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tramME: Mixed-Effects Transformation
Models Using Template Model Builder
by Bálint Tamási and Torsten Hothorn

Abstract Linear transformation models constitute a general family of parametric regression models
for discrete and continuous responses. To accommodate correlated responses, the model is extended
by incorporating mixed effects. This article presents the R package tramME, which builds on existing
implementations of transformation models (mlt and tram packages) as well as Laplace approximation
and automatic differentiation (using the TMB package), to calculate estimates and perform likelihood
inference in mixed-effects transformation models. The resulting framework can be readily applied to a
wide range of regression problems with grouped data structures.

Introduction

Datasets with grouped observations are abundant in the applied statistical practice. Clustering,
hierarchical designs, longitudinal studies, or repeated measurements can all lead to grouped data
structures. The common property of these datasets is that observations within groups, defined by one
or more grouping factors, cannot be treated as independent. In order to draw a valid inference, the
statistical model has to address the issue of correlated observations. Mixed-effects models represent
one of the main approaches dealing with this type of regression problem. In this approach, the
observations are assumed to be independent conditionally on a set of random effects that aim to
capture unmodeled group-level heterogeneity. The reader is referred, for example, to the textbook
by Demidenko (2013) for an exposition and examples of the usage of mixed-effects models. Several
R packages exist that implement mixed-effects models for specific types of regression problems. The
two most notable examples are nlme by Pinheiro et al. (2021) and lme4 by Bates et al. (2015) for linear,
non-linear, and generalized linear mixed-effects models, respectively.

Linear transformation models aim to directly specify the conditional distribution function of
an outcome variable in a regression setting. Hothorn (2020) proposed a fully parametric approach
using a flexible monotone increasing transformation function that is estimated from the data. The
resulting general model family can be applied to a wide range of problems with at least ordered
discrete outcome variables. In fact, many of the popular regression models can be expressed as special
cases of the linear transformation model framework. Most recently, Tian et al. (2020) reviewed the
approach followed in this study and compared it to an alternative semiparametric formulation using
extensive simulations. By introducing random effects in the linear transformation model, it becomes
applicable in a very diverse set of regression problems where the observations are correlated due to
repeated measurements or grouped designs.

The structure of this article is as follows: After a brief, and somewhat technical, introduction of
the methodology and the implementation in Section 2.2, Section 2.3 demonstrates, through a series of
examples, how the package tramME (Tamási and Hothorn, 2021) can be applied to estimate regression
models with various response types and data structures. Finally, Section 2.4 discusses a few issues
concerning the implementation of our model.

Mixed-effects transformation models

The model class in the R package tramME is an extension of the transformation model approach
described by Hothorn et al. (2018) and implemented in the R packages mlt and tram by Hothorn
(2020) and Hothorn and Barbanti (2021), respectively. These resources provide an introduction to fully
parameterized transformation models for independent observations.

Formally, we are interested in models that parameterize the conditional distribution function
directly,

P (Y ≤ y | x, u, γ) = FZ

(
h(y; ϑ)− x⊤β − u⊤γ

)
γ ∼ Nq(0, Σ), (1)

where FZ denotes a pre-specified error distribution function (or inverse-link function), which is
monotone increasing and maps from the real numbers to the closed interval [0, 1]. Typically, FZ is set
to the CDF of a simple continuous distribution, hence the name “error distribution”. The baseline
transformation function is h(y; ϑ), which is also a monotonic increasing function parameterized with
the vector ϑ. For the fixed and random effects design matrices, respectively, x⊤ and u⊤ are suitable row
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vectors. The vector β contains the fixed effects, while γ comprises of the stacked (possibly multiple)
random effects. The distribution of the random effects is assumed to be multivariate Gaussian with
zero mean and covariance matrix Σ, which typically has a sparse block structure.

As Table 1 shows, specific choices of the error distribution and the baseline transformation function
lead to different types of regression models. In the R package tramME, seven main model types
are distinguished, mainly based on the class of their outcome variable. Moreover, the functions
SurvregME() and PolrME() allow to specify multiple error distributions or baseline transformations
and hence increasing the number of available model types.

Function Name FZ h(y; ϑ)

LmME() Mixed-effects normal linear
regression

Standard Gaussian Linear basis

BoxCoxME() Non-normal (Box-Cox-type)
linear mixed-effects regression

Standard Gaussian Bernstein basis

ColrME() Mixed-effects continuous
outcome logistic regression

Standard logistic Bernstein basis

CoxphME() Mixed-effects parametric Cox
regression

Minimum extreme value Bernstein basis

SurvregME() Mixed-effects parametric
survival models

Multiple options Multiple options

PolrME() Mixed-effects regression models
for ordinal outcomes

Multiple options Discrete basis

LehmannME() Mixed-effects
Lehmann-alternative linear
regression

Maximum extreme value Bernstein basis

Table 1: Model types implemented in the tramME package. FZ denotes the error distribution and the
column h(y; ϑ) lists the basis functions the baseline transformation function utilizes.

