Accurately Computing $\log (1-\exp (-|a|))$ Assessed by the Rmpfr package

Martin Mächler
ETH Zurich
April, Oct. 2012 (LATEX'ed July 14, 2024)

Abstract

In this note, we explain how $f(a)=\log \left(1-e^{-a}\right)=\log (1-\exp (-a))$ can be computed accurately, in a simple and optimal manner, building on the two related auxiliary functions $\log 1 \mathrm{p}(\mathrm{x})(=\log (1+x))$ and $\operatorname{expm} 1(\mathrm{x})\left(=\exp (x)-1=e^{x}-1\right)$. The cutoff, a_{0}, in use in R since 2004, is shown to be optimal both theoretically and empirically, using Rmpfr high precision arithmetic. As an aside, we also show how to compute $\log \left(1+e^{x}\right)$ accurately and efficiently.

Keywords: Accuracy, Cancellation Error, R, MPFR, Rmpfr.

1. Introduction: Not $\log ()$ nor $\exp ()$, but $\log 1 \mathrm{p}()$ and $\operatorname{expm} 1()$

In applied mathematics, it has been known for a very long time that direct computation of $\log (1+x)$ suffers from severe cancellation (in " $1+x$ ") whenever $|x| \ll 1$, and for that reason, we have provided $\log 1 \mathrm{p}(\mathrm{x})$ in R, since R version 1.0.0 (released, Feb. 29, 2000). Similarly, $\log 1 \mathrm{p}()$ has been provided by C math libraries and has become part of C language standards around the same time, see, for example, IEEE and Open Group (2004).
Analogously, since R 1.5.0 (April 2002), the function $\operatorname{expm} 1$ (x) computes $\exp (x)-1=e^{x}-1$ accurately also for $|x| \ll 1$, where $e^{x} \approx 1$ is (partially) cancelled by " -1 ".
In both cases, a simple solution for small $|x|$ is to use a few terms of the Taylor series, as

$$
\begin{align*}
& \log 1 \mathrm{p}(x)=\log (1+x)=x-x^{2} / 2+x^{3} / 3-+\ldots, \text { for }|x|<1, \tag{1}\\
& \operatorname{expm} 1(x)=\exp (x)-1=x+x^{2} / 2!+x^{3} / 3!+\ldots, \text { for }|x|<1, \tag{2}
\end{align*}
$$

and n ! denotes the factorial.
We have found, however, that in some situations, the use of $\log 1 \mathrm{p}()$ and expm1() may not be sufficient to prevent loss of numerical accuracy. The topic of this note is to analyze the important case of computing $\log \left(1-e^{x}\right)=\log (1-\exp (x))$ for $x<0$, computations needed in accurate computations of the beta, gamma, exponential, Weibull, t , logistic, geometric and hypergeometric distributions, and even for the logit link function in logistic regression. For the beta and gamma distributions, see, for example, DiDonato and Morris (1992) ${ }^{1}$, and further references mentioned in R's ?pgamma and ?pbeta help pages. For the logistic distribution,

[^0]$F_{L}(x)=\frac{e^{x}}{1+e^{x}}$, the inverse, aka quantile function is $q_{L}(p)=\operatorname{logit}(p):=\log \frac{p}{1-p}$. If the argument p is provided on the \log scale, $\tilde{p}:=\log p$, hence $\tilde{p} \leq 0$, we need
\[

$$
\begin{equation*}
\operatorname{qlogis}(\tilde{p}, \log \cdot \mathrm{p}=\operatorname{TRUE})=q_{L}\left(e^{\tilde{p}}\right)=\operatorname{logit}\left(e^{\tilde{p}}\right)=\log \frac{e^{\tilde{p}}}{1-e^{\tilde{p}}}=\tilde{p}-\log \left(1-e^{\tilde{p}}\right) \tag{3}
\end{equation*}
$$

\]

and the last term is exactly the topic of this note.

