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1 Introduction

The paper Kalisch et al. [2012] reports on pcalg Version 1.1-4. Back then, the
package covered basic functions for structure learning (pc, fci, rfci), as well
as a method to compute bounds on total causal e�ects (ida). Since 2012, the
pcalg package has been extended in two main areas: structure learning methods
and covariate adjustment methods.

In this document, we give an overview of the functionality of pcalg (2.7-
10). In section 2 and 3 we focus on methods for structure learning and covariate
adjustment, respectively. In section 4 we discuss provided methods for random
graph generation (e.g. for simulation studies). In section 5 we end with notes
on some implementation details. The sections can be read independently.

We assume that the reader is familiar with basic terminology of structure
learning and causal inference. For theoretical background or technical details
we refer the reader to papers throughout the text. As a �rst introduction, one
might consult the overview papers Kalisch and Bühlmann [2014], Maathuis and
Nandy [2016], Maathuis and Drton [2017] or Heinze-Deml et al. [2018].

2 Structure Learning

2.1 Introduction

The goal in structure learning is to estimate the DAG or MAG representing the
causal structure of the data generating mechanism, while the exact parameters
of the causal structure are of less importance. For this, observational data or
a mix of observational and interventional data might be available. Sometimes
it might only be possible to estimate the Markov equivalence class of the true
DAG or MAG.

The available functions for structure learning in package pcalg can be cat-
egorized in the following way:

� Constraint-based assuming no hidden confounders, i.i.d.:
skeleton(), pc(), lingam()

� Constraint-based, allowing hidden variables, i.i.d.:
fci(), rfci(), fciPlus()
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� Score-based assuming no hidden confounders, i.i.d.:
ges()

� Hybrid of constraint-based and score-based, assuming no hidden con-
founders, i.i.d.: ARGES (implemented in ges())

� Score-based possibly with data from di�erent settings, no hidden variables:
gies() and simy()

More details on the assumptions can be found in section 2.7.

2.2 Constraint-based methods

This section follows Kalisch and Bühlmann [2014], where more details can be
found. Given a causal structure one can derive constraints which every distri-
bution generated from this causal structure must obey. The most prominent ex-
ample of such constraints are conditional independence statements. Constraint-
based learning checks for such constraints given data and thus ideally can
reverse-engineer the causal structure of the data generating mechanism.

2.2.1 pc() and skeleton()

One prominent example of constraint-based learning (assuming no latent vari-
ables are present) is the PC-algorithm Spirtes et al. [2000] which estimates the
CPDAG of the true causal structure. It can be outlined in three steps.

In the �rst step of the PC-algorithm, the skeleton of the DAG is estimated.
The skeleton of a DAG is the undirected graph that has the same edges as the
DAG but no edge orientations. The algorithm starts with a complete undi-
rected graph. Then, for each edge (say, between a and c) the constraint is
tested, whether there is any conditioning set s, so that a and c are conditional
independent given s. If such a set (called a separation set or sepset(a, c)) is
found, the edge between a and c is deleted.

In the second step of the PC-algorithm (i.e. after �nding the skeleton as
explained above), unshielded triples are oriented. An unshielded triple are three
nodes a, b and c with a − b, b − c but a and c are not connected. If node b is
not in sepset(a, c), the unshielded triples a− b− c is oriented into an unshielded
collider a→ b← c. Otherwise b is marked as a non-collider on a− b− c.

In the third step, the partially directed graph from step two is checked using
three rules to see if further edges can be oriented while avoiding new unshielded
colliders (all of them were already found in step two) or cycles (which is forbidden
in a DAG).

The �rst part of the PC-algorithm is implemented in function skeleton().
The main task of function skeleton() in �nding the skeleton is to compute
and test several conditional independencies. To keep the function �exible,
skeleton() takes as argument a function indepTest() that performs these
conditional independence tests and returns a p-value. All information that is
needed in the conditional independence test can be passed in the argument
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suffStat. The only exceptions are the number of variables p and the sig-
ni�cance level alpha for the conditional independence tests, which are passed
separately. Instead of specifying the number of variables p, one can also pass a
character vector of variable names in the argument labels.

We show the usage of this function in a short example using built-in data.
The dataset gmG8 contains n = 5000 observations of p = 8 continuous variables
with a multivariate Gaussian distribution.

> data("gmG", package = "pcalg") ## loads data sets gmG and gmG8

In this example, the prede�ned function gaussCItest() is used for testing
conditional independence. The corresponding su�cient statistic consists of the
correlation matrix of the data and the sample size. Based on this input, the
function skeleton() estimates the skeleton of the causal structure. The true
DAG and the estimated skeleton of the causal structure are shown in Fig. 1.

> suffStat <- list(C = cor(gmG8$x), n = nrow(gmG8$x))

> varNames <- gmG8$g@nodes

> skel.gmG8 <- skeleton(suffStat, indepTest = gaussCItest,

labels = varNames, alpha = 0.01)

Finding the skeleton is also the �rst step in the algorithms FCI, RFCI and
FCI+.

The PC-algorithm is implemented in function pc(). The arguments follow
closely the arguments of skeleton(), i.e., the most important arguments consist
of an conditional independence test and a suitable su�cient statistic.

We continue the previous example and illustrate function pc() using the
built-in dataset gmG8. The result is shown in Fig. 1 (bidirected edges need to
be interpreted as undirected edges in the resulting CPDAG).

> pc.gmG8 <- pc(suffStat, indepTest = gaussCItest,

labels = varNames, alpha = 0.01)

The PC algorithm is known to be order-dependent, in the sense that the com-
puted skeleton depends on the order in which the variables are given. Therefore,
Colombo and Maathuis [2014] proposed a simple modi�cation, called PC-stable,
that yields order-independent adjacencies in the skeleton. In this function we
implement their modi�ed algorithm by using the argument method = "stable",
while the old order-dependent implementation can be called by using the argu-
ment method = "original". While the argument method = "stable" calls
an implementation of PC-stable written completely in R, the argument method
= "stable.fast" calls a faster C++ implementation of the same algorithm.
In most cases, method = "stable.fast" will be the method of choice. The
method "stable" is mostly of use in cases where strict backward-compatibility
is required. Backward-compatibility is also the reason why the default value for
the argument method is still "stable" rather than "stable.fast".

We recall that in the default implementation unshielded triples a − b − c
are oriented based on sepset(a, c). In the conservative (conservative = TRUE;
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Figure 1: True causal DAG (left), estimated skeleton (middle) and estimated
CPDAG (right). In the CPDAG, bidirected edges need to be interpreted as
undirected edges.

see Ramsey et al. [2006]) or majority rule (maj.rule = TRUE; see Colombo and
Maathuis [2014]) versions, the algorithm determines all subsets of Adj(a) \ c
(where Adj(a) are all nodes adjecent to a) and Adj(c) \ a that make a and c
conditionally independent. They are called separating sets. In the conservative
version a− b− c is oriented as a→ b← c if b is in none of the separating sets. If
b is in all separating sets, it is set as a non v-structure. If, however, b is in only
some separating sets, the triple a− b− c is marked as "ambiguous". Moreover,
if no separating set is found among the neighbors, the triple is also marked as
"ambiguous".

In the majority rule version the triple a − b − c is marked as "ambiguous"
if and only if b is in exactly 50 percent of such separating sets or no separating
set was found. If b is in less than 50 percent of the separating sets it is set as a
v-structure, and if in more than 50 percent it is set as a non v-structure.

Drawing a conclusion, the stable version of estimating the skeleton resolves
the order-dependence issue wrt. the skeleton. Moreover, the useage of either the
conservative or the majority rule versions resolve the order-dependence issues
of the determination of the v-structures.
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2.2.2 fci() and rfci()

Another prominent example of constraint-based learning, which allows for latent
variables, is the FCI-algorithm Spirtes et al. [2000]. FCI estimates the PAG of
the underlying causal structure and can be outlined in �ve steps.

In the �rst and second step, an initial skeleton and unshielded colliders are
found as in the PC-algorithm. In the third step, a set called �Possible-D-SEP�
is computed. The edges of the initial skeleton are then tested for conditional
independence given subsets of Possible-D-SEP (note that Possible-D-SEP is not
restricted to adjacency sets of X and Y ). If conditional independencies are
found, the conditioning sets are recorded as separating sets and the correspond-
ing edges are removed (as in step 1 of PC-algorithm). Thus, edges of the initial
skeleton might be removed and the list of separating sets might get extended.
In step four, unshielded colliders in the updated skeleton are oriented based on
the updated list of separating sets. In step �ve, further orientation rules are
applied (see Zhang [2008]).

The FCI-algorithm is implemented in the function fci(). As in the func-
tion pc() we need two types of input: A function that evaluates conditional
independence tests in a suitable way and a su�cient statistic of the data (i.e.,
a suitable summary) on which the conditional independence function works.
Again, signi�cance level alpha acts as a tuning parameter.

As an example, we show the usage of function fci() on a built-in dataset
gmL containing four variables with a multivariate Gaussian distribution. The
data was generated from a DAG model with one latent variable (variable 1) and
four observed variables (variables 2, 3, 4 and 5) as shown in Fig. 2. We use the
correlation matrix as su�cient statistic and function gaussCItest() as condi-
tional independence test. Based on this input, the function fci() estimates the
causal structure of the observed variables in the form of a PAG as shown in
Fig. 21.