As the table indicates, some of the models specify their transformation functions as general smooth
functions, approximated with the use of polynomials in Bernstein form. The function h(y; ϑ) has to be
monotonic increasing so that the conditional distribution function is also increasing. When using a set
of order p polynomials in Bernstein form for the approximation of a general function, this restriction
conveniently translates to the parameter restriction ϑi ≤ ϑi+1 for all i = 0, . . . , p − 1.

The observations are assumed to be conditionally independent, and hence the likelihood has the form

L (ϑ, β, Σ) =
∫

Rq
L(ϑ, β, Σ, γ) dγ

=
∫

Rq

n

∏
i=1

Li(ϑ, β | γ)ϕ(γ; Σ) dγ, (2)

where L(ϑ, β, Σ, γ) is the joint likelihood function, given the all observations, and Li(ϑ, β | γ) denotes
the individual conditional likelihood contributions. ϕ(γ; Σ) stands for the probability density function
of the multivariate normal distribution with zero mean vector and covariance matrix Σ. This latter
function can be factorized further according to the covariance structure of the random effects.

One of the main advantages of working directly with the distribution function of the outcome
is that it is simple to introduce (random) censoring and truncation in the estimation procedure. The
conditional likelihood contributions under different types of censoring can be written as

Li(ϑ, β | γ) =





fZ(h(y; ϑ)− x⊤β − u⊤γ)h′(y; ϑ) y ∈ Ξ “exact continuous”

1 − FZ(h(
¯
y; ϑ)− x⊤β − u⊤γ) y ∈ (

¯
y, ∞) ∩ Ξ “right-censored”

FZ(h(ȳ; ϑ)− x⊤β − u⊤γ) y ∈ (−∞, ȳ] ∩ Ξ “left-censored”

FZ(h(ȳ; ϑ)− x⊤β − u⊤γ)

− FZ(h(
¯
y; ϑ)− x⊤β − u⊤γ)

y ∈ (
¯
y, ȳ] ∩ Ξ “interval-censored”,
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where fZ() is the density function of the error distribution, h′(y; ϑ) is the first derivative of the baseline
transformation function with respect to y, and Ξ denotes the sample space of Y.

The multidimensional integral in Equation (2), in general, does not have an analytical solution, but
its value can be approximated using numerical methods. The package tramME applies the Laplace
approximation to this problem, which relies on the quadratic Taylor expansion of the corresponding
joint log-likelihood function.

The maximization of the logarithm of the likelihood function with respect to ϑ, β, and Σ, under a set
of suitable constraints on ϑ to make h(y; ϑ) monotone increasing, results in the maximum likelihood
estimates of the model parameters. Standard likelihood theory, utilizing the ability to evaluate
the log-likelihood function, the score function, and the Hessian, provides a basis for asymptotic
inference in this family of models; see Hothorn et al. (2018) for more details on likelihood inference in
transformation models.

The maximum likelihood estimation in tramME is done using the TMB package by Kristensen
et al. (2016). The Template Model Builder (TMB) allows the user to define and estimate general,
non-linear mixed-effects models. It was built on well-tested and high-performance C++ libraries,
which results in a flexible yet efficient framework for estimating mixed models with possibly complex
random effects structures; see, for example, Brooks et al. (2017) for performance comparisons in the
context of the package glmmTMB. In tramME, TMB is used to evaluate the integral in Equation (2),
using Laplace’s method, and to calculate the derivatives of the log-likelihood function using automatic
(or algorithmic) differentiation.

Applications

In this section, several applications of the transformation mixed models are presented, and wherever
it is possible, also compared to other existing implementations. The examples shown here are by no
means intended as complete analyses. They demonstrate how mixed-effects transformation models
can be used in a broad range of regression problems and showcase the most important features
implemented in the package tramME.

In each application, a simple version of a transformation mixed model is compared to the same
model implemented by a benchmark package first. In a second step, extensions to more complex mod-
els not available other packages are fitted using package tramME. The R code illustrates similarities
and differences in the user interfaces. The two model outputs allow a direct comparison of the model-
agnostic implementation in tramME to the model-specific implementation in the benchmark package.
The package tramME is, however, not intended as a replacement for well-tested implementations
of important special cases of mixed models, such as linear mixed models in lme4, but as a tool for
extending these implementations to more complex model variants.

Normal linear mixed model

As a first example, we model the average reaction times to a specific task from a sleep deprivation
study described in Belenky et al. (2003). Figure 1 presents the reaction times against days of sleep
deprivation for each of the 18 participants.

In this first example, we model the distribution of the average reaction time using random
intercepts and random slopes for the effects of days of sleep deprivation.

