMpfr (x), format (x), and print (x) (including "auto-printing" of $x$ ), have shown all digits before the decimal point and not at all taken into account the 80-bit precision of $x$ (which corresponds to only $80 / \log 2(10) \approx 24$ decimal digits). This has finally changed in the (typically default) case formatMpfr (*, maybe.full = FALSE) :
$R>x<-m p f r(2,80) ~-~((1: 4) * 10000)$
$R>$ cbind(x) \# -> show() $\rightarrow$ print.mpfr() $\rightarrow$ formatMpfr(.. , digits = NULL, maybe.full = FALSE)
'mpfrMatrix' of $\operatorname{dim}()=.(4,1)$ of precision 80 bits
x
[1,] $1.9950631168807583848837422 \mathrm{e}+3010$
[2,] $3.9802768403379665923543072 \mathrm{e}+6020$
[3,] $7.9409035191329603241325178 \mathrm{e}+9030$
[4,] $1.5842603725730786800597362 \mathrm{e}+12041$
R> nchar (formatMpfr(x))
[1] 33333334
$R>$ nchar(formatMpfr(x, maybe.full = TRUE))

## 3. "All" mathematical functions, arbitrarily precise

All the S4 "Math" group functions are defined, using multiple precision (MPFR) arithmetic, i.e.,

R> getGroupMembers("Math")

| [1] | "abs" | "sign" | "sqrt" | "ceiling" | "floor" |
| :--- | :--- | :--- | :--- | :--- | :--- | "trunc"

where currently, trigamma is not provided by the MPFR library, and hence not implemented yet.
factorial() has a "mpfr" method; and in addition, factorialMpfr() computes $n$ ! efficiently in arbitrary precision, using the MPFR-internal implementation. This is mathematically (but not numerically) the same as $\Gamma(n+1)=\operatorname{gamma}(\mathrm{n}+1)$.
Similarly to factorialMpfr(), but more generally useful, the functions chooseMpfr (a,n) and pochMpfr (a,n) compute (generalized!) binomial coefficients $\binom{a}{n}$ and "the" Pochhammer symbol or "rising factorial"

$$
\begin{aligned}
a^{(n)} & :=a(a+1)(a+2) \cdots(a+n-1) \\
& =\frac{(a+n-1)!}{(a-1)!}=\frac{\Gamma(a+n)}{\Gamma(a)} .
\end{aligned}
$$

Note that with this definition,

$$
\binom{a}{n} \equiv \frac{a^{(n)}}{n!}
$$

## 4. Arbitrarily precise matrices and arrays

The classes "mpfrMatrix" and "mpfrArray" correspond to the classical numerical R "matrix" and "array" objects, which basically are arrays or vectors of numbers with a dimension dim, possibly named by dimnames. As there, they can be constructed by dim(.) <- . . setting, e.g.,
$R>$ head (x <- mpfr $(0: 7,64) / 7)$; mx <- $x$
6 'mpfr' numbers of precision 64 bits
[1] 00.1428571428571428571410 .285714285714285714282
[4] 0.428571428571428571436 0.5714285714285714285640 .714285714285714285691
$R>\operatorname{dim}(m x)<-c(4,2)$
or by the mpfrArray() constructor,
$R>\operatorname{dim}(a a<-m p f r A r r a y(1: 24$, precBits $=80, \operatorname{dim}=2: 4))$
[1] 234
$R>$ aa
'mpfrArray' of $\operatorname{dim}()=.(2,3,4)$ of precision 80 bits , , 1
[,1]
[,2]
[1,] 1.00000000000000000000000003 .0000000000000000000000000
$[2]$, [,3]
[1,] 5.0000000000000000000000000
[2,] 6.0000000000000000000000000

```
, , 2
```

