# Using expm in packages 

Christophe Dutang<br>ENSIMAG, Grenoble INP

Vincent Goulet
École d'actuariat, Université Laval
Jan. 2008 (added note in June 2010)

## 1 Introduction

The expm package provides an R function expm to compute the matrix exponential of a real, square matrix. The matrix exponential of a matrix $\mathbf{A}$ is defined as

$$
\begin{aligned}
e^{\mathbf{A}} & =\mathbf{I}+\mathbf{A}+\frac{\mathbf{A}^{2}}{2!}+\ldots \\
& =\sum_{k=0}^{\infty} \frac{\mathbf{A}^{k}}{k!}
\end{aligned}
$$

The actual computations are done in $C$ by a function of the same name that is callable by other packages. Therefore, package authors can use these functions and avoid duplication of efforts.

## 2 Description of the functions

The R function expm takes as argument a real, square matrix and returns its exponential. Dimension names are preserved:

```
> library(expm)
>m <- matrix(c(4, 1, 1, 2, 4, 1, 0, 1, 4), 3, 3)
> expm(m)
    [,1] [,2] [,3]
[1,] 147.8666 183.7651 71.79703
[2,] 127.7811 183.7651 91.88257
[3,] 127.7811 163.6796 111.96811
> dimnames(m) <- list(letters[1:3], LETTERS[1:3])
>m
```

```
    A B C
a 4 2 0
b 141
c 1 14
> expm(m)
```

|  | A | B | C |
| ---: | ---: | ---: | ---: |
| A | 147.8666 | 183.7651 | 71.79703 |
| B | 127.7811 | 183.7651 | 91.88257 |
| C | 127.7811 | 163.6796 | 111.96811 |

Note that the remainder of this text mainly relates to expm(., method = "Ward77"), i.e., the method of Ward (1977) which is no longer the default method, as e.g., method = "Higham08" has found to be ("uniformly") superior, see Higham (2008).

The actual computational work is done in $C$ by a routine defined as

```
void expm(double *x, int n, double *z)
```

where x is the vector underlying the R matrix and n is the number of lines (or columns) of the matrix. The matrix exponential is returned in $z$. The routine uses the algorithm of Ward (1977) based on diagonal Padé table approximations in conjunction with three step preconditioning. The Padé approximation to $e^{\mathbf{A}}$ is

$$
e^{\mathbf{A}} \approx R(\mathbf{A})
$$

with

$$
R_{p q}(\mathbf{A})=\left(D_{p q}(\mathbf{A})\right)^{-1} N_{p q}(\mathbf{A})
$$

where

$$
D_{p q}(\mathbf{A})=\sum_{j=1}^{p} \frac{(p+q-j)!p!}{(p+q)!j!(p-j)!} \mathbf{A}^{j}
$$

and

$$
N_{p q}(\mathbf{A})=\sum_{j=1}^{q} \frac{(p+q-j)!q!}{(p+q)!j!(q-j)!} \mathbf{A}^{j}
$$

See Moler and Van Loan (1978) for an exhaustive treatment of the subject.
The C routine is based on a translation made by ? of the implementation of the corresponding Octave function (Eaton, 2002).

## 3 Calling the functions from other packages

Package authors can use facilities from expm in two (possibly simultaneous) ways:

1. call the R level function expm in R code;
2. if matrix exponential calculations are needed in $C$, call the routine expm.

Using R level function expm in a package simply requires the following two import directives:

```
Imports: expm
```

in file DESCRIPTION and

```
import(expm)
```

in file NAMESPACE.
Accessing the $C$ level routine further requires to prototype expm and to retrieve its pointer in the package initialization function $R_{-}$init_ $p k g$, where $p k g$ is the name of the package:

```
void (*expm)(double *x, int n, double *z);
void R_init_pkg(DllInfo *dll)
{
    expm = (void (*) (double, int, double)) \
        R_GetCCallable("expm", "expm");
}
```

The definitive reference for these matters remains the Writing $R$ Extensions manual.

## References

J. W. Eaton. GNU Octave Manual. Network Theory Limited, 2002. ISBN 0-9541617-2-6. URL http://www.octave.org.
N. J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.
C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix. SIAM Review, 20:801-836, 1978.
R. C. Ward. Numerical computation of the matrix exponential with accuracy estimate. SIAM Journal on Numerical Analysis, 14:600-610, 1977.