> data("gmL")

> suffStat <- list(C = cor(gmL$x), n = nrow(gmL$x))

> fci.gmL <- fci(suffStat, indepTest=gaussCItest,

alpha = 0.9999, labels = c("2","3","4","5"))

The function rfci() is a fast approximation of the function fci(). It avoids
computing any Possible-D-SEP sets and does not conduct tests conditioning on
subsets of Possible-D-SEP. This makes RFCI much faster than FCI. Mainly
the orientation rules for unshielded triples were modi�ed in order to produce
an RFCI-PAG which, in the oracle version, is guaranteed to have the correct
ancestral relationships.

Since the FCI and RFCI algorithms are build upon the PC algorithm, they
are also order-dependent in their skeleton estimation. It is more involved,
however, to resolve their order-dependence issues in the skeleton, see Colombo

1Due to a persistent bug in package Rgraphviz the edge marks are not always placed at

the end of an edge, as here on the edge between node 2 and node 5.
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Figure 2: True causal DAG (left) and estimated PAG on the observed nodes
with the labels 2, 3, 4 and 5 (right).

and Maathuis [2014]. However, the default function estimates an initial order-
independent skeleton in these algorithms (for additional details on how to make
the �nal skeleton of FCI fully order-independent, see Colombo and Maathuis
[2014]).

2.2.3 fciPlus()

The FCI algorithm yields the true PAG (ignoring sampling error) but su�ers (in
the worst case) from exponential runtime even if the underlying graph is sparse.
The RFCI algorithm is a fast approximation of the FCI algorithm. While the
output of RFCI might be a di�erent graph (even when ignoring sampling error),
the derived ancestral informations are guaranteed to be correct but perhaps less
informative than the true PAG.

Claassen et al. [2013] proposed the FCI+ algorithm which improves on FCI
and RFCI in the following way: It yields the true PAG (ignoring sampling error)
and is of polynomial complexity in the number of nodes, at least for sparse
graphs with a bounded neighbourhood. The FCI+ algorithm in implemented in
the function fciPlus(). The available arguments are a subset of the arguments
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available in fci().
We return to the example from section 2.2.2 and show the usage of function

fciPlus() on the built-in dataset gmL containing four gaussian variables.

> suffStat <- list(C = cor(gmL$x), n = nrow(gmL$x))

> fciPlus.gmL <- fciPlus(suffStat, indepTest=gaussCItest,

alpha = 0.9999, labels = c("2","3","4","5"))

The estiamted PAG is identical to the PAG shown in Fig. 2.

2.3 Score-based methods

An alternative to constraint-based learning is a score-based approach. The idea
behind score-based learning is the following: The agreement between data and
a possible causal structure is assessed by a score. The causal structure is then
estimated by the causal structure with the best score. With this approach the
choice of the scoring function is crucial. Moreover, due to the large space of
possible causal structures, heuristic search methods are often used.

2.3.1 ges() for the GES algorithm

A prominent example of score-based learning is Greedy-Equivalent-Search (GES)
(Chickering [2002a, 2003]). This algorithm scores the causal structure using
a score-equivalent and decomposable score, such as the BIC score (Schwarz
[1978]). A score is score-equivalent, if it assigns the same value to all DAGs
within the same Markov equivalence class. A score is decomposable, if it can be
computed as a sum of terms (typically one term for each node) depending only
on local features of the causal structure.

The idea of GES is to greedily search through Markov equivalence classes,
i.e. the space of CPDAGs. It can be outlined in two (or three) steps. The GES
algorithm starts with a CPDAG (often the empty CPDAG) and then adds, in
a �rst step (called �forward phase�), edges in a greedy way (i.e. maximising
the increase in score) until the considered score cannot be further increased.
A single edge addition or, more precisely, forward step conceptually consists
of getting a DAG representative of the former CPDAG, adding a single arrow
to this DAG, and �nally calculating the CPDAG of the new DAG. Then, in a
second step (called �backward phase�), edges are greedily removed until, again,
an optimum of the score is reached. As before, a single backward step in the
space of CPDAGs is analogous to removing a single arrow from a graph in
the space of DAGs. The bene�t of the GES algorithm lies in the fact that it
explores the search space in a computationally e�cient manner, i.e. without
actually generating the aforementioned representatives. GES was shown to be
consistent in the setting where the number of variables remains �xed and the
sample size goes to in�nity (see Chickering [2002a]). This is quite remarkable,
since it involves a greedy search.

The algorithm can be improved by including a turning phase ("third step")
of edges (see Hauser and Bühlmann [2012]).
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For the score-based GES algorithm, we have to de�ne a score object before
applying the inference algorithm. A score object is an instance of a class de-
rived from the base class Score. This base class is implemented as a virtual
reference class. At the moment, the pcalg package only contains classes derived
from Score for Gaussian data: GaussL0penObsScore for purely i.i.d. data, and
GaussL0penIntScore for a mixture of data sources (e.g. observational and in-
terventional data); for the GES algorithm, we only need the �rst one here, but
we will encounter the second one in the discussion of GIES, an extension of
GES to interventional data (see section 2.3.2). However, the �exible implemen-
tation using class inheritance allows the user to implement own score classes for
di�erent scores.

The prede�ned score-class GaussL0penObsScore implements an ℓ0-penalized
maximum-likelihood estimator for observational data from a linear structural
equation model with Gaussian noise. In such a model, associated with a DAG
G, every structural equation is of the form X = c + BX + ε where ε follows a
mutivariate normal distribution and Bij ̸= 0 i� node Xj is a parent of node Xi

in G. Given a dataset D, the score of a DAG G is then de�ned as

S(G,D) := log(L(D))− λ · k , (1)

where L(D) stands for the maximum of the likelihood function of the model,
and k represents the number of parameters in the model.

An instance of GaussL0penObsScore is generated as follows:

> score <- new("GaussL0penObsScore", data = matrix(1, 1, 1),

lambda = 0.5*log(nrow(data)), intercept = FALSE,

use.cpp = TRUE, ...)

The data matrix is provided by the argument data. The penalization constant
λ (see equation (1)) is speci�ed by lambda. The default value of lambda corre-
sponds to the BIC score; the AIC score is realized by setting lambda to 1. The
argument intercept indicates whether the model should allow for intercepts
(c in the above equation) in the linear structural equations. The last argu-
ment use.cpp indicates whether the internal C++ library should be used for
calculation, which is in most cases the best choice for reasons of speed.

Once a score object is de�ned, the GES algorithm is called as follows:

ges(score, labels = score$getNodes(),

fixedGaps = NULL, adaptive = c("none",

"vstructures", "triples"), phase = c("forward",

"backward", "turning"), iterate = length(phase) >

1, turning = NULL, maxDegree = integer(0),

verbose = FALSE, ...)

The argument score is a score object de�ned before. The phases (forward,
backward, or turning) that should actually be used are speci�ed with the phase
argument. The argument iterate indicates whether the speci�ed phases should
be executed only once (iterate = FALSE), or whether they should be executed
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> score <- new("GaussL0penObsScore", gmG8$x)

> ges.fit <- ges(score)

> par(mfrow=1:2)

> plot(gmG8$g, main = "") ; box(col="gray")

> plot(ges.fit$essgraph, main = ""); box(col="gray")
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Figure 3: True underlying DAG (left) and CPDAG (right) estimated with the
GES algorithm �tted on the simulated Gaussian dataset gmG8.

over and over again until no improvement of the score is possible anymore
(iterate = TRUE). The default settings require all three phases to be used
iteratively. The original implementation of Chickering [2002b] corresponds to
setting phase = c("forward", "backward"), iterate = FALSE.

In Fig. 3, we re-analyze the dataset used in the example of Fig. 1 with the
GES algorithm. The estimated graph is exactly the same in this case. Note that
GES is order-independent (although the result depends on the starting graph of
GES) by design, and that it does, in contrast to the PC algorithm, not depend
on the skeleton() function.
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2.3.2 gies()

The algorithms PC and GES both rely on the i.i.d. assumption and are not
suited for causal inference from interventional data. The GIES algorithm, which
stands for �greedy interventional equivalence search�, is a generalization of GES
to a mix of observational and interventional (where interventions are known)
data or data from di�erent settings (Hauser and Bühlmann [2012]). It does not
only make sure that interventional data points are handled correctly (instead of
being wrongly treated as observational data points), but also accounts for the
improved identi�ablity of causal models under interventional data by returning
an interventional CPDAG.

The usage of gies() is similar to that of ges() described above. Actually,
the function ges() is only an internal wrapper for gies().

A dataset with jointly interventional and observational data points is not
i.i.d. In order to use it for causal inference, we must specify the intervention tar-
get each data point belongs to. This is done by specifying the arguments target
and target.index when generating an instance of GaussL0penIntScore:

> score <- new("GaussL0penIntScore", data = matrix(1, 1, 1),

targets = list(integer(0)),

target.index = rep(as.integer(1), nrow(data)),

lambda = 0.5*log(nrow(data)), intercept = FALSE,

use.cpp = TRUE, ...)

The argument targets is a list of all (mutually di�erent) targets that have been
intervened in the experiments generating the dataset (joint interventions are
possible). The allocation of sample indices to intervention targets is speci�ed
by the argument target.index. This is an integer vector whose �rst entry
speci�es the index of the intervention target in the list targets of the �rst data
point, whose second entry speci�es the target index of the second data point,
and so on.