2. $\log 1 \mathrm{p}()$ and $\operatorname{expm} 1()$ for $\log (1-\exp (\mathrm{x}))$

Contrary to what one would expect, for computing $\log \left(1-e^{x}\right)=\log (1-\exp (x))$ for $x<0$, neither

$$
\begin{align*}
& \log (1-\exp (x))=\log (-\operatorname{expm} 1(x)), \text { nor } \tag{4}\\
& \log (1-\exp (x))=\log 1 \mathrm{p}(-\exp (x)) \tag{5}
\end{align*}
$$

are uniformly sufficient for numerical evaluation. In (5), when x approaches $0, \exp (x)$ approaches 1 and $\log 1 \mathrm{p}(-\exp (x))$ loses accuracy. In (4), when x is large, $\operatorname{expm} 1(x)$ approaches -1 and similarly loses accuracy. Because of this, we will propose to use a function $\log 1 \mathrm{mexp}(\mathrm{x})$ which uses either expm1 (4) or $\log 1 \mathrm{p}(5)$, where appropriate. Already in R 1.9.0 (R Development Core Team (2004)), we have defined the macro R_D_LExp(x) to provide these two cases automatically ${ }^{2}$.
To investigate the accuracy losses empirically, we make use of the R package $\mathbf{R m p f r}$ for arbitrarily accurate numerical computation, and use the following simple functions:

```
R> library(Rmpfr)
R> t3.l1e <- function(a)
    {
        c(def = log(1 - exp(-a)),
        expm1 = log( - expm1(-a)),
        log}1p=\operatorname{log}1p(-\operatorname{exp}(-a))
    }
R> ##' The relative Error of log1mexp computations:
R> relE.l1e <- function(a, precBits = 1024) {
    stopifnot(is.numeric(a), length(a) == 1, precBits > 50)
    da <- t3.l1e(a) ## double precision
    a. <- mpfr(a, precBits=precBits)
    ## high precision *and* using the correct case:
    mMa <- if(a <= log(2)) log(-expm1(-a.)) else log1p(-exp(-a.))
        structure(as.numeric(1 - da/mMa), names = names(da))
    }
```

where the last one, relE. 11 e() computes the relative error of three different ways to compute $\log (1-\exp (-a))$ for positive a (instead of computing $\log (1-\exp (x))$ for negative $x)$.
R> a.s <- 2^seq(-55, 10, length $=256$)
$R>$ ra.s <- t(sapply(a.s, relE.l1e))
$R>$ cbind(a.s, ra.s) \# comparison of the three approaches

a.s	def	expm1	$\log 1 \mathrm{p}$
$2.7756 \mathrm{e}-17$	$-\operatorname{Inf}$	$-7.9755 \mathrm{e}-17$	$-\operatorname{Inf}$

[^1]| [2,] | $3.3119 \mathrm{e}-17$ | -Inf | -4.9076e-17 | -Inf |
| :---: | :---: | :---: | :---: | :---: |
| [3,] | $3.9520 \mathrm{e}-17$ | -Inf | -7.8704e-17 | -Inf |
| [4,] | $4.7157 e-17$ | -Inf | -4.5998e-17 | -Inf |
| [5,] | $5.6271 \mathrm{e}-17$ | $1.8162 \mathrm{e}-02$ | $-7.3947 e-17$ | $1.8162 \mathrm{e}-02$ |
| [6,] | $6.7145 e-17$ | $1.3504 \mathrm{e}-02$ | -4.4921e-17 | $1.3504 e-02$ |
| [7,] | $8.0121 \mathrm{e}-17$ | $8.8009 \mathrm{e}-03$ | $-1.2945 e-17$ | $8.8009 \mathrm{e}-03$ |
| | | | | |
| [251,] | $4.2329 \mathrm{e}+02$ | $1.0000 \mathrm{e}+00$ | $1.0000 \mathrm{e}+00$ | $-3.3151 e-17$ |
| [252,] | $5.0509 \mathrm{e}+02$ | $1.0000 \mathrm{e}+00$ | $1.0000 \mathrm{e}+00$ | $2.9261 \mathrm{e}-17$ |
| [253,] | $6.0270 \mathrm{e}+02$ | $1.0000 \mathrm{e}+00$ | $1.0000 \mathrm{e}+00$ | $1.7377 e-17$ |
| [254,] | $7.1917 e+02$ | $1.0000 \mathrm{e}+00$ | $1.0000 \mathrm{e}+00$ | $-4.7269 e-12$ |
| [255,] | $8.5816 \mathrm{e}+02$ | $1.0000 \mathrm{e}+00$ | $1.0000 \mathrm{e}+00$ | $1.0000 \mathrm{e}+00$ |
| [256,] | $1.0240 \mathrm{e}+03$ | $1.0000 \mathrm{e}+00$ | $1.0000 \mathrm{e}+00$ | $1.0000 \mathrm{e}+00$ |