    .......
    .......
    [,3]
    [1,] 23.000000000000000000000000
[2,] 24.000000000000000000000000
and we can index and multiply such matrices, e.g.,
$R>\operatorname{mx}[1: 3]+,c(1,10,100)$
'mpfrMatrix' of $\operatorname{dim}()=.(3,2)$ of precision 64 bits
[,1] [,2]
[1,] 1.000000000000000000001 .57142857142857142851
[2,] 10.1428571428571428570 10.7142857142857142860
[3,] 100.285714285714285712 100.857142857142857144
$R>\operatorname{crossprod}(\mathrm{mx})$
'mpfrMatrix' of $\operatorname{dim}()=.(2,2)$ of precision 64 bits
[,1] [,2]
[1,] 0.2857142857142857142820 .775510204081632653086
$[2] \quad 0.775510204081632653086 \quad$,
and also apply functions,
$R>\operatorname{apply}(7 * m x, 2, s u m)$
2 'mpfr' numbers of precision 64 bits
[1] 622

## 5. Special mathematical functions

zeta (x) computes Riemann's Zeta function $\zeta(x)$ important in analytical number theory and related fields. The traditional definition is

$$
\zeta(x)=\sum_{n=1}^{\infty} \frac{1}{n^{x}}
$$

Ei (x) computes the exponential integral,

$$
\int_{-\infty}^{x} \frac{e^{t}}{t} d t
$$

$R>$ curve(Ei, 0, 5, n=2001); abline(h=0, v=0, lty=3)


Li2(x), part of the MPFR C library since version 2.4.0, computes the dilogarithm,

$$
\operatorname{Li} 2(\mathrm{x})=\operatorname{Li}_{2}(x):=\int_{0}^{x} \frac{-\log (1-t)}{t} d t
$$

which is the most prominent "polylogarithm" function, where the general polylogarithm is (initially) defined as

$$
\operatorname{Li}_{s}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{s}}, \forall s \in \mathbb{C} \quad \forall|z|<1, z \in \mathbb{C}
$$

see http://en.wikipedia.org/wiki/Polylogarithm\#Dilogarithm.
Note that the integral definition is valid for all $x \in \mathbb{C}$, and also, $L i_{2}(1)=\zeta(2)=\pi^{2} / 6$.
$R>$ if(mpfrVersion() >= "2.4.0") \#\# Li2() is not available in older MPFR versions all.equal(Li2(1), Const("pi", 128) $2 / 6$, tol = 1e-30)
[1] TRUE
where we also see that Rmpfr provides all.equal() methods for mpfr-numbers which naturally allow very small tolerances tol.

R> if(mpfrVersion() >= "2.4.0")
curve(Li2, -2, 13, $n=2000$ ); abline ( $h=0, \mathrm{v}=0$, lty=3)

$\operatorname{erf}(x)$ is the "error ${ }^{2}$ function" and $\operatorname{erfc}(x)$ its complement, $\operatorname{erfc}(x):=1-\operatorname{erf}(x)$, defined as

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

and consequently, both functions simply are reparametrizations of the cumulative normal, $\Phi(x)=\int_{-\infty}^{x} \phi(t) d t=\operatorname{pnorm}(\mathrm{x})$ where $\phi$ is the normal density function $\phi(t):=\frac{1}{\sqrt{2 \pi}} e^{-t^{2}}=\operatorname{dnorm}(\mathrm{x})$. Namely, $\operatorname{erf}(x)=2 * \operatorname{pnorm}(\operatorname{sqrt}(2) * x)$ and $\operatorname{erfc}(x)=1-\operatorname{erf}(x)=2 * \operatorname{pnorm}(\operatorname{sqrt}(2) * x$, lower=FALSE).
$R>$ curve(erf, $-3,3$, col $=$ "red", ylim $=c(-1,2)$ )
$R>$ curve (erfc, add = TRUE, col = "blue")
$R>$ abline ( $\mathrm{h}=0, \mathrm{v}=0$, lty=3); abline( $\mathrm{v}=\mathrm{c}(-1,1)$, lty=3, lwd=.8, col="gray")
$R>$ legend (-3,1, c("erf(x)", "erfc(x)"), col = c("red","blue"), lty=1)


[^1]
### 5.1. Applications

The CRAN package Bessel provides asymptotic formulas for Bessel functions also of fractional order which do work for mpfr-vector arguments as well.