An example can be found in the dataset gmInt which can be loaded by

> data(gmInt)

The dataset consists of 5000 data points sampled from the DAG in Fig. 3,
among them 3000 observational ones, 1000 originating from an intervention at
vertex 3 (with node label "Ctrl") and 1000 originating from an intervention
at vertex 5 (with node label "V5"). These sampling properties are encoded
by gmInt$targets, which is a list consisting of an empty vector, the (one-
dimensional) vector c(3) and the vector c(5), and by gmInt$target.index,
which is a vector with 5000 entries in total, 3000 1's (referring to the �rst target,
the empty one), 1000 2's (referring to the second target, c(3)), and �nally 1000
3's (referring to the third target, c(5)).

Once a score object for interventional data is de�ned as described above, the
GIES algorithm is called as follows:

gies(score, labels = score$getNodes(), targets = score$getTargets(),

fixedGaps = NULL, adaptive = c("none", "vstructures",
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"triples"), phase = c("forward", "backward",

"turning"), iterate = length(phase) > 1, turning = NULL,

maxDegree = integer(0), verbose = FALSE, ...)

Most arguments coincide with those of ges(). The causal model underlying
gmInt as well as the interventional CPDAG estimated by GIES can be found in
Fig. 4.

2.3.3 simy()

As an alternative to GIES, we can also use the dynamic programming approach
of Silander and Myllymäki [2006] to estimate the interventional CPDAG from
this interventional dataset. This algorithm is implemented in the function
simy() which has the same arguments as gies(). This approach yields the
exact optimum of the BIC score at the price of a computational complexity
which is exponential in the number of variables. On the small example based
on 8 variables this algorithm is feasible; however, it is not feasible for more
than approximately 25 variables, depending on the processor and memory of
the machine. In this example, we get exactly the same result as with gies()

(see Fig. 4).

2.4 Hybrid methods: ARGES

It is possible to restrict the search space of GES to subgraphs of a skeleton
or conditional independence graph (CIG)2 estimated in advance. Such a com-
bination of a constraint-based and a score-based algorithm is called a hybrid
method.

GES can be restricted to subgraphs of a given graph using the argument
fixedGaps. This argument takes a symmetric boolean matrix; if the entry
(i, j) is TRUE, ges() is not allowed to put an edge between nodes i and j. In
other words, the argument fixedGaps takes the adjacency matrix of the graph
complement 3 of a previously estimated CIG or skeleton, as illustrated in the
follwing code example:

> score <- new("GaussL0penObsScore", gmG8$x)

> suffStat <- list(C = cor(gmG8$x), n = nrow(gmG8$x))

> skel.fit <- skeleton(suffStat = suffStat, indepTest = gaussCItest,

alpha = 0.01, p = ncol(gmG8$x))

> skel <- as(skel.fit@graph, "matrix")

> ges.fit <- ges(score, fixedGaps = !skel)

The resulting graph is not shown, it is the same as in Fig. 3.
The drawback of this straight-forward approach of a hybrid algorithm is the

lack of consistency, even when using a consistent estimator for the undirected

2In a CIG an edge is missing if the two end-nodes are conditionally independent when

conditioning on all remaining nodes.
3i.e. edges become gaps and gaps become edges
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> score <- new("GaussL0penIntScore", gmInt$x, targets = gmInt$targets,

target.index = gmInt$target.index)

> gies.fit <- gies(score)

> simy.fit <- simy(score)

> par(mfrow = c(1,3))

> plot(gmInt$g, main = "") ; box(col="gray")

> plot(gies.fit$essgraph, main = "") ; box(col="gray")

> plot(simy.fit$essgraph, main = "") ; box(col="gray")
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Figure 4: The underlying DAG (left) and the CPDAG estimated with the
GIES algorithm (middle) and the dynamic programming approach of Silander
and Myllymäki [2006] (right) applied on the simulated interventional Gaussian
dataset gmInt. This dataset contains data from interventions at vertices 3 (with
label "Ctrl") and 5 (with label "V5"); accordingly, the orientation of all arrows
incident to these two vertices becomes identi�able (see also Fig. 3 for compari-
son with the observational case).
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graph. Nandy et al. [2018] showed that a small modi�cation of the forward phase
of GES makes its combination with a consistent CIG or skeleton estimator con-
sistent again; this modi�cation is called ARGES, �adaptively restricted GES�.
ARGES can be called using the argument adaptive of the function ges():

> score <- new("GaussL0penObsScore", gmG8$x)

> library(huge)

> huge.path <- huge(gmG8$x, verbose = FALSE)

> huge.fit <- huge.select(huge.path, verbose = FALSE)

> cig <- as.matrix(huge.fit$refit)

> ges.fit <- ges(score, fixedGaps = !cig, adaptive = "vstructures")

In this example (which again yields the same plot as in Fig. 3), we used meth-
ods from package huge to estimate the CIG in advance. Next, we called ges()

with the argument adaptive="vstructures", which calls a variant of ARGES
called ARGES-CIG. When estimating the skeleton instead of the CPDAG in
advance, one should use ARGES-skeleton instead, another variant of ARGES
(called by the argument adaptive="triples"). In both variants of ARGES,
only the forward phase is di�erent from the base version of GES, the backward
(and possibly turning) phase are identical. Note that the instruction on �xed
gaps is not guaranteed to be respected in the �nal output as explained in Nandy
et al. [2018].

2.5 Restricted structural equation models: LINGAM

Given observational data, the causal structure can in general only be deter-
minded up to the Markov equivalence class of the causal structure. In special
cases, however, full identi�cation of the causal structure is possible.

A prominent example is the Linear Non-Gaussian Acyclic Model (LINGAM)
for Causal Discovery, see Shimizu et al. [2006]. This method aims at discovering
the complete causal structure of continuous-valued data, under the following
assumptions: The data generating process is linear (X = c+BX+ ε), there are
no unobserved confounders, and error variables have non-Gaussian distributions
of non-zero variances. The method is based on independent component analysis
and is implemented in the function lingam().

The input of lingam() is a data matrix with n rows (samples) and p columns
(variables). The output is an R object of (S3) class "LINGAM", basically a list

with three components: Bpruned contains a p×p-matrix B of linear coe�cients,
where Bi,j ̸= 0 if j → i. stde is a vector of length p with the standard deviations
of the estimated residuals. ci is a vector of length p with the intercepts of each
equation.

As an example, we show how to completely discover the true causal struc-
ture in the setting of only two correlated variables assuming no unobserved
confounders. Note that when assuming a linear generating process with Gaus-
sian errors, it would not be possible to completely discover the causal structure.
However, since we now assume non-Gaussian errors, lingam() will succeed in
completely determining the causal structure.
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> set.seed(1234)

> n <- 500

> ## Truth: stde[1] = 0.89

> eps1 <- sign(rnorm(n)) * sqrt(abs(rnorm(n)))

> ## Truth: stde[2] = 0.29

> eps2 <- runif(n) - 0.5

> ## Truth: ci[2] = 3, Bpruned[1,1] = Bpruned[2,1] = 0

> x2 <- 3 + eps2

> ## Truth: ci[1] = 7, Bpruned[1,2] = 0.9, Bpruned[2,2] = 0

> x1 <- 0.9*x2 + 7 + eps1

> # Truth: x1 <- x2

Thus, the causal graph of variables x1 and x2 is x1 ← x2. In the linear
coe�cients matrix B, the only non-zero entry is B1,2 = 0.9. The true vector
of intercepts has entries c1 = 7 and c2 = 3. Note that the equations are
linear and the errors follow non-gaussian distributions, thus following the main
assumptions of LINGAM. Now, we use the function lingam() to estimate the
causal structure:

> X <- cbind(x1,x2)

> res <- lingam(X)

> res

$Bpruned

[,1] [,2]

[1,] 0 0.9105471

[2,] 0 0.0000000

$stde

[1] 0.8464599 0.2802133

$ci

[1] 6.922077 3.010565

attr(,"class")

[1] "LINGAM"

We can see that the structure of the causal model was estimated correctly:
The only non-zero entry in the estimated linear coe�cients matrix (called Bpruned
in output) is B̂1,2, i.e., the estimated causal structure is x1 ← x2. Moreover, the

estimated value of B̂1,2 = 0.91 comes very close to the true value B1,2 = 0.9.
The estimated vector of intercepts (called ci in the output: 6.92 and 3.01) is
also close to the true vector of intercepts (7 and 3).

2.6 Adding background knowledge

In many applications background knowledge of the causal system is available.
This information is typically of two kinds: Either it is known that a certain edge
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must or must not be present. Or the orientation of a given edge is known (e.g.
temporal information). This kind of background knowledge can be incorporated
in several structure learning functions.

As explained in section 2.3.1, function ges() has the argument fixedGaps
for restricting GES to a certain subgraph, which results in the ARGES algo-
rithm.

In functions skeleton(), pc(), fci(), rfci() (but currently not fciPlus())
background knowledge on the presence or absence of edges can be entered
through the arguments fixedEdges and fixedGaps and is guaranteed to be
respected in the �nal output.