P (Reaction ≤ y | Days, αi, βi) = Φ (ϑ1 + ϑ2y − βDays− γ1i − γ2iDays) (3)
(

γ1i
γ2i

)
∼ N2

{(
0
0

)
,
(

τ2
1 τ12

τ12 τ2
2

)}

Note that when the transformation function is assumed to be linear in the outcome variable, i.e.,
h(y) = ϑ1 + ϑ2y, we arrive at a re-parameterized version of the normal linear mixed effects-model, and
hence the results from tramME::LmME() are directly comparable to estimates using other mixed-effects
regression packages such as lme4. Estimating the normal linear model with the tramME:

R> library("tramME")
R> sleep_lmME <- LmME(Reaction ~ Days + (Days | Subject), data = sleepstudy)
R> logLik(sleep_lmME)

'log Lik.' -876 (df=6)

To make the results from lme4 comparable to the previous results, we set REML = FALSE, as the
transformation mixed model implementation only supports the maximum likelihood estimation of
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Figure 1: Sleep deprivation study: Average reaction times to a specific task of 18 participants after
several days of sleep deprivation reported by Belenky et al. (2003).

the normal linear model specification.

R> library("lme4")
R> sleep_lmer <- lmer(Reaction ~ Days + (Days | Subject), data = sleepstudy,
+ REML = FALSE)
R> logLik(sleep_lmer)

'log Lik.' -876 (df=6)

The as.lm = TRUE option of various methods in tramME facilitates the comparisons between the
transformation model parameterization and the results of a linear mixed model parameterization.
Coefficient estimates and their standard errors from the transformation model approach are

R> cbind(coef = coef(sleep_lmME, as.lm = TRUE),
+ se = sqrt(diag(vcov(sleep_lmME, as.lm = TRUE, pargroup = "fixef"))))

coef se
(Intercept) 251.4 6.63
Days 10.5 1.50

while the results from lmer are

R> summary(sleep_lmer)$coefficients

Estimate Std. Error t value
(Intercept) 251.4 6.63 37.91
Days 10.5 1.50 6.97

Similarly, the standard deviations and correlations of the random effects and the standard deviations
of the error terms are essentially the same

R> VarCorr(sleep_lmME, as.lm = TRUE) ## random effects

Grouping factor: Subject (18 levels)
Standard deviation:
(Intercept) Days

23.80 5.72

Correlations:
(Intercept)

Days 0.0813
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R> sigma(sleep_lmME) ## residual SD

[1] 25.6

R> VarCorr(sleep_lmer)

Groups Name Std.Dev. Corr
Subject (Intercept) 23.78

Days 5.72 0.08
Residual 25.59

With the predict method of tramME, we can evaluate the fitted conditional distribution of the
outcome on a scale specified by the user. Additionally, by setting type = "quantile", we can calculate
the quantiles of the conditional distribution of the response.

R> ## Update to specify the support
R> sleep_lmME1b <- update(sleep_lmME, support = c(150, 520))
R> ## Set up grid to calculate conditional quantiles
R> nd <- expand.grid(Days = seq(min(sleepstudy$Days), max(sleepstudy$Days),
+ length.out = 200),
+ Subject = unique(sleepstudy$Subject))
R> ## The quantiles we want to calculate
R> pr <- c(0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.975)
R> ## Specify the random effects values as predicted by the model
R> re <- ranef(sleep_lmME1b)
R> ## Calculate conditional quantiles
R> pred <- predict(sleep_lmME1b, newdata = nd, prob = pr, ranef = re,
+ type = "quantile")

Note that in the code above, we first update the model and explicitly set the support of the outcome
distribution. It is often helpful to define the support when we want to calculate the quantiles of the
outcome distribution because in certain extreme cases, the calculated values may lie outside of the
default support and, in these cases, predict.tramME (just as predict.mlt) will return censored values.

Because we are interested in conditional quantiles, we have to specify the values of the random
effects on which we want to condition for each subject. In the example above, we simply set the
predicted random effects values for the subjects of the sleepstudy dataset. Although it is relatively
common in practice, one should be careful with using plug-in estimators of non-linear functions of
the random effects (i.e., estimating these functions by evaluating at the point estimates of the random
effects) as they can contain substantial bias (Thorson and Kristensen, 2016). To demonstrate how
mixed-effects transformation models relax certain assumptions of the normal linear reference model
and to showcase the functionality implemented in the tramME package, occasionally, we will rely on
these estimators nevertheless.

Figure 2 presents the quantiles of the conditional distribution of reaction time from the model
defined in Equation (3). The random intercepts and slopes capture separate time trends for each
subject in the study. In the normal linear mixed model (estimated with LmME), the conditional quantiles
are parallel lines. We will revisit this example when we relax certain assumptions of this initial model
in Section 2.3.2.

tramME implements a version of score residuals that are defined as the score contributions of the
individual observations with respect to an additional constant term that is fixed at zero.

P (Y ≤ y | x, u, γ) = FZ

(
h(y; ϑ)− x⊤β − u⊤γ − α0

)
γ ∼ Nq(0, Σ)

ri =
∂ℓi(ϑ, β, Σ, α0)

∂α0

∣∣∣∣
α0=0,

(4)

where ℓi(ϑ, β, Σ, α0) is the marginal log-likelihood contribution of observation i. It is straightforward
to show that, in the case of the normal linear model, this is equal to the response residuals divided by
the MLE of the error standard deviation. As previously, the comparison with the parameterization
used by lme4 is made easy by using the option as.lm = TRUE.