This is revealing: Neither method, $\log 1 \mathrm{p}$ or expm1, is uniformly good enough. Note that for large a, the relative errors evaluate to 1 . This is because all three double precision methods give 0 , and that is the best approximation in double precision (but not in higher mpfr precision), hence no problem at all, and we can restrict ourselves to smaller a (smaller than about 710 , here).
What about really small a 's? Note here that
$R>t 3.11 e(1 e-20)$
def expm1 $\log 1 p$
-Inf -46.052 -Inf
$R>$ as.numeric $(t 3.11 e(\operatorname{mpfr}(1 e-20,256)))$
[1] $-46.052-46.052-46.052$
both the default and the $\log 1 \mathrm{p}$ method return -Inf, so, indeed, the expm1 method is absolutely needed here.

Figure 1 visualizes the relative errors ${ }^{3}$ of the three methods. Note that the default basically gives the maximum of the two methods' errors, whereas the final $\log 1 \mathrm{mexp}()$ function will have (approximately) minimal error of the two.

```
R> matplot(a.s, abs(ra.s), type = "l", log = "xy",
    col=cc, lty=lt, lwd=ll, xlab = "a", ylab = "", axes=FALSE)
R> legend("top", leg, col=cc, lty=lt, lwd=ll, bty="n")
R> draw.machEps <- function(alpha.f = 1/3, col = adjustcolor("black", alpha.f)) {
    abline(h = .Machine$double.eps, col=col, lty=3)
    axis(4, at=.Machine$double.eps, label=quote(epsilon[c]), las=1, col.axis=col)
    }
R> eaxis(1); eaxis(2); draw.machEps(0.4)
```

In Figure 2 below, we zoom into the region where all methods have about the same (good) accuracy. The region is the rectangle defined by the ranges of a. and ra2:

```
R> a. <- (1:400)/256
R> ra <- t(sapply(a., relE.l1e))
R> ra2 <- ra[,-1]
```

In addition to zooming in Figure 1, we want to smooth the two curves, using a method

[^2]
a
Figure 1: Relative errors* of the default, $\log \left(1-e^{-a}\right)$, and the two methods "expm1" $\log (-\operatorname{expm} 1(-a))$ and $" \log 1 \mathrm{p} " \log 1 \mathrm{p}(-\exp (-a))$. Figure 2 will be a zoom into the gray rectangular region where all three curves are close.
assuming approximately normal errors. Notice however that neither the original, nor the log-transformed values have approximately symmetric errors, so we use MASS::boxcox() to determine the "correct" power transformation,

```
R> da <- cbind(a = a., as.data.frame(ra2))
R> library(MASS)
R> bc1 <- boxcox(abs(expm1) ~ a, data = da, lambda = seq(0,1, by=.01), plotit=.plot.BC)
R> bc2 <- boxcox(abs(log1p) ~ a, data = da, lambda = seq(0,1, by=.01), plotit=.plot.BC)
R> c(with(bc1, x[which.max(y)]),
    with(bc2, x[which.max(y)]))## optimal powers
[1] 0.38 0.30
R> ## ==> taking ~ (1/3) :
R> s1 <- with(da, smooth.spline(a, abs(expm1)^}(1/3), df = 9))
R> s2 <- with(da, smooth.spline(a, abs(log1p)^(1/3), df = 9))
```