Moreover, for CPDAGs background knowledge on the orientation of edges
can be added using function addBgKnowledge(). Note that adding orientation
information to a CPDAG might not result in a CPDAG anymore but will always
result in a PDAG. Applying the orientation rules from Meek [1995] might orient
further edges resulting in a maximally oriented PDAG (see Perkovi¢ et al. [2017]
for more details). Function addBgKnowledge() is called as follows:

> showF(addBgKnowledge)

addBgKnowledge(gInput, x = c(), y = c(), verbose = FALSE,

checkInput = TRUE)

The argument gInput is either a graphNEL-object or an adjacency matrix of
type amat.cpdag. x and y are node labels so that edges should be oriented
in the direction x → y. If argument checkInput is TRUE, the input adjacency
matrix is carefully checked to see if it is a valid graph. This is done using func-
tion isValidGraph(), which checks whether an adjacency matrix with coding
amat.cpdag is of type CPDAG, DAG or maximally oriented PDAG. Based on
this input, function addBgKnowledge() adds orientation x→ y to the adjacency
matrix and completes the orientation rules from Meek [1995]. If x and y are not
speci�ed (or empty vectors) this function simply completes the orientation rules
from Meek [1995]. If x and y are vectors of length k, k > 1, this function tries
to add xi → yi to the adjacency matrix and complete the orientation rules from
Meek [1995] for every i in 1, ..., k (see Algorithm 1 in Perkovi¢ et al. [2017]).
The output of function addBgKnowledge() is a maximally oriented PDAG with
coding amat.cpdag.

As an example, we force on the CPDAG in Fig. 5 (left) the orientation
a→ b. By applying the orientation rules of Meek [1995] afterwards, edge b→ c
becomes oriented, too.

> amat <- matrix(c(0,1,0, 1,0,1, 0,1,0), 3,3) ## a -- b -- c

> colnames(amat) <- rownames(amat) <- letters[1:3]

> ## force a -> b

> bg <- addBgKnowledge(gInput = amat, x = "a", y = "b")

Note that it is currently not possible to de�ne edge orientations before
the CPDAG is estimated. Moreover, adding background knowledge in the
form of edge orientations is currently not supported for PAGs or interventional
CPDAGs.
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> par(mfrow = c(1,2))

> plot(as(t(amat), "graphNEL")); box(col="gray")

> plot(as(t( bg ), "graphNEL")); box(col="gray")

a

b

c

a

b

c

Figure 5: Left: Original CPDAG. Right: After adding the background knowl-
edge a→ b the edge b→ c is automatically directed by applying the orientation
rules from Meek [1995]. The result is a maximally oriented PDAG.
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2.7 Summary of assumptions

In the following we summarize the assumptions of all mentioned structure learn-
ing methods.

PC algorithm: Faithfulness; no hidden or selection variables; consistent in
high-dimensional settings given suitable assumptions; consistency in a
standard asymptotic regime with a �xed number of variables follows as
a special case; implemented in function pc(); see Kalisch and Bühlmann
[2007] for full details.

FCI algorithm: Faithfulness; allows for hidden and selection variables; consis-
tent in high-dimensional settings given suitable assumptions; consistency
in a standard asymptotic regime with a �xed number of variables follows
as a special case; implemented in function fci(); see Colombo et al. [2012]
for full details.

RFCI algorithm: Faithfulness; allows for hidden and selection variables; poly-
nomial runtime if the graph resulting in step 1 of RFCI is sparse; consistent
in high-dimensional settings given suitable assumptions; consistency in a
standard asymptotic regime with a �xed number of variables follows as a
special case; implemented in function rfci(); see Colombo et al. [2012]
for full details.

FCI+ algorithm: Faithfulness; allows for hidden and selection variables; poly-
nomial runtime if the true underlying causal PAG is sparse; implemented
in function fciPlus(). See Claassen et al. [2013] for full details.

LINGAM: No hidden or selection variables; data generating process is a linear
structural equation model with non-Gaussian errors; see Shimizu et al.
[2006] for full details.

GES algorithm: Faithfulness; no hidden or selection variables; consistency
in high-dimensional setting given suitable assumptions (see Nandy et al.
[2018]); consistency in a standard asymptotic regime with a �xed number
of variables. Implemented in function ges(). See Chickering [2002b] for
full details.

ARGES algorithm: Faithfulness; no hidden or selection variables; consis-
tency in high-dimensional settings given suitable assumptions; implemented
in function ges(), using argument adaptive = TRUE; see Nandy et al.
[2018] for full details.

GIES algorithm: Faithfulness; no hidden or selection variables; mix of ob-
servational and interventional data; implemented in function gies(); see
Hauser and Bühlmann [2012] for full details.

Dynamic programming approach of Silander and Myllymäki: Same as-
sumptions as for GIES, but only up to approximately 25 variables (depend-
ing on CPU and memory resources). Implemented in function simy(). See
Silander and Myllymäki [2006] for full details.
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3 Covariate Adjustment

3.1 Introduction

Estimating causal e�ects from observational data is possible when using the
right confounding variables as an adjustment set:

Adjustment set; Maathuis and Colombo [2015b] Let X,Y and Z be pair-
wise disjoint node sets in a DAG, CPDAG, MAG or PAG G. Then Z is an
adjustment set relative to (X,Y) in G if for any density4 f consistent with G
we have

f(y|do(x)) =

{
f(y|x) if Z = ∅,∫
z
f(y|x, z)f(z)dz otherwise.

(2)

Thus, adjustment sets allow to write post-intervention densities involving the
do-operator (left-hand side of (2)) as speci�c functions of the usual conditional
densities (right-hand side of (2)). The latter can be estimated from observational
data.

However, in practice it is hard to determine what a valid adjustment set is.
A common misconception is that adjusting for more variables is always better.
This is not the case, as is detailed in the �M-bias graph� example (Shrier [2008],
Rubin [2008]).

Given the practical importance of covariate adjustment, criteria have been
developed for �nding a valid adjustment set given the true causal structure
underlying the data. For example, Pearl's Back-door Criterion (BC) (Pearl
[1993b]) is a well known criterion for DAGs. Shpitser et al. [2010a] and Shpitser
et al. [2010b] re�ned the back-door criterion to a sound and complete graph-
ical criterion for adjustment in DAGs. Others considered more general graph
classes, which can represent structural uncertainty. van der Zander et al. [2014]
gave sound and complete graphical criteria for MAGs that allow for unobserved
variables (latent confounding). Maathuis and Colombo [2015b] generalize this
criterion for DAGs, CPDAGs, MAGs and PAGs (Generalized Backdoor Crite-
rion, GBC). These two criteria are sound (i.e., if the criterion claims that a
set is a valid adjustment set, then this claim is correct) but incomplete (i.e.,
there might be valid adjustment sets which are not detected by the criterion).
Perkovi¢ et al. [2015] present a criterion for covariate adjustment that is sound
and complete for DAGs, CPDAGs, MAGs and PAGs without selection variables
(Generalize Adjustment Criterion, GAC). The theoretical contribution of that
paper closes the chapter on covariate adjustment for the corresponding graph
classes. More details on GAC can be found in Perkovi¢ et al. [2018].

Recently, Perkovi¢ et al. [2017] extended the use of GAC on graphs incorpo-
rating background knowledge: PDAGs.

In the following example we show that, given suitable assumptions, the total
causal e�ect of a variable X on another variable Y can be estimated using linear
regression with the correct adjustment set Z. Assume the data is generated by

4We use the notation for continuous random variables throughout. The discrete analogues

should be obvious.
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a multivariate Gaussian density that is consistent with a causal DAG G. Let
Z ̸= ∅ be a valid adjustment set (e.g. according to GAC) relative to two variables
X and Y in G such that Z ∩ {X ∪ Y } = {}. Then

E(Y |do(x)) = α+ γx+ βTE(z). (3)

We de�ne the total causal e�ect of X on Y as ∂
∂xE(Y |do(x)). Thus, the total

causal e�ect of X on Y is γ, which is the regression coe�cient of X in the
regression of Y on X and Z.

The available functions for covariate adjustment in package pcalg can be
categorized in the following way:

� Compute causal e�ect by (conceptually) listing all DAGs in a given equiv-
alence class: ida(), jointIda()

� Check if a given set is a valid adjustment set: backdoor(), gac() (also
incorporating background knowledge )

� Given a graph, �nd a (or several) valid adjustment set(s): adjustment(),
backdoor()

More details on assumptions can be found in section 3.3.

3.2 Methods for Covariate Adjustment

3.2.1 ida()

The �rst functions for estimating the causal e�ect of a single intervention vari-
able X on a target variable Y using covariate adjustment included in pcalg

were: ida() and a restricted but faster version idaFast() (for several target
variables at the same time with restricted options). Conceptually, the method
works as follows. First, an estimated CPDAG is provided as input (e.g. using
the function pc()). Then we extract a collection of "valid" parent sets of the
intervention variable from the estimated CPDAG. For each set of valid parent
sets we compute a linear regression of Y on X using the parent set as covariate
adjustment set. Thus, for each valid parent set, we derive one estimated e�ect
resulting in a multi-set of causal e�ects.

This function can be called in the following way:

ida(x.pos, y.pos, mcov, graphEst, method = c("local",

"optimal", "global"), y.notparent = FALSE,

verbose = FALSE, all.dags = NA, type = c("cpdag",

"pdag"))

x.pos and y.pos are the (integer) positions of variables X and Y , respec-
tively. mcov is the covariance matrix that was used to estimte the CPDAG
passed in argument graphEst. With argument type one can de�ne if the esti-
mated graph is either a CPDAG or a PDAG (e.g. after including background
knowledge). If method is set to global the algorithm considers all DAGs in the
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represented by the CPDAG or PDAG, hence is slow. If method is set to local

the algorithm only considers the neighborhood of X in the CPDAG or PDAG,
hence is faster. Moreover, the multiplicities of the estimated causal e�ects might
be wrong. As an example, suppose that a CPDAG represents eight DAGs. The
global method might produce the multiset 1.3, -0.5, 0.7, 1.3, 1.3, -0.5, 0.7, 0.7.
The unique values in this set are -0.5, 0.7 and 1.3, and the multiplicities are 2, 3
and 3. The local method, on the other hand, might produce 1.3, -0.5, -0.5, 0.7.
The unique values are again -0.5, 0.7 and 1.3, but the multiplicities are now 2,
1 and 1. Since the unique values of the multisets of the "global" and "local"
method are identical, summary measures of the multiset that only depend on
the unique values (e.g. minimum absolute value) can be estimate by the faster
local method.