## 6. Integration highly precisely

Sometimes, important functions are defined as integrals of other known functions, e.g., the dilogarithm $\operatorname{Li}_{2}()$ above. Consequently, we found it desirable to allow numerical integration, using mpfr-numbers, and hence - conceptionally - arbitrarily precisely.
R's integrate() uses a relatively smart adaptive integration scheme, but based on C code which is not very simply translatable to pure R, to be used with mpfr numbers. For this reason, our integrateR() function uses classical Romberg integration (Bauer 1961).
We demonstrate its use, first by looking at a situation where R's integrate() can get problems:

```
R> integrateR(dnorm, 0, 2000)
0.5 with absolute error < 4.3687e-05
R> integrateR(dnorm,0,2000, rel.tol=1e-15)
0.5 with absolute error < 0
R> integrateR(dnorm,0, 2000, rel.tol=1e-15, verbose=TRUE)
n= 1, 2^n= 2 | I = 132.98076013381089, abs.err = 265.9615
n= 2, 2^n= 4 | I = 62.057688062445074, abs.err = 70.92307
n= 3, 2^n= 8 | I = 30.536322697393608, abs.err = 31.52137
n= 4, 2^n= 16 | I = 15.208286206152895, abs.err = 15.32804
n= 5, 2^n= 32 | I = 7.5967099231125408, abs.err = 7.611576
n= 6, 2^n= 64 | I = 3.7974274023470991, abs.err = 3.799283
n= 7, 2^n= 128 | I = 1.8985978058124329, abs.err = 1.89883
n= 8, 2^n= 256 | I = 0.94928441753372339, abs.err = 0.9493134
n= 9, 2^n= 512 | I = 0.47574025959605515, abs.err = 0.4735442
n=10, 2^n= 1024 | I = 0.40552346957493818, abs.err = 0.07021679
n=11, 2^n= 2048 | I = 0.50575841635110108, abs.err = 0.1002349
n=12, 2^n= 4096 | I = 0.50004134868550221, abs.err = 0.005717068
n=13, 2^n= 8192 | I = 0.49999766130535211, abs.err = 4.368738e-05
n=14, 2^n= 16384 | I = 0.5000000108190541, abs.err = 2.349514e-06
n=15, 2^n= 32768 | I = 0.49999999998902311, abs.err = 1.083003e-08
n=16, 2^n= 65536 | I = 0.50000000000000278, abs.err = 1.097966e-11
n=17, 2^n= 131072 | I = 0.5, abs.err = 2.775558e-15
n=18, 2^n= 262144 | I = 0.5, abs.err = 0
0.5 with absolute error < 0
```

Now, for situations where numerical integration would not be necessary, as the solution is known analytically, but hence are useful for exploration of high accuracy numerical integration:

First, the exponential function $\exp (x)=e^{x}$ with its well-known $\int \exp (t) d t=\exp (x)$, both with standard (double precision) floats,
$R>$ (Ie.d <- integrateR (exp, 0 , 1, rel.tol=1e-15, verbose=TRUE))

```
n= 1, 2^n= 2 | I = 1.7188611518765928, abs.err = 0.1402798
n= 2, 2^n= 4 | I = 1.7182826879247572, abs.err = 0.000578464
n= 3, 2^n= 8 | I = 1.7182818287945303, abs.err = 8.591302e-07
n= 4, 2^n= 16 | I = 1.7182818284590784, abs.err = 3.354519e-10
n= 5, 2^n= 32 | I = 1.7182818284590453, abs.err = 3.308465e-14
n=6, 2^n= 64 | I = 1.7182818284590453, abs.err = 0
1.7183 with absolute error < 0
```

and then the same, using 200-bit accurate mpfr-numbers:
$R>$ (Ie.m <- integrateR(exp, mpfr (0,200), 1, rel.tol=1e-25, verbose=TRUE))