i.e, the optimal boxcox exponent turns out to be close to $\frac{1}{3}$, which we use for smoothing in a "zoom-in" of Figure 1. Then, the crossover point of the two curves already suggests that the cutoff, $a_{0}=\log 2$ is empirically very close to optimal.
$R>$ matplot(a., abs(ra2), type $=$ "l", log = "y", \# ylim $=c(-1,1) * 1 e-12$, col=cc[-1], $1 \mathrm{wd}=11[-1], \operatorname{lty}=1 t[-1]$,

```
    ylim = yl, xlab = "a", ylab = "", axes=FALSE)
R> legend("topright", leg[-1], col=cc[-1], lwd=11[-1], lty=1t[-1], bty="n")
R> eaxis(1); eaxis(2); draw.machEps()
R> lines(a., predict(s1)$y ~ 3, col=cc[2], lwd=2)
R> lines(a., predict(s2)$y ~ 3, col=cc[3], lwd=2)
```


Figure 2: A "zoom in" of Figure 1 showing the region where the two basic methods, "expm1" and " $\log 1 \mathrm{p}$ " switch their optimality with respect to their relative errors. Both have small relative errors in this region, typically below $\varepsilon_{c}:=$. Machine\$double. eps $=2^{-52} \approx 2.22 \cdot 10^{-16}$. The smoothed curves indicate crossover close to $a=a_{0}:=\log 2$.

Why is it very plausible to take $a_{0}:=\log 2$ as approximately optimal cutoff? Already from Figure 2, empirically, an optimal cutoff a_{0} is around 0.7 . We propose to compute

$$
\begin{equation*}
f(a)=\log \left(1-e^{-a}\right)=\log (1-\exp (-a)), \quad a>0, \tag{6}
\end{equation*}
$$

by a new method or function $\log 1$ mexp (a). It needs a cutoff a_{0} between choosing expm 1 for $0<a \leq a_{0}$ and $\log 1 \mathrm{p}$ for $a>a_{0}$, i.e.,

$$
f(a)=\log 1 \operatorname{mexp}(a):=\left\{\begin{array}{cc}
\log (-\operatorname{expm} 1(-a)) & 0<a \leq a_{0} \quad(:=\log 2 \approx 0.693) \tag{7}\\
\log 1 \mathrm{p}(-\exp (-a)) & a>a_{0} .
\end{array}\right.
$$

The mathematical argument for choosing a_{0} is quite simple, at least informally: In which situations does $1-e^{-a}$ loose bits (binary digits) entirely independently of the computational algorithm? Well, as soon as it "spends" bits just to store its closeness to 1 . And that is as soon as $e^{-a}<\frac{1}{2}=2^{-1}$, because then, at least one bit cancels. This however is equivalent to $-a<\log \left(2^{-1}\right)=-\log (2)$ or $a>\log 2=: a_{0}$.

3. Computation of $\log (1+\exp (x))$

Related to $\log 1 \operatorname{mexp}(a)=\log \left(1-e^{-a}\right)$ is the \log survival function of the logistic distribution $\log \left(1-F_{L}(x)\right)=\log \frac{1}{1+e^{x}}=-\log \left(1+e^{x}\right)=-g(x)$, where

$$
\begin{equation*}
g(x):=\log \left(1+e^{x}\right)=\log 1 \mathrm{p}\left(e^{x}\right) \tag{8}
\end{equation*}
$$

which has a "+"" instead of a "-", compared to $\log 1 \operatorname{mexp}$, and is easier to analyze and compute, its only problem being large x 's where e^{x} overflows numerically. ${ }^{4}$ As $g(x)=\log (1+$ $\left.e^{x}\right)=\log \left(e^{x}\left(e^{-x}+1\right)\right)=x+\log \left(1+e^{-x}\right)$, we see from (1) that

$$
\begin{equation*}
g(x)=x+\log \left(1+e^{-x}\right)=x+e^{-x}+\mathcal{O}\left(\left(e^{-x}\right)^{2}\right) \tag{9}
\end{equation*}
$$