As an example, we simulate a random DAG, sample data, estimate the
CPDAG (see Fig. 6) and apply ida to �nd the total causal e�ect from node
number 2 to node number 5 using both the local and the global method. We
can see that both methods produce the same unique values but di�erent multi-
plicities.

> ## Simulate the true DAG

> set.seed(123)

> p <- 7

> myDAG <- pcalg::randomDAG(p, prob = 0.2) ## true DAG

> myCPDAG <- dag2cpdag(myDAG) ## true CPDAG

> ## simulate Gaussian data from the true DAG

> n <- 10000

> dat <- rmvDAG(n, myDAG)

> ## estimate CPDAG and PDAG -- see help(pc)

> suffStat <- list(C = cor(dat), n = n)

> pc.fit <- pc(suffStat, indepTest = gaussCItest, p=p, alpha = 0.01)

> ## Supppose that we know the true CPDAG and covariance matrix

> (l.ida.cpdag <- ida(2,5, cov(dat),

myCPDAG, method = "local", type = "cpdag"))

[1] 0.1748347

> (g.ida.cpdag <- ida(2,5, cov(dat),

myCPDAG, method = "global", type = "cpdag"))

[1] 0.1748347

3.2.2 jointIda()

The function jointIda() extends ida() by allowing a set of intervention vari-
ables (i.e., not just a single intervention variable).

Assuming observational data that are multivariate Gaussian and faithful to
the true (but unknown) underlying causal DAG (without hidden variables), the

21



> if (require(Rgraphviz)) {

## plot the true and estimated graphs

par(mfrow = c(1,2))

plot(myDAG, main = "True DAG"); box(col="gray")

plot(pc.fit, main = "Estimated CPDAG"); box(col="gray")

}

True DAG

1 2

3

4

5

6

7

Estimated CPDAG

1 2

3

4

5

6

7

Figure 6: The true DAG (left) and the true CPDAG (right) in the example
illustrating ida().
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function estimates the multiset of possible total joint e�ects ofX on Y . The total
joint e�ect of X = (X1, X2) on Y is de�ned via Pearl's do-calculus as the vector
(E[Y |do(X1 = x1 + 1, X2 = x2)] − E[Y |do(X1 = x1, X2 = x2)], E[Y |do(X1 =
x1, X2 = x2 + 1)] − E[Y |do(X1 = x1, X2 = x2)]), with a similar de�nition
for more than two variables. These values are equal to the partial derivatives
(evaluated at (x1, x2)) of E[Y |do(X = x′

1, X2 = x′
2)] with respect to x′

1 and
x′
2. Moreover, under the Gaussian assumption, these partial derivatives do not

depend on the values at which they are evaluated.
As with ida(), jointIda() needs an estimated CPDAG as input. It then

constructs a collection of �jointly valid� parent sets of all intervention variables.
For each set of jointly valid parent sets we apply RRC (recursive regressions for
causal e�ects) or MCD (modifying the Cholesky decomposition) to estimate the
total joint e�ect of X on Y from the sample covariance matrix.

When X is a single variable, jointIda() estimates the same quantities as
ida(). When graphEst is a CPDAG, jointIda() yields correct multiplicities
of the distinct elements of the resulting multiset (i.e., it matches ida() with
method="global" up to a constant factor), while ida() with method="local"

does not have this property. Like idaFast(), the e�ect on several target vari-
ables can be computed at the same time.

In the following example, we generate a DAG on six nodes and generate data
from it (see Fig. 7).

> ## Generate DAG for simulating data

> p <- 6

> V <- as.character(1:p)

> edL <- list(

"1" = list(edges=c(3,4), weights=c(1.1,0.3)),

"2" = list(edges=c(6), weights=c(0.4)),

"3" = list(edges=c(2,4,6),weights=c(0.6,0.8,0.9)),

"4" = list(edges=c(2),weights=c(0.5)),

"5" = list(edges=c(1,4),weights=c(0.2,0.7)),

"6" = NULL)

> myDAG <- new("graphNEL", nodes=V, edgeL=edL,

edgemode="directed") ## true DAG

> myCPDAG <- dag2cpdag(myDAG) ## true CPDAG

> covTrue <- trueCov(myDAG) ## true covariance matrix

Then, we use jointIda() to estimate (using method RCC) the causal e�ect
of an intervention at nodes 1 and 2 on the target variable 6. First, we use the
true DAG and the true covariance matrix for illustration.

> ## Compute causal effect using true CPDAG and true cov. matrix

> (resExactDAG <- jointIda(x.pos = c(1,2), y.pos = 6,

mcov = covTrue,

graphEst = myDAG,

technique = "RRC"))
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[,1]

[1,] 0.99

[2,] 0.40

The result is a matrix representing the estimated possible total joint e�ects
of X on Y . The number of rows equals the number of intervention variables.
Thus, when intervening at both node 1 and node 2, a unit increase in node 1
leads to an increase of 0.99 in node 6, while a unit increase in node 2 leads to
an increase of 0.40 in node 6.

Now we replace the true DAG by the true CPDAG. It is usually not possible
anymore to estimate the causal e�ects uniquely. Thus, the result is a matrix
representing the multiset containing the estimated possible total joint e�ects of
X on Y . The number of rows equals the number of intervention variables. Each
column represents a vector of possible joint causal e�ects.

> (resExactCPDAG <- jointIda(x.pos = c(1,2), y.pos = 6,

mcov = covTrue,

graphEst = myCPDAG,

technique = "RRC"))

[,1] [,2] [,3]

[1,] 0.99 -7.21645e-16 0.99

[2,] 0.40 4.00000e-01 0.40

In this example, the multisets contain three elements. The �rst and the third
column coincide with our �nding in the previous DAG example. The middle
column shows new values. Without further information we cannot decide which
of the elements of the multiset correspond to the true underlying causal system.

For building intuition, we will inspect the true underlying DAG and con�rm
the result: Node 2 is a parent node of node 6 and the weight is indeed 0.40.
Thus, the causal e�ect of node 2 on node 6 is indeed 0.4. Now we compute
the causal e�ect of node 1 on node 6. There are several possible directed paths
from node 1 to node 6: 1-3-6, 1-3-2-6, 1-3-4-2-6 and 1-4-2-6. If node 1 was the
only intervention variable, we would now compute the causal e�ects along all 4
paths and add them up. However, since we did a joint intervention on node 1
and node 2, the value of node 2 is �xed. Thus, changing the value of node 1 will
have an e�ect on node 6 only over directed paths that do not include node 2.
Thus, the only directed path is 1-3-6 with edge weights 1.1 and 0.9. Multiplying
these two weights we get the causal e�ect along this path of 0.99, as was also
produced with the function jointIda().

However, the input of jointIda() is not the true DAG but the true CPDAG.
The parent set of node 2 is unique in this CPDAG. However, the parent set of
node 2 is not unique. At �rst sight, possible parent sets for node 2 are: empty
set, only node 3, only node 5, both node 3 and 5. However, if both node 3 and
node 5 would be parent sets of node 1, this would introduce a new v-structure
in the graph. Thus, this parent set is not valid and we are left with three valid
parent sets on of which coincides with the parent sets in the true DAG (only
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> par(mfrow = c(1,2))

> plot(myDAG) ; box(col="gray")

> plot(myCPDAG); box(col="gray")

1

2

3
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1

2

3

4

5

6
Figure 7: The true DAG (left) and the true CPDAG (right) in the example
illustrating jointIda().
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node 5 is parent). For each of the three valid parent sets the same calculation
as before yields the values in the three columns of the output.

In practice, both the CPDAG and the covariance matrix will be only es-
timates. Thus, both the estimated values and the multiplicities (number of
columns of the result) are prone to error.

3.2.3 backdoor()

This function implements the Generalized Backdoor Criterion (GBC). The GBC
is a generalization of Pearl's backdoor criterion (see Pearl [1993a]) de�ned for
directed acyclic graphs (DAGs) for single interventions and single outcome vari-
able to more general types of graphs (CPDAGs, MAGs, and PAGs) that de-
scribe Markov equivalence classes of DAGs with and without latent variables
but without selection variables. For more details see Maathuis and Colombo
[2015a].

The motivation to �nd a set W that satis�es the generalized backdoor cri-
terion with respect to X and Y in the given graph relies on the result of the
generalized backdoor adjustment that says: If a set of variables W satis�es the
generalized backdoor criterion relative to X and Y in the given graph, then
the causal e�ect of X on Y is identi�able and is given by: P (Y |do(X = x)) =∑

W P (Y |X,W ) · P (W ). This result allows to write post-intervention densities
(the one written using Pearl's do-calculus) using only observational densities
estimated from the data.

This function can be called in the following way:

backdoor(amat, x, y, type = "pag", max.chordal = 10,

verbose = FALSE)

where amat is the adjacency matrix of the given graph, x denotes the col-
umn position of the cause variable, y denotes the column position of the e�ect
variable, and mcov is the covariance matrix of the original data.