R> resid_lmME <- resid(sleep_lmME, as.lm = TRUE)
R> resid_lmer <- resid(sleep_lmer)
R> all.equal(resid_lmME, resid_lmer)

[1] "Mean relative difference: 8.04e-06"

Using the linear predictor of the mixed-effects transformation model, (x⊤ β̂ + u⊤γ̂) calculated as
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Figure 2: Quantiles of the conditional distribution of the outcome fitted to the sleepstudy data with
the normal linear mixed-effects model (LmME).

R> lp <- predict(sleep_lmME, type = "lp")

we can construct plots for checking the residuals (Figure 3).

As the results of this section show, the transformation model approach implemented by LmME()
leads to the same results as the maximum likelihood estimation of the traditional linear mixed
model parameterization. The advantage of using the package tramME over other well-established
implementations is that it can also be applied when classical model assumptions are not met. For
the sleep deprivation experiments, the data analyst might wonder if assuming normal reaction times
is appropriate and if clocking of reaction times was indeed as accurate as suggested by the data
(milliseconds with four digits). The former issue requires a relaxation of the conditional normality
assumption and the latter incorporation of interval-censoring in the likelihood. We will start with
model estimation in the presence of interval-censored reaction times, which is outside the scope of
lme4.

Let us assume that the measurement device used in the sleep deprivation study is only able to
measure reaction times larger than 200 ms and only in 50 ms step sizes. If we want to take this reduced
accuracy in the measurements into account, we have to deal with interval-censored observations as
ignoring the censored nature of the outcomes could lead to biased parameter estimates.

With the following code, we create the interval-censored outcome vector using the Surv function
of the survival package by Therneau (2021).

R> library("survival")
R> ub <- ceiling(sleepstudy$Reaction / 50) * 50
R> lb <- floor(sleepstudy$Reaction / 50) * 50
R> lb[ub == 200] <- 0
R> sleepstudy$Reaction_ic <- Surv(lb, ub, type = "interval2")
R> head(sleepstudy$Reaction_ic)

[1] [200, 250] [250, 300] [250, 300] [300, 350] [350, 400] [400, 450]

Using the interval-censored outcomes in the LmME(), function call will maximize the correct likelihood
function.

R> sleep_lmME2 <- LmME(Reaction_ic ~ Days + (Days | Subject), data = sleepstudy)
R> logLik(sleep_lmME2)
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Figure 3: Residual plots of the normal linear mixed-effects transformation model fitted to the
sleepstudy data. Left: Residuals plotted against the linear predictor. Right: QQ plot of the residuals
against Gaussian quantiles.

'log Lik.' -201 (df=6)

The value of the log-likelihood is different because we are now calculating log-probabilities instead of
log-densities of a continuous distribution. However, despite the decreased precision of the measure-
ments, the parameter estimates are similar to what we got with the exactly observed outcomes.

R> cbind(coef = coef(sleep_lmME2, as.lm = TRUE),
+ se = sqrt(diag(vcov(sleep_lmME2, as.lm = TRUE, pargroup = "fixef"))))

coef se
(Intercept) 251.4 6.83
Days 10.5 1.62

R> sigma(sleep_lmME2)

[1] 28

R> VarCorr(sleep_lmME2, as.lm = TRUE)

Grouping factor: Subject (18 levels)
Standard deviation:
(Intercept) Days

22.30 5.94

Correlations:
(Intercept)

Days 0.0536

The small estimated value of the correlation coefficient between the random slope and intercept
suggests that a model with independent random effects might be more appropriate. To estimate such
a model, we can use the same notation as in lme4

R> sleep_lmME3 <- LmME(Reaction_ic ~ Days + (Days || Subject), data = sleepstudy)
R> logLik(sleep_lmME3)

'log Lik.' -201 (df=5)

Comparing the two models using a likelihood ratio test, we see no evidence against the more parsimo-
nious model (sleep_lmME3).

R> anova(sleep_lmME2, sleep_lmME3)
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Model comparison

Model 1: Reaction_ic ~ Days + (Days | Subject)
Model 2: Reaction_ic ~ Days + (Days || Subject)

npar logLik AIC BIC Chisq Chisq df Pr(>Chisq)
Model 2 5 -200 411 427
Model 1 6 -200 413 432 0.02 1 0.89

Note that the standard likelihood ratio tests provided by anova are very conservative for model
comparisons that involve setting some of the random effects variances to zero due to the non-standard
asymptotics of tests on the boundary of the parameter space (Self and Liang, 1987).