1 'mpfr' number of precision 200 bits
[1] 1.7182818284590452353602874713526624977572470936999595749669679
R> \#\# with absolute errors
$R>$ as.numeric(c(I.true - Ie.d\$value,
I.true - Ie.m\$value))
[1] -7.747992e-17 $-3.021394 \mathrm{e}-36$
Now, for polynomials, where Romberg integration of the appropriate order is exact, mathematically,

```
R> if(require("polynom")) {
 x <- polynomial(0:1)
 p<- (x-2) ^4 - 3* (x-3) -2
 Fp <- as.function(p)
 print(pI <- integral(p)) # formally
 print(Itrue <- predict(pI, 5) - predict(pI, 0)) ## == 20
 } else {
 Fp <- function(x) (x-2) - 4 - 3*(x-3) ^2
 Itrue <- 20
 }
-11*x - 7*x^2 + 7*x^3 - 2*x^4 + 0. 2*x^5
[1] 20
R> (Id <- integrateR(Fp, 0, 5))
20 with absolute error < 7.1054e-15
R> (Im <- integrateR(Fp, 0, mpfr(5, 256),
 rel.tol = 1e-70, verbose=TRUE))
n= 1, 2^n= 2 | I = 46.041667, abs.err =
n= 2, 2^n= 4 | I = 20.000, abs.err =
n= 3, 2^n= 8 | I = 20.000, abs.err = 2.76:
20.000 with absolute error < 2.7636e-76
```

```
R> ## and the numerical errors, are indeed of the expected size:
R> 256 * log10(2) # - expect ~ 77 digit accuracy for mpfr(*., 256)
[1] 77.06368
R> as.numeric(Itrue - c(Im$value, Id$value))
[1] 0.000000e+00 3.552714e-15
```


## 7. Miscellaneous

For probability and density computations, it is known to be important in many contexts to work on the $\log$-scale, i.e., with $\log$ probabilities $\log P($.$) or \log$ densities $\log f()$. In R itself, we (R Core) had introduced logical optional arguments log (for density) and log.p for probability (e.g., pnorm() and quantile (e.g., qnorm) functions.
As our pnorm() is based on MPFR's erf () and $\operatorname{erfc}()$ which currently do not have scaled versions, for Rmpfr: : pnorm (.., log.p=TRUE) we do need to compute the logarithm (instead of working on the log scale). On the extreme left tail, R correctly computes
$R>$ pnorm ( -1234 , log.p=TRUE)
[1] -761386
i.e., -761386.036955 to more digits. However, $\operatorname{erf}()$ and $\operatorname{erfc}()$ do not have a log scale or other scaled versions.

Thanks to the large range of exponents compared to double precision numbers it does less quickly underflow to zero, e.g.,

```
R> (p123 <- Rmpfr::pnorm(mpfr(-123, 66), log.p=TRUE)) # is based on
1 'mpfr' number of precision 66 bits
[1] -7570.23118897588017062
R> (ec123 <- erfc(123 * sqrt(mpfr(0.5, 66+4))) / 2) # 1.95....e-3288
1 'mpfr' number of precision 70 bits
[1] 1.9514970354854432606612e-3288
R> (p333 <- Rmpfr::pnorm(mpfr(-333, 66), log.p=TRUE))
1 'mpfr' number of precision 66 bits
[1] -55451.2270900410088492
R> exp(p333)
1 'mpfr' number of precision 66 bits
[1] 6.88747493033304647776e-24083
R> stopifnot(p123 == log(roundMpfr(ec123, 66)), ## '==' as we implemented our pnorm()
 all.equal(p333, -55451.22709, tol=1e-8))
```

and indeed, the default range for exponent (wrt base 2 , not 10 ) is given by
R> (old_erng <- .mpfr_erange() )