for $x \rightarrow \infty$. Note further, that for $x \rightarrow-\infty$, we can simplify $g(x)=\log \left(1+e^{x}\right)$ to e^{x}.
A simple picture quickly reveals how different approximations behave, where we have used uniroot() to determine the zero crossing, but will use slightly simpler cutoffs $x_{0}=37, x_{1}$ and x_{2}, in (10) below:

```
R> ## Find x0, such that exp(x) =.= g(x) for x < x0 :
R> f0 <- function(x) {x <- exp(x) - log1p(exp(x))
    x[x==0] <- -1 ; x }
R> u0 <- uniroot(f0, c(-100, 0), tol=1e-13)
R> str(u0, digits=10)
List of 5
    $ root : num -36.39022698
    $ f.root : num 2.465190329e-32
    $ iter : int 81
    $ init.it : int NA
    $ estim.prec: num 7.815970093e-14
R> x0 <- u0[["root"]] ## -36.39022698 --- note that ~= \log(\eps_C)
R> all.equal(x0, -52.5 * log(2), tol=1e-13)
[1] TRUE
R> ## Find x1, such that }x+\operatorname{exp}(-x)=.= g(x) for x > x1 :
R> f1 <- function(x) { x <- (x + exp (-x)) - log1p (exp(x))
    x[x==0] <- -1 ; x }
R> u1 <- uniroot(f1, c(1, 20), tol=1e-13)
R> str(u1, digits=10)
List of 5
    $ root : num 16.40822612
    $ f.root : num 3.552713679e-15
    $ iter : int 18
    $ init.it : int NA
    $ estim.prec: num 5.684341886e-14
R> x1 <- u1[["root"]] ## 16.408226
R> ## Find x2, such that x =.= g(x) for x > x2 :
R> f2 <- function(x) { x <- log1p(exp(x)) - x ; x[x==0] <- -1 ; x }
R> u2 <- uniroot(f2, c(5, 50), tol=1e-13)
R> str(u2, digits=10)
```

[^3]```
List of 5
 $ root : num 33.2783501
 $ f.root : num 7.105427358e-15
 $ iter : int 9
 $ init.it : int NA
 $ estim.prec: num 6.394884622e-14
R> x2 <- u2[["root"]] ## 33.27835
R> par(mfcol= 1:2, mar =c(4.1,4.1,0.6,1.6), mgp =c(1.6, 0.75,0))
R> curve(x+exp (-x) - log1p (exp (x)), 15, 25, n=2~11); abline(v=x1, lty=3)
R> curve(log1p (exp (x)) - x, 33.1, 33.5, n=2~10); abline(v=x2, lty=3)
```



Using double precision arithmetic, a fast and accurate computational method is to use

$$
\hat{g}(x)=\log 1 \operatorname{pexp}(x):= \begin{cases}\exp (x) & x \leq-37  \tag{10}\\ \log 1 \mathrm{p}(\exp (x)) & -37<x \leq x_{1}:=18, \\ x+\exp (-x) & x_{1}<x \leq x_{2}:=33.3, \\ x & x>x_{2},\end{cases}
$$

where only the cutoff $x_{1}=18$ is important and the other cutoffs just save computations. ${ }^{5}$ Figure 3 visualizes the relative errors of the careless "default", $\log \left(1+e^{x}\right)$, its straightforward correction $\log 1 \mathrm{p}\left(e^{x}\right)$, the intermediate approximation $x+e^{-x}$, and the large $x(=x)$, i.e., the methods in (10), depicting that the (easy to remember) cutoffs $x_{1}$ and $x_{2}$ in (10) are valid. Note that the default method is fully accurate on this $x$ range and only problematic when $e^{x}$ begins to overflow, i.e., $x>e_{\text {Max }}$, which is
$R>(e M a x<-. M a c h i n e \$ d o u b l e \cdot m a x . \exp * \log (2))$
[1] 709.78
$R>\exp (e \operatorname{Max} * c(1,1+1 e-15))$
[1] $1.7977 \mathrm{e}+308$ Inf
where we see that indeed $e_{\text {Max }}=\mathrm{emax}$ is the maximal exponent without overflow.

[^4]

Figure 3: Relative errors (via Rmpfr, see footnote of Fig. 1) of four different ways to numerically compute $\log \left(1+e^{x}\right)$. Vertical bars at $x_{1}=18$ and $x_{2}=33.3$ visualize the ( 2 nd and 3 rd) cutpoints of (10).

## 4. Conclusion

We have used high precision arithmetic (R package Rmpfr) to empirically verify that computing $f(a)=\log \left(1-e^{-a}\right)$ is accomplished best via equation (7). In passing, we have also shown that accurate computation of $g(x)=\log \left(1+e^{x}\right)$ can be achieved via (10). Note that a version of this note is available as vignette (in Sweave, i.e., with complete R source) from the $\mathbf{R m p f r}$ package vignettes.

## Session Information