The argument type speci�es the type of graph of the given adjacency matrix
in amat. If the input graph is a DAG (type="dag"), this function reduces to
Pearl's backdoor criterion for single interventions and single outcome variable,
and the parents of X in the DAG satis�es the backdoor criterion unless Y is a
parent of X. Therefore, if Y is a parent of X, there is no set W that satis�es
the generalized backdoor criterion relative to X and Y in the DAG and NA is
output. Otherwise, the causal e�ect is identi�able and a set W that satis�es
the generalized backdoor criterion relative to X and Y in the DAG is given.
If the input graph is a CPDAG C (type="cpdag"), a MAG M , or a PAG P
(with both M and P not allowing selection variables), this function �rst checks
if the total causal e�ect of X on Y is identi�able via the generalized backdoor
criterion (see Maathuis and Colombo [2015a], Theorem 4.1). If the e�ect is not
identi�able, the output is NA. Otherwise, an explicit set W that satis�es the
generalized backdoor criterion relative to X and Y in the given graph is found.

Note that if the set W is equal to the empty set, the output is NULL.
At this moment this function is not able to work with PAGs estimated using

the rfci Algorithm.
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It is important to note that there can be pair of nodes x and y for which
there is no set W that satis�es the generalized backdoor criterion, but the total
causal e�ect might be identi�able via some other technique.

To illustrate this function, we use the CPDAG displayed in Fig. 4, page 15 of
Maathuis and Colombo [2015a]. The R-code below is used to generate a DAG
g that belongs to the required equivalence class which is uniquely represented
by the estimated CPDAG myCPDAG.

> p <- 6

> amat <- t(matrix(c(0,0,1,1,0,1, 0,0,1,1,0,1, 0,0,0,0,1,0,

0,0,0,0,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0), 6,6))

> V <- as.character(1:6)

> colnames(amat) <- rownames(amat) <- V

> edL <- vector("list",length=6)

> names(edL) <- V

> edL[[1]] <- list(edges=c(3,4,6),weights=c(1,1,1))

> edL[[2]] <- list(edges=c(3,4,6),weights=c(1,1,1))

> edL[[3]] <- list(edges=5,weights=c(1))

> edL[[4]] <- list(edges=c(5,6),weights=c(1,1))

> g <- new("graphNEL", nodes=V, edgeL=edL, edgemode="directed")

> cov.mat <- trueCov(g)

> myCPDAG <- dag2cpdag(g)

> true.amat <- as(myCPDAG, "matrix")

> ## true.amat[true.amat != 0] <- 1

The DAG g and the CPDAG myCPDAG are shown in Fig. 8.
Now, we want to check if the e�ect of V6 on V3 in the given CPDAG is

identi�able using backdoor() and if this is the case know which set W satis�es
the generalized backdoor criterion. As explained in Example 4 in Maathuis
and Colombo [2015a], the causal e�ect of V6 on V3 in the CPDAG myCPDAG is
identi�able via the generalized backdoor criterion and there is a set W = {1, 2}
that satis�es the generalized backdoor criterion:

> backdoor(true.amat, 6, 3, type="cpdag")

[1] 1 2

3.2.4 gac()

The Generalized Adjustment Criterion (GAC) is a generalization of the General-
ized Backdoor Criterion (GBC) of Maathuis and Colombo [2015a]: While GBC
is su�cient but not necessary, GAC is both su�cient and necessary for DAGs,
CPDAGs, MAGs and PAGs. Moreover, while GBC was originally only de�ned
for single intervention and target variables, GAC also works with sets of target
and/or intervention variables. For more details see Perkovi¢ et al. [2018]. The
Generalized Adjustment Criterion (GAC) is implemented in function gac().

This function can be called in the following way:
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Figure 8: True DAG (left) and estimated CPDAG (right).
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gac(amat, x, y, z, type = "pag")

where amat is the adjacency matrix of the given graph. x is a vector with all
the (integer) positions of intervention nodes. y is a vector with all the (integer)
positions of target nodes. z is a vector with all the (integer) positions of the
adjustment set that should be checked with the GAC.

The output of gac() will be a list with three components: gac is TRUE if z
satis�es the GAC relative to (x,y) in the graph represented by amat and type.
res is a logical vector of length three indicating if each of the three conditions
(0), (1) and (2) of GAC are true. f is a vector containing (integer) node positions
of nodes in the forbidden set.

In the following example we consider the CPDAG shown in Fig. 9(a) and
check whether the set consisting of node 2 and node 4 satis�es the GAC for
estimating the causal e�ect from node 3 to node 6.

> mFig1 <- matrix(c(0,1,1,0,0,0, 1,0,1,1,1,0, 0,0,0,0,0,1,

0,1,1,0,1,1, 0,1,0,1,0,1, 0,0,0,0,0,0), 6,6)

> type <- "cpdag"

> x <- 3; y <- 6

> ## Z satisfies GAC :

> gac(mFig1, x,y, z=c(2,4), type)

$gac

[1] TRUE

$res

[1] TRUE TRUE TRUE

$f

[1] 6

In the output we can see that all three conditions of GAC are satis�ed and
thus, GAC is satis�ed. The forbidden set consists of node 6.

Function gac() can also be used on maximally oriented PDAGs. Such a
graph might arise by adding orientational background knowledge to a CPDAG
(see section 2.6). Details can be found in Perkovi¢ et al. [2017]. As an illustration
we reproduce Example 4.7b in Perkovi¢ et al. [2017] (shown in Fig. 9(b)):

> mFig3a <- matrix(c(0,1,0,0, 0,0,1,1, 0,0,0,1, 0,0,1,0), 4,4)

> type <- "pdag"

> x <- 2; y <- 4

> ## Z does not satisfy GAC

> str( gac(mFig3a,x,y, z=NULL, type) )## not amenable rel. to (X,Y)

List of 3

$ gac: logi TRUE

$ res: logi [1:3] TRUE TRUE TRUE

$ f : num [1:2] 3 4
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Figure 9: A CPDAG (left) and the PDAG from Example 4.7 (right) from
Perkovi¢ et al. [2017] used in the example illustrating gac().
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3.2.5 adjustment()

The previously discussed functions check whether a given set of variables is valid
for adjustment or not. However, with the exception of backdoor(), they don't
help �nding a valid adjustment set in the �rst place. For �nding valid adjustment
sets the function adjustment() can be used. This function is an interface to
the function adjustmentSet() from package dagitty. This function can be
called in the following way:

> showF(adjustment)

adjustment(amat, amat.type, x, y, set.type)

3.3 Summary of assumptions

3.4 Methods for covariate adjustment

IDA: No hidden or selection variables; all conditional expectations are linear;
see Maathuis et al. [2009] for full details. Implemented in function ida().

jointIDA: Same assumptions as IDA but can deal with several intervention
variables at the same time. Implemented in function jointIda().

Pearl's Backdoor Criterion (BC): No hidden or selection variables. Sound,
but not complete. Implemented as a special case of GBC in function
gbc().

Generalized Backdoor Criterion (GBC): Allows for arbitrarily many hid-
den but no selection variables; works on DAG, CPDAG, MAG and PAG.
Sound, but not complete. Implemented in function gbc().

Generalized Adjustment Criterion (GAC): Allows for arbitrarily many hid-
den but no selection variables; works on DAG, CPDAG, MAG and PAG.
Sound and complete. Implemented in function gac().

4 Random DAG Generation

Simulation methods are essential to investigate the performance of estimation
methods. For that reason, the pcalg package included from the beginning the
function randomDAG to generate random DAGs. However, the method imple-
mented there was restricted to Erdös-Renyi graphs. We now include the new
function randDAG() which can sample random graphs from a much wider class.

Eight di�erent random graph models are provided. The Erdös-Renyi Graph
Model and some important extensions are available (Regular Random Graph
Model, Geometric Random Graph Model, Bipartite Random Graph Model,
Watts-Strogatz Random Graph Model and the Interconnected-Island Random
Graph Model). Moreover, graph models with power law degree distributions are
provided (Power-Law Random Graph Model and the Barabasi-Albert Random
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Graph Model). The methods are based on the analogous .game functions in the
igraph package.

As an option, individual parameters can be passed for all methods. Alter-
natively, the desired expected neighborhood size of the sampled graph can be
speci�ed and the individual parameters will be set automatically. Using the op-
tion DAG, the output can either be a DAG or the skeleton of a DAG. In contrast
to the old function randomDAG(), the nodes in the DAG produced by the new
function randDAG() are not topologically sorted.

In the following example we generate a random graph dag1 according to the
Erdös-Renyi random graph model (method="er") and a random graph dag2

according to the Power-Law random graph model (method="power"). In both
cases, the number of nodes is n = 100 and the expected neighborhood size is
d = 3.

> n <- 100; d <- 3; s <- 2

> myWgtFun <- function(m,mu,sd) { rnorm(m,mu,sd) }

> set.seed(42)

> dag1 <- randDAG(n=n, d=d, method = "er", DAG = TRUE)

> dag2 <- randDAG(n=n, d=d, method = "power", DAG = TRUE)

The average neighborhood sizes in dag1 and dag2 are 2.94 and 2.86, respec-
tively. The maximum neighborhood sizes in dag1 and dag2, however, are 9 and
42, respectively. Thus, as expected, in the power-law graph some nodes have a
much larger neighborhood size than in the Erdös-Renyi graph.