Box-Cox-type mixed-effects models

Substituting the linear baseline transformation function, h(y) = ϑ1 + ϑ2y, with a general, monotonic
increasing smooth function, we can relax the conditional normality assumption of the model discussed
in Section 2.3.1. The transformation model approach proposed by Hothorn et al. (2018) uses Bernstein
bases to approximate this general increasing function in a fully parametric manner, i.e., h(y) =
aBs,K+1(y)⊤ϑ. The resulting model can be regarded as a version of the Box-Cox regression (Box and
Cox, 1964), where the transformation of the response is estimated simultaneously with the model
parameters. It should be pointed out that, although its approach is similar in spirit, tramME does
not use the Box-Cox power transformation to approximate h(y). For an implementation utilizing the
original Box-Cox transform in the context of mixed-effects models, see the R package boxcoxmix by
Almohaimeed and Einbeck (2020).

A more flexible version of the model described in (3) will take the form

P (Reaction ≤ y | Days, αi, βi) = Φ
(

a(y)⊤ϑ − βDays− γ1i − γ2iDays
)

(5)
(

γ1i
γ2i

)
∼ N2

{(
0
0

)
,
(

τ2
1 τ12

τ12 τ2
2

)}
.

The Box-Cox-type transformation mixed model can be estimated using the BoxCoxME() function of the
tramME package. For this specific application, we set the order of the polynomials in Bernstein form
to 10.

R> sleep_bc <- BoxCoxME(Reaction ~ Days + (Days | Subject), data = sleepstudy,
+ order = 10)
R> logLik(sleep_bc)

'log Lik.' -858 (df=15)

Note that the log-likelihood of this model is higher than that of the normal linear model because we
are now approximating the baseline transformation function flexibly at the expense of a larger number
of parameters.

The conditional quantiles calculated – using the same set of function calls, and with the same
caveats, as in the analogous case of LmME – from the model defined by Equation (5) are shown in
Figure 4. Comparing these results to Figure 2 reveals departures from conditional normality in the
response distributions: At different lengths of sleep deprivation, the conditional distribution of the
participants’ reaction times is not a shifted normal distribution anymore, but it also changes its spread
and shape.

The conditional distributions of the outcome can be further inspected visually with the plot
method of tramME, which is designed to plot these distributions on a scale specified by the user. The
left-hand side plot in Figure 5 compares the conditional densities of subjects 308 and 309 at various
sleep deprivation lengths. Clearly, subject 308 is hardly affected by sleep deprivation because the mean
and variance of the distribution of reaction time for this subject increase only marginally with days
of sleep deprivation. In contrast, subject 309 showed longer mean reaction times and an increased
variability of reaction times with increasing duration of sleep deprivation. The variance effect is
not detectable from a classical normal linear mixed model but can be observed after a data-driven
response transformation to normality. In the right panel of Figure 5, the conditional distribution of a
hypothetical reference subject with zero random effects values is depicted. It should be noted that the
latter is, in general, not equal to the marginal distribution of the outcome, which can be calculated
by integrating the conditional distributions over the vector of random effects. We will return to this
question at the end of this section.

The plots in Figure 5 can be generated with the commands
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Figure 4: Quantiles of the conditional distribution of the outcome fitted to the sleepstudy data with
the non-normal (Box-Cox-type) linear mixed-effects transformation model (BoxCoxME) defined in
Equation (5).
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Figure 5: Conditional densities of the outcome from a non-normal (Box-Cox-type) mixed-effects linear
transformation model (BoxCoxME) fitted to the sleepstudy data. Left: The conditional densities of
subject 308 and 309 at various lengths of sleep deprivation (0-9 days). Right: The conditional densities
of a reference subject (with random effects equal to zero) at various lengths of sleep deprivation (0-9
days).
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R> ## -- Compare two subjects (308 and 309)
R> nd <- subset(sleepstudy, subset = Subject %in% c(308, 309))
R> plot(sleep_bc1b, newdata = nd, type = "density", K = 200)
R> ## -- The reference subject (at the mean of the random effect vector)
R> ## (we only need an arbitrary subject)
R> nd <- subset(sleepstudy, subset = Subject == 308)
R> ## NOTE: we explicitly set the random effects vector to 0
R> plot(sleep_bc1b, newdata = nd, ranef = "zero", type = "density", K = 200)

(and with some additional formatting steps that are omitted for the sake of brevity but can be found in
the accompanying material).

In line with the methodology presented by Hothorn et al. (2018) and Hothorn (2020), we can
define more complex mixed-effects transformation models by interacting the covariates with the basis
expansion of the outcome. In the resulting extended model, the fixed effects are dependent on the
level of the outcome. For the sleepstudy example, this model can be written as

P (Reaction ≤ y | Days, αi, βi) = Φ
(

a(y)⊤ϑ − β(y)Days− γ1i − γ2iDays
)

(6)
(

γ1i
γ2i

)
∼ N2

{(
0
0

)
,
(

τ2
1 τ12

τ12 τ2
2

)}
,

which is often referred to as “distribution regression” (Chernozhukov et al., 2013).

The model in Equation 6 can be defined in tramME using the | operator on the left-hand side of
the model formula.