| Emin | Emax |
| ---: | ---: |
| -1073741823 | 1073741823 |

which shows the current minimal and maximal base-2 exponents for mpfr-numbers, by "factoryfresh" default, the number $-2^{30}$ and $2^{30}$, i.e., $\pm 1073741823$ which is much larger than the corresponding limits for regular double precision numbers,

```
R> unlist(.Machine[c("double.min.exp", "double.max.exp")])
double.min.exp double.max.exp
 -1022 1024
```

which are basically $\pm 2^{10}$; note that double arithmetic typically allows subnormal numbers which are even smaller than $2^{-1024}$, also in R , on all usual platforms,
$R>2^{\wedge}(-1022-52)$
[1] $4.940656 \mathrm{e}-324$
is equal to $2^{-1074}$ and the really smallest positive double precision number.
Now, if if the GMP library to which both R package gmp and Rmpfr interface is built "properly", i.e., with full 64 bit "numb"s, we can extend the range of mpfr-numbers even further. By how much, we can read off
$R>$.mpfr_erange(.mpfr_erange_kinds) \#\# and then set

| Emin | Emax | min.emin | max.emin | min.emax |
| :---: | :---: | :---: | :---: | :---: |
| $-1.073742 \mathrm{e}+09$max.emax |  |  |  |  |
|  |  |  |  |  |
| $4.611686 \mathrm{e}+18$ |  |  |  |  |
| $R>$ \# use very slightly smaller than extreme values: |  |  |  |  |
| $R>$ (myERng <- (1-2^-52) * .mpfr_erange(c("min.emin","max.emax"))) |  |  |  |  |
| min.emin max.emax |  |  |  |  |
| -4.611686e+18 4.611686e+18 |  |  |  |  |
| ```R> .mpfr_erange_set(value = myERng) # and to see what happened:```$R>$.mpfr_erange() |  |  |  |  |
|  |  |  |  |  |
| Emin Emax |  |  |  |  |
| -4.611686e+18 | $4.611686 \mathrm{e}+18$ |  |  |  |

If that worked well, this shows $-/+4.611686 \mathrm{e}+18$, or actually $\mp 2^{62}, \log 2\left(\right.$ abs $\left.\left(. m p f r \_e r a n g e()\right)\right)$ giving 62.
However, currently on Winbuilder this does not extend, notably as the GMP numbs,
R> .mpfr_gmp_numbbits()
[1] 64
have not been 64 , there

## 8. Conclusion

The R package Rmpfr, available from CRAN since August 2009, provides the possibility to run many computations in R with (arbitrarily) high accuracy, though typically with substantial speed penalty.
This is particularly important and useful for checking and exploring the numerical stability and appropriateness of mathematical formulae that are translated to a computer language like $R$, often without very careful consideration of the limits of computer arithmetic.

## References

Bauer FL (1961). "Algorithm 60: Romberg integration." Commun. ACM, 4, 255. ISSN 0001-0782. doi:http://doi.acm.org/10.1145/366573.366594. URL http://doi.acm. org/10.1145/366573.366594.

Fousse L, Hanrot G, Lefèvre V, Pélissier P, Zimmermann P (2007). "MPFR: A multipleprecision binary floating-point library with correct rounding." ACM Trans. Math. Softw., 33(2), 13. ISSN 0098-3500. URL http://doi.acm.org/10.1145/1236463.1236468.

Fousse L, Hanrot G, Lefèvre V, Pélissier P, Zimmermann P (2011). MPFR: A multipleprecision binary floating-point library with correct rounding. URL http://mpfr.org/.

Granlund T, the GMP development team (2011). GNU MP - The GNU Multiple Precision Arithmetic Library. URL http://gmplib.org/.
FIXME: Index of all functions mentioned ...

## Affiliation:

Martin Mächler
Seminar für Statistik, HG G 16
ETH Zurich
8092 Zurich, Switzerland
E-mail: maechler@stat.math.ethz.ch
URL: http://stat.ethz.ch/people/maechler


[^0]:    ${ }^{1} 64$-bit Linux, Fedora 13 on a "AMD Phenom 925 " processor

[^1]:    ${ }^{2}$ named exactly because of its relation to the normal / Gaussian distribution