```
R> toLatex(sessionInfo(), locale=FALSE)
```

- $R$ version 4.4.1 (2024-06-14), x86_64-pc-linux-gnu
- Running under: Ubuntu 24.04 LTS
- Matrix products: default
- BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so. 3
- LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so ; LAPACK version3.12.0
- Base packages: base, datasets, grDevices, graphics, methods, stats, utils
- Other packages: MASS 7.3-61, Rmpfr 0.9-6, gmp 0.7-4, polynom 1.4-1, sfsmisc 1.1-18
- Loaded via a namespace (and not attached): buildtools 1.0.0, compiler 4.4.1, knitr 1.48, maketools 1.3 .0 , sys 3.4 .2 , tools 4.4 .1 , xfun 0.45


## References

DiDonato AR, Morris Jr AH (1992). "Algorithm 708: Significant digit computation of the incomplete beta function ratios." ACM Transactions on Mathematical Software, 18(3), 360-373. ISSN 0098-3500. URL http://doi.acm.org/10.1145/131766.131776.

IEEE, Open Group (2004). "The Open Group Base Specifications Issue 6 - log1p." In IEEE Std 1003.1, 2004 Edition. URL http://pubs.opengroup.org/onlinepubs/009604599/ functions/log1p.html.

R Development Core Team (2004). R: A language and environment for statistical computing (Ver. 1.9.0). R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-003, URL http://www.R-project.org.

## Affiliation:

Martin Mächler
Seminar für Statistik, HG G 16
ETH Zurich
8092 Zurich, Switzerland
E-mail: maechler@stat.math.ethz.ch
URL: https://stat.ethz.ch/~maechler


[^0]:    ${ }^{1}$ In the Fortran source, file "708", also available as http://www.netlib.org/toms/708, the function ALNREL() computes $\log 1 \mathrm{p}()$ and $\operatorname{REXP}()$ computes expm1().

[^1]:    ${ }^{2} \operatorname{look}$ for " $\log (1-\exp (x))$ " in http://svn.r-project.org/R/branches/R-1-9-patches/src/nmath/dpq.h

[^2]:    ${ }^{3}$ Absolute value of relative errors, $|(\hat{f}(a)-f(a)) / f(a)|=|1-\hat{f}(a) / f(a)|$, where $f(a)=\log 1 \operatorname{mexp}(a)$ (7) is computed accurately by a 1024 bit Rmpfr computation

[^3]:    ${ }^{4}$ Indeed, for $x=710,-g(x)=\log \left(1-F_{L}(x)\right)=$ plogis (710, lower=FALSE, $\log \cdot \mathrm{p}=$ TRUE $)$, underflowed to -Inf in R versions before 2.15.1 (June 2012) from when on (10) has been used.

[^4]:    ${ }^{5}$ see plot curve $\left(\log 1 \mathrm{p}(\exp (\mathrm{x}))-\mathrm{x}, 33.1,33.5, \mathrm{n}=2^{\wedge} 10\right)$ above, revealing a somewhat fuzzy cutoff $x_{2}$.