We now expand the previous example by also generating edge weights. This
is done using the arguments weighted = TRUE and wFUN. The argument wFUN
takes a function for randomly generating the edge weights. For this example,
function myWgtFun is de�ned and passed to argument wFUN. Function myWgtFun

takes as �rst argument a number of edges m (this value will be automatically
speci�ed within the call of randDAG and therefore it need not be speci�ed by the
user) for which it returns a vector of length m containing the generated weights.
Alternatively, wFUN can be a list consisting of the function in the �rst entry and
of further arguments of the function in the additional entries. In this example,
the edge weights are sampled independently from N(0, s2) where s = 2.

> n <- 100; d <- 3; s <- 2

> myWgtFun <- function(m,mu,sd) { rnorm(m,mu,sd) }

> set.seed(42)

> dag1 <- randDAG(n=n, d=d, method = "er", DAG = TRUE,

weighted = TRUE, wFUN = list(myWgtFun, 0, s))

> dag2 <- randDAG(n=n, d=d, method = "power", DAG = TRUE,

weighted = TRUE, wFUN = list(myWgtFun, 0, s))

Previous versions of package pcalg contained the functions unifDAG() and
unifDAG.approx() for sampling DAGs uniformly from the space of all DAGs
given a certain number of nodes. These functions were moved to the package
unifDAG.
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5 General Object Handling

5.1 A comment on design

The pcalg package is an organically growing collection of functions related
to structure learning and causal inference. It captures several research results
produced at the Seminar for Statistics, ETH Zürich and also implements several
other common algorithms (e.g. for comparison). Given this history, we hope
the user will forgive the lack of an overarching design.

Functionality centered around constraint based learning (skeleton(), pc(),
fci(), rfci() and fciPlus()) is based on the S4 classes pcAlgo and fciAlgo

(both inheriting from virtual class gAlgo) and the S3 class amat.
Functionality centered around score based learning (gies(), ges(), simy())

are based on the virtual reference classes ParDAG (for parametric causal models),
Score (for scoring classes) and EssGraph (for interventional CPDAGs).

Functionality centered around covariate adjustment mainly follows func-
tional programming.

5.2 Adjacency matrices

Two types of adjacency matrices are used in package pcalg: Type amat.cpdag
for DAGs and CPDAGs and type amat.pag for MAGs and PAGs. See help�le
of amatType for coding conventions for the entries of the adjacency matrices.
The required type of adjacency matrix is documented in the help �les of the
respective functions or classes.

Using the coercion as(from, "amat") one can extract such adjacency ma-
trices as (S3) objects of class "amat". We illustrate this using the estimated
CPDAG from section 2.2.1:

> ## as(*, "amat") returns an adjacency matrix incl. its type

> as(pc.gmG8, "amat")

Adjacency Matrix 'amat' (8 x 8) of type 'cpdag':

Author Bar Ctrl Goal V5 V6 V7 V8

Author . 1 . . . . . .

Bar 1 . 1 . . . . .

Ctrl . 1 . . . . . .

Goal . . . . . . . .

V5 . 1 . . . . . .

V6 1 . . . 1 . . .

V7 . . . . . 1 . .

V8 1 . . . 1 . . .

In some functions, more detailed information on the graph type is needed
(i.e. DAG or CPDAG; MAG or PAG). Such information is passed in a separate
argument. We illustrate this using the function gac() which, in this example,
takes as input an adjacency matrix m1 of type amat.cpdag. In addition to
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that, the information that the input is actually a DAG is passed through the
argument type:

> ## INPUT: Adjacency matrix of type 'amat.cpdag'

> m1 <- matrix(c(0,1,0,1,0,0, 0,0,1,0,1,0, 0,0,0,0,0,1,

0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0), 6,6)

> ## more detailed information on the graph type needed by gac()

> str( gac(m1, x=1,y=3, z=NULL, type = "dag") )

List of 3

$ gac: logi TRUE

$ res: logi [1:3] TRUE TRUE TRUE

$ f : num [1:4] 2 3 5 6

5.3 Methods for visualizing graph objects

The most �exible way to visualize graph objects is via the Rgraphviz package.
In this package, several di�erent edge marks are possible. Unfortunately, due to
a persistent bug, the edgemarks are sometimes not placed at the end of an edge
but at some other position along the edge. Nevertheless, for most purposes
Rgraphviz will probably produce the best visualization of the graph. As an
example, we plot in Fig. 10 a DAG and a PAG (which requires more complex
edgemarks).

If the package Rgraphviz is not available, we provide the function iplotPC()
as an interface to the igraph package for plotting pcAlgo objects (graphs with
more complex edge marks, e.g. circles, are currently not supported). As an
example, we plot in Fig. 11 the result of calling the function pc() using the
function iplotPC():

Finally, if neither Rgraphviz nor igraph are available, the estimated graph
object can be converted to an adjacency matrix and inspected in the console.
See the help�le of amatType for coding details.

> as(pc.fit, "amat") ## Adj. matrix of type 'amat.cpdag'

Adjacency Matrix 'amat' (8 x 8) of type 'cpdag':

Author Bar Ctrl Goal V5 V6 V7 V8

Author . 1 . . . . . .

Bar 1 . 1 . . . . .

Ctrl . 1 . . . . . .

Goal . . . . . . . .

V5 . 1 . . . . . .

V6 1 . . . 1 . . .

V7 . . . . . 1 . .

V8 1 . . . 1 . . .

> as(fci.fit, "amat") ## Adj. matrix of type 'amat.pag'
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> set.seed(42)

> p <- 4

> ## generate and draw random DAG :

> myDAG <- pcalg::randomDAG(p, prob = 0.4)

> myCPDAG <- dag2cpdag(myDAG)

> ## find skeleton and PAG using the FCI algorithm

> suffStat <- list(C = cov2cor(trueCov(myDAG)), n = 10^9)

> fci.fit <- fci(suffStat, indepTest=gaussCItest,

alpha = 0.9999, p=p, doPdsep = FALSE)

> if (require(Rgraphviz)) {

par(mfrow = c(1,2))

plot(myCPDAG); box(col="gray") ## CPDAG

plot(fci.fit); box(col="gray") ## PAG

}

1

2 3

4

1

2 3

4
Figure 10: True causal DAG (left) and the corresponding PAG (right) visualized
using package Rgraphviz.

Adjacency Matrix 'amat' (4 x 4) of type 'pag':

1 2 3 4

1 . 1 . 2
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> data(gmG)

> n <- nrow (gmG8$ x)

> V <- colnames(gmG8$ x) # labels aka node names

> ## estimate CPDAG

> pc.fit <- pc(suffStat = list(C = cor(gmG8$x), n = n),

indepTest = gaussCItest, ## indep.test: partial correlations

alpha=0.01, labels = V, verbose = FALSE)

> if (require(igraph)) {

par(mfrow = c(1,1))

iplotPC(pc.fit)

}

Author
Bar

Ctrl

Goal

V5

V6

V7

V8

Figure 11: Visualizing with the igraph package: The Estimated CPDAG.

2 1 . . 2

3 . . . 2

4 1 1 1 .

Alternatively, for pcAlgo objects also an edge list can be produced.

> showEdgeList(pc.fit) ## Edge list

Edge List:
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Undirected Edges:

Author --- Bar

Bar --- Ctrl

Directed Edges:

Author --> V6

Author --> V8

Bar --> V5

V5 --> V6

V5 --> V8

V6 --> V7

For graph objects it is possible to visualize only a sub-graph using function
plotSG().
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6 Appendix A: Simulation study

In this section we give more details on the simulation study in chapter 5 of
Perkovi¢ et al. [2017]. We show how to reproduce Fig. 4 and Fig. 5 in that
document. However, in this document we choose parameter settings so that the
simulation study can be computed very quickly but the results are much less
informative. Still, they show the same qualitative behavior as in the paper.

First, we set up the parameters. In the comments we indicate the parameter
settings that were chosen in Perkovi¢ et al. [2017]:

> possible_p <- c(seq(5,10,by=1)) # paper: possible_p = c(seq(20,100,by=10))

> possible_neighb_size <- c(1:3) # paper: possible_neighb_size = c(3:10)

> num_settings <-10 # paper: num_settings = 1000

> num_rep <- 2 # paper: num_rep = 20

> pb <- seq(0,1,by=0.5) # paper: pb = seq(0,1,by=0.2)

Next we de�ne a helper function and run the simulation:

> ## helper function

> revealEdge <- function(c,d,s) {

## cpdag, dag, selected edges to reveal

if (!anyNA(s)) { ## something to reveal

for (i in 1:nrow(s)) {

c[s[i,1], s[i,2]] <- d[s[i,1], s[i,2]]

c[s[i,2], s[i,1]] <- d[s[i,2], s[i,1]]

}

}

c

}

> ## save results from each iteration in here:

> resFin <- vector("list", num_settings)

> ## run simulation

> for(r in 1:num_settings) {

set.seed(r)

## Then we sample one setting:

p <- sample(possible_p,1)

neigh <- sample(possible_neighb_size,1)

prob <- round(neigh/(p-1),3)

resFin[[r]] <- vector("list", num_rep)