R> sleep_bc2 <- BoxCoxME(Reaction | Days ~ 1 + (Days | Subject), data = sleepstudy,
+ order = 10, support = c(150, 520))
R> logLik(sleep_bc2)

'log Lik.' -853 (df=25)

Plotting the conditional quantiles calculated from the resulting model in Figure 6 and comparing
it with Figures 2 and 4 demonstrates the increased flexibility of the specification.
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Figure 6: Quantiles of the conditional distribution of the outcome fitted to the sleepstudy data with
the non-normal (Box-Cox-type) distributional mixed-effects transformation model (BoxCoxME) defined
in Equation (6).
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In many cases, the goal of the analysis is to estimate the marginal distribution of the outcomes,
i.e., integrating out the random effects from the conditional model (1). In the general formulation,
there is no analytical solution for the integral, but we can use numerical methods to approximate the
marginal distributions at various values of the outcome. The following code utilizes the simulate and
predict methods implemented in the tramME package to get Monte Carlo estimates of the outcome
distribution implied by the model (5).

R> ndraws <- 1000 ## number of MC draws
R> ## Set up the grid on which we evaluate the marginal distribution
R> nd <- expand.grid(
+ Reaction = seq(min(sleepstudy$Reaction), max(sleepstudy$Reaction),
+ length.out = 100),
+ Days = 0:9,
+ Subject = 1)
R> ## Sample from the distribution of the random effects
R> re <- simulate(sleep_bc, newdata = nd, nsim = ndraws, what = "ranef", seed = 100)
R> ## Evaluate the conditional distribution at each draw
R> ## (done in parallel to speed up computations)
R> cp <- parallel::mclapply(re, function(x) {
+ predict(sleep_bc, newdata = nd, ranef = x, type = "distribution")
+ }, mc.cores = 8)
R> cp <- array(unlist(cp), dim = c(100, 10, ndraws))
R> ## Integral: take the average over these
R> mp_bc <- apply(cp, c(1, 2), mean)

Figure 7 compares the conditional distributions obtained by integrating over the vector of random
effects in models (3) and (5).
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Figure 7: Comparison of the marginal distributions implied by the normal linear (LmME) and the
Box-Cox-type (BoxCoxME) mixed-effects models fitted to the sleep deprivation study dataset. The
empirical cumulative distribution functions (ECDF) are also plotted, conditionally on the days of sleep
deprivation.

Mixed-effects continuous outcome logistic regression

The increased flexibility of the Box-Cox-type model, i.e., using a general baseline transformation
function instead of a linear one, comes with the price that the coefficient estimates will not be easily
interpretable as expected changes in the mean in the conditional model. Switching to the standard
logistic error distribution provides a solution to this problem, as the parameter estimates in the
resulting model can be interpreted as log-odds ratios. This continuous outcome logistic regression model
was used by Lohse et al. (2017) to analyze body mass index (BMI) distributions.
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Manuguerra and Heller (2010) proposed a mixed-effects logistic regression model for bounded,
continuous measurements of pain levels in a randomized, double-blind, placebo-controlled trial of
low-level laser therapy for subjects with chronic neck pain presented by Chow et al. (2006). The levels
of pain, measured on a visual analog scale, and normalized between 0 and 1, are plotted in Figure 8
for each subject at the different follow-up times.
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Figure 8: Neck pain dataset: Trajectories of pain levels measured on a visual analog scale (VAS) in the
active treatment and placebo-controlled groups reported in Chow et al. (2006).

The mixed-effects model suggested by Manuguerra and Heller (2010) parameterizes the log-odds
of experiencing smaller pain levels as a linear function of fixed and random effects and the baseline
transformation. With the treatment group indicator, laser, and time denoting the follow-up times,

log
[

P (pain ≤ y | laser, time, αi)

P (pain > y | laser, time, αi)

]
= h(y) + βActive + β7w + β12w + β7w, Active + β12w, Active + αi

αi ∼ N (0, τ2),

where h(y) is an increasing function of the outcome. Rearranging the terms in the model above reveals
that this indeed is a mixed-effects transformation model, with the distribution function of the standard
logistic distribution (“expit” function) as FZ,

P (pain ≤ y | laser, time, αi) = expit
(
h(y) + βActive + β7w + β12w

+ β7w,Active + β12w, Active + αi
) (7)

αi ∼ N (0, τ2).

The ColrME() function of the tramME package estimates mixed-effects continuous outcome logistic
regression models using polynomials in Bernstein form to approximate h(y). Applying this model to
the neck_pain dataset:

R> neck_tr <- ColrME(vas ~ laser * time + (1 | id), data = neck_pain,
+ bounds = c(0, 1), support = c(0, 1))

Notice that we explicitly set the bounds and the support of the outcome variable to [0, 1] because the
pain levels are measured on a bounded scale.

The ordinalCont package by Manuguerra et al. (2020) implements an alternative formulation of the
model (7) based on the method described in Manuguerra et al. (2017). In their approach, the baseline
transformation is parameterized using B-splines and the estimation is carried out in a penalized
likelihood framework.

R> library("ordinalCont")
R> neck_ocm <- ocm(vas ~ laser * time + (1 | id), data = neck_pain, scale = c(0, 1))

Figure 9 compares the results of the mixed-effects transformation model approach to the estimates
obtained using the ordinalCont package. Because the two models are not exactly the same, we see
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some differences in the parameter estimates as well as in the fitted baseline transformation functions,
but the two model fits are reasonably close to each other.
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Figure 9: Left: Baseline transformations in continuous outcome logistic regressions estimated with
the tramME and ordinalCont packages on the neck_pain dataset. The solid lines denote the point
estimates, and the areas indicate the 95% point-wise confidence intervals. Right: Coefficient estimates
from tramME and ordinalCont packages and their 95% Wald confidence intervals.

The odds ratio estimates of the model fitted by ColrME(),

R> exp(coef(neck_tr))

laser1 time2 time3 laser1:time2 laser1:time3
0.0961 0.5200 0.8125 140.2076 42.4076

as well as the results from the ordinalCont package, suggest that there is an imbalance in the sample
at baseline, i.e., the odds of experiencing less pain in the active treatment group is only about 10%
that of in the control group for any pain levels. Based on the estimates, the treatment has a strong
significant effect, especially at the seven-week follow-up, but seems to level off after 12 weeks.

If we want to compare the marginal distributions in the treatment and control groups directly, we
have to average over the distribution of the random effects. Because we only have a random intercept
in this example, we have to evaluate a one-dimensional integral. We could use the same Monte Carlo
method as we did in Section 2.3.2, or we can apply the adaptive quadrature method implemented in
the stats package of R. The example below uses this approach to demonstrate the multiple options the
user has in dealing with such problems.

R> ## A function to evaluate the joint cdf of the response and the random effects:
R> ## Takes a vector of random effect and covariates values, evaluates the conditional
R> ## distribution at these values and multiplies it with the pdf of the random effects
R> jointCDF <- function(re, nd, mod) {
+ nd <- nd[rep(1, length(re)), ]
+ nd$id <- seq(nrow(nd)) ## to take vector-valued REs
+ pr <- predict(mod, newdata = nd, ranef = re, type = "distribution") *
+ dnorm(re, 0, sd = sqrt(varcov(mod)[[1]][1, 1]))
+ c(pr)
+ }
R> ## Marginalize the joint cdf by integrating out the random effects
R> ## using adaptive quadrature
R> marginalCDF <- function(nd, mod) {
+ nd$cdf <- integrate(jointCDF, lower = -Inf, upper = Inf, nd = nd, mod = mod)$value
+ nd
+ }
R> ## Set up the grid on which we evaluate the marginal distribution
R> nd <- expand.grid(vas = seq(0, 1, length.out = 100),
+ time = unique(neck_pain$time),
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+ laser = unique(neck_pain$laser))
R> ## Calls marginalCDF on each row of nd
R> ## (done in parallel to speed up computations)
R> mp_colr <- parallel::mclapply(split(nd, seq(nrow(nd))),
+ marginalCDF, mod = neck_tr, mc.cores = 8)
R> mp_colr <- do.call("rbind", mp_colr)

Figure 10 compares the marginal distributions at different time points and confirms our previous
conclusions on baseline imbalance and treatment effect dynamics.
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Figure 10: Comparison of marginal distributions, calculated from a mixed-effects continuous outcome
logistic regression model in the treatment (Active) and control (Placebo) groups at baseline and the
two follow-up times. The step functions represent the empirical cumulative distribution functions of
the specific groups.

Mixed-effects transformation models for time-to-event outcomes

Mixed models for right-censored data are important in survival analysis and we consider the example
dataset eortc in the coxme package by Therneau (2020). This simulated dataset emulates the structure
of the outcomes of a breast cancer trial by the European Organization for Research and Treatment of
Cancer, and consists of 2323, possibly right-censored, data points from 37 enrolling centers. We define
a proportional hazards mixed-effects model with random center (i = 1, . . . , 37) and treatment (trt)
effects (nested within centers and indexed by j = 0, 1).

P
(

Y ≤ y | trt, γ1i, γ2j(i)

)
= 1 − exp

(
− exp

(
h(y) + βtrt + γ1i + γ2j(i)

))
(8)

γ1i ∼ N (0, τ2
1 ), γ2j(i) ∼ N (0, τ2

2 )

This model corresponds to a mixed-effects transformation model with the minimum extreme value
distribution as the error distribution. Treating the baseline transformation as a general smooth function,
approximated using polynomials in Bernstein form, we get the fully parametric version of the Cox
proportional hazards model with normally distributed random effects.

We can fit this model with the CoxphME() function of tramME.

R> data("eortc", package = "coxme")
R> eortc$trt <- factor(eortc$trt, levels = c(0, 1))
R> eortc_cp <- CoxphME(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc,
+ log_first = TRUE, order = 10)

The nested random effects structure is defined with the / operator. The log_first = TRUE option casts
the outcome variable to the log-scale before defining the Bernstein bases, which usually improves the
model fit when dealing with skewed conditional distributions, while we explicitly set the order of
the polynomials in Bernstein form with order = 10. The confidence interval for the treatment effect
(transformed to the hazard ratio scale) suggests evidence for the effectiveness of the treatment,

R> exp(confint(eortc_cp, parm = "trt1", estimate = TRUE))
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lwr upr est
trt1 1.8 2.51 2.12

while the profile intervals of the random effects standard deviations indicate similar magnitude of
center-level and treatment-level (within center) variabilities.

R> exp(confint(eortc_cp, pargroup = "ranef", type = "profile", estimate = TRUE,
+ ncpus = 2, parallel = "multicore"))

lwr upr est
trt:center|(Intercept) 0.0841 0.338 0.208
center|(Intercept) 0.0796 0.384 0.254

The transformation model framework by Hothorn (2020) allows for stratification, i.e., specify-
ing separate transformation functions for different groups defined by a stratification factor. Time-
dependent effects for the covariates can be introduced in the same way as in distribution regression
to relax the proportionality assumption of the Cox model. To check the appropriateness of the pro-
portional hazards assumption between treatment and control groups visually, we re-estimate the
model stratifying for the treatment indicator, i.e., fitting transformation functions for the treatment
and control groups separately, and inspect whether these two functions, which are the log-cumulative
hazards when the error distribution is the minimum extreme value distribution, are parallel.

R> eortc_cp2 <- CoxphME(Surv(y, uncens) | 0 + trt ~ 0 + (1 | center/trt), data = eortc,
+ log_first = TRUE, order = 10)
R> tr <- trafo(eortc_cp2, confidence = "interval")

Figure 11 plots the stratified transformation functions against log-time. The two curves are very close
to parallel, which indicates that the treatment effect is constant over time, i.e., the proportionality
assumption is appropriate in the original model specification.
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Figure 11: Comparison of baseline transformation functions in treatment and control groups, estimated
using a stratified parametric mixed-effects Cox proportional hazards model on the eortc dataset.

In addition to proportionality, Figure 11 reveals another important aspect of the data generating
process. The fact that the baseline log-cumulative hazards are linear in log-time suggests that the
conditional distributions are close to the Weibull distribution, i.e., we can substitute the general
baseline transformation function with h(y) = ϑ1 + ϑ2 log(y). Flipping the signs of the fixed and
random effects terms of (8) and substituting the log-linear function to the baseline transformation, we
get the model

P
(

Y ≤ y | trt, γ1i, γ2j(i)

)
= 1 − exp

(
− exp

(
ϑ1 + ϑ2 log(y)− βtrt − γ1i − γ2j(i)

))

γ1i ∼ N (0, τ2
1 ), γ2j(i) ∼ N (0, τ2

2 ).

The SurvregME() function of the tramME package implements a variety of parametric mixed-
effects models that represent specific choices of the error distribution and the baseline transformation
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function in the general formulation of Equation (1). There are several other R packages available for
estimating parametric survival models with mixed effects, such as parfm by Munda et al. (2012) and
frailtypack by Rondeau et al. (2012). However, they typically do not allow for nested random-effects
structures when assuming (log-)normally distributed frailty terms.

Fitting a mixed-effects Weibull model to the eortc dataset:

R> eortc_w <- SurvregME(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc,
+ dist = "weibull")

Comparing the parameter estimates of the Cox proportional hazards model to those from the
mixed-effects Weibull model,

R> ## --- CoxphME
R> c(coef = coef(eortc_cp), se = sqrt(diag(vcov(eortc_cp, pargroup = "shift"))))

coef.trt1 se.trt1
0.7535 0.0852

R> VarCorr(eortc_cp)

Grouping factor: trt:center (74 levels)
Standard deviation:
(Intercept)

0.208

Grouping factor: center (37 levels)
Standard deviation:
(Intercept)

0.254

R> ## --- SurvregME
R> c(coef = -coef(eortc_w), se = sqrt(diag(vcov(eortc_w, pargroup = "shift"))))

coef.trt1 se.trt1
0.7531 0.0851

R> VarCorr(eortc_w)

Grouping factor: trt:center (74 levels)
Standard deviation:
(Intercept)

0.208

Grouping factor: center (37 levels)
Standard deviation:
(Intercept)

0.255

as well as their log-likelihood values

R> c(logLik(eortc_cp), logLik(eortc_w))

[1] -13027 -13032

confirms our suspicion that the dataset was indeed simulated from a conditional Weibull model.

Finally, we can compare the results from tramME to parameters estimated with the R package
coxme.

R> library("coxme")
R> eortc_cm <- coxme(Surv(y, uncens) ~ trt + (1 | center/trt), data = eortc)
R> summary(eortc_cm