## then for every setting selected we generate num_rep graphs

for (i in 1:num_rep){

## get DAG

isEmpty <- 1
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while(isEmpty){

g <- pcalg::randomDAG(p, prob) ## true DAG

cpdag <- dag2cpdag(g) ## true CPDAG

## get adjacency matrix of the CPDAG and DAG

cpdag.amat <- t(as(cpdag,"matrix"))

dag.amat <- t(as(g,"matrix"))

dag.amat[dag.amat != 0] <- 1

## only continue if the graph is not fully un-connected

if (sum(dag.amat)!= 0){

isEmpty <- 0

}

}

## choose x and y

y <- NULL

while(is.null(y)){

# choose x

x <- sample(p,1)

## choose y as a node connected to x but not x <- y

skeleton <- cpdag.amat + t(cpdag.amat)

skeleton[skeleton == 2] <- 1

connectt <- possDe(skeleton,x, type = "pdag")

if (length(connectt) != 1) {

pa.x <- which(dag.amat[x,]==1 & dag.amat[,x]==0)

## remove x and parents of x (in the DAG) from pos.y

pos.y <- setdiff(setdiff(connectt, pa.x), x)

if (length(pos.y)==1){

y <- pos.y[1]

} else if (length(pos.y) > 0) {

y <- sample(pos.y, 1)

}

}

}

## calculate true effect:

true_effect <- causalEffect(g,y,x)

## sample data for ida

## need to set nData

nData <- 200

dat <- rmvDAG(nData, g) ## sample data from true DAG

## Resulting lists, of same length as 'pb' :
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pdag.amat <-

adjust_set <-

result_adjust_set <-

ida_effects <- vector("list", length(pb))

## for each proportion of background knowledge

## find a PDAG and an adjustment set relative to (x,y) in this

## PDAG aditionally calculate the set of possible total

## causal effects of x on y using ida in this PDAG

for (j in 1:length(pb)){

## reveal proportion pb[j] of bg knowledge

tmp <- ( (cpdag.amat + t(cpdag.amat))==2 ) &

lower.tri(cpdag.amat)

ude <- which(tmp, arr.ind = TRUE) ## undir edges

nbg <- round(pb[j] * nrow(ude)) ## nmb of edges to reveal

## edges to reveal

sele <- if (nbg>0) ude[sample(nrow(ude), nbg),,drop=FALSE] else NA

## reveal edges

pdag.amat[[j]] <- revealEdge(cpdag.amat, dag.amat, sele)

pdag.amat[[j]] <- addBgKnowledge(pdag.amat[[j]],

checkInput = FALSE)

## find adjustment set (if it exists)

adjust <- if(requireNamespace("dagitty")) {

adjustment(pdag.amat[[j]],amat.type="pdag",x,y,

set.type="canonical")

} else NULL

adjust_set[[j]] <- if(length(adjust)) adjust$'1' else NA

result_adjust_set[[j]] <- length(adjust) > 0

## ida

## convert to graph for ida()

pdag.g <- as(t(pdag.amat[[j]]), "graphNEL")

ida_effects[[j]] <- ida(x,y,cov(dat), graphEst = pdag.g,

method = "local", type = "pdag")

## for j = 1 that is when pdag.g == cpdag compare

## runtime of local method for CPDAGs vs. PDAGs

if (j == 1){

time.taken.ida <-

system.time(ida(x,y,cov(dat), graphEst = pdag.g,

method = "local", type = "cpdag"))

time.taken.bida <-

system.time(ida(x,y,cov(dat), graphEst = pdag.g,

method = "local", type = "pdag"))

}

}
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## save the results

resFin[[r]][[i]] <- list(seed=r, p=p, prob=prob, neigh=neigh,

pb=pb, i=i, nData=nData,

dag.amat=dag.amat,

pdag.amat=pdag.amat,

x=x, y=y,

adjust_set = adjust_set,

result_adjust_set = result_adjust_set,

true_effect = true_effect,

ida_effects = ida_effects,

time.taken.ida = time.taken.ida,

time.taken.bida = time.taken.bida)

}

}

Next we transform the output of the simulation into a data frame containing
summary statistics:

> ## total number of unique cpdags = num_settings*num_rep graphs

> nn <- sum(sapply(resFin, length))

> ## make data frame with relevant summary info

> nBG <- length(pb)

> x <- rep(NA, nn*nBG)

> df1 <- data.frame(setting=x, g=x, p=x, neigh=x, pb=x,

resAdj = x, idaNum = x, idaRange = x,

timeIda = x, timeBida = x,

trueEff = x)

> ii <- 0

> for (i1 in 1:length(resFin)) { ## settings

nLE <- length(resFin[[i1]])

for (i2 in 1:nLE) { ## graphs per setting

for (i3 in 1:nBG) { ## BGK

ii <- ii + 1

df1[ii,"setting"] <- i1 ## List index for setting

df1[ii,"g"] <- i2 ## List index for graph within setting

df1[ii,"p"] <- resFin[[i1]][[i2]]$p ## Nmb nodes in graph

## Ave size of neighborhood

df1[ii,"neigh"] <- resFin[[i1]][[i2]]$neigh

## fraction of background knowledge

df1[ii,"pb"] <- resFin[[i1]][[i2]]$pb[i3]

## true if adj set exists

df1[ii,"resAdj"] <-

resFin[[i1]][[i2]]$result_adjust_set[[i3]]

## nmb unique results of ida

df1[ii,"idaNum"] <-

length(unique(resFin[[i1]][[i2]]$ida_effects[[i3]]))
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## range of results of ida

df1[ii,"idaRange"] <-

diff(range(resFin[[i1]][[i2]]$ida_effects[[i3]]))

## runtime for CPDAG using option "cpdag"

df1[ii,"timeIda"] <-

resFin[[i1]][[i2]]$time.taken.ida[[1]]

## runtime for CPDAG using option "pdag"

df1[ii,"timeBida"] <-

resFin[[i1]][[i2]]$time.taken.bida[[1]]

df1[ii,"trueEff"] <-

resFin[[i1]][[i2]]$true_effect

}

}

}

Finally, we illustrate the result using plots. First, we reproduce a plot like
Fig. 4 in Perkovi¢ et al. [2017] in Fig. 12:

> ## Fig 4 in paper: Fraction of identifiable effects

> ## Fraction of identifiable effects: ALL EFFECTS

> tm1 <- tapply(X=df1$resAdj, INDEX=as.factor(df1$pb), FUN = mean)

> ts1 <- tapply(X=df1$resAdj, INDEX=as.factor(df1$pb),

FUN = function(x) sd(x)/sqrt(length(x)))

> ## Fraction of identifiable effects: add means for

> ## only NON-ZERO EFFECTS

> dfNZ <- subset(df1, subset = (trueEff!=0) )

> tm <- c(tm1,tapply(X=dfNZ$resAdj, INDEX=as.factor(dfNZ$pb),

FUN = mean))

> ts <- c(ts1,tapply(X=dfNZ$resAdj, INDEX=as.factor(dfNZ$pb),

FUN = function(x) sd(x)/sqrt(length(x))))

> dfID <- data.frame(pb = as.factor(names(tm)), fit = tm, se = ts,

TrueEffect =

as.factor(c(rep("All", length(tm)/2),

rep("Non-zero", length(tm)/2))))

Then we reproduce a plot like Fig. 5 in Perkovi¢ et al. [2017] in Fig. 13:

> ## use dfNU2: settings where effect is NOT unique given zero bg knowledge

> nn <- length(pb)

> idx <- rep(seq(1,nrow(df1), by = nn), each = nn) ## pb=0 rows

> nmbIda <- df1$idaNum[idx]

> dfNU2 <- df1[nmbIda > 1,]

> bnTmp <- cut(x=dfNU2$idaNum, breaks = c(0,1,2,3,4,1e9),

labels = c("1", "2", "3", "4", "5+"))

> dfNU2$idaNumF <- factor(bnTmp, levels = levels(bnTmp)[5:1])

> df3 <- dfNU2[,c("pb", "idaNumF")]

> df3$idx <- 1:nrow(df3)
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> if(require(ggplot2)) {

k <- ggplot(dfID, aes(pb, fit, ymin = fit-se,

ymax = fit+se, col = TrueEffect))

k + geom_pointrange() +

xlab("Proportion of background knowledge") +

ylab("Fraction of identifiable effects via adjustment") +

theme(legend.position = c(0.9,0.1),

axis.text=element_text(size = 14),

axis.title = element_text(size = 14),

legend.text=element_text(size = 14),

legend.title=element_text(size = 14))

}
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Figure 12: Conceptually reproducing Fig. 4 from Perkovi¢ et al. [2017]. The
parameter setting was simpli�ed a lot in order to reduce runtime, but the qual-
itative result is still observable: As the proportion of background knowledge
increases, the fraction of identi�able e�ects increases, too.
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> df3N <- aggregate(idx ~ pb + idaNumF, data = df3, FUN = length)

> df3N$idaNumF <- droplevels(df3N$idaNumF)
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> ggplot(df3N, aes(x = pb, y=idx, fill = idaNumF)) +

geom_bar(stat = "identity") +

ylab("Number of simulation settings") +

xlab("Proportion of background knowledge")+

theme(axis.text = element_text(size = 14),

axis.title= element_text(size = 14),

legend.text= element_text(size = 14),

legend.title=element_text(size = 14)) +

guides(fill=guide_legend(title="#effects"))
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Figure 13: Conceptually reproducing Fig. 5 from Perkovi¢ et al. [2017]. The
parameter setting was simpli�ed a lot in order to reduce runtime, but the qual-
itative result is still observable: As the proportion of background knowledge
increases, the fraction simulation settings in which unambiguous identi�cation
of the causal e�ect is possible increases.
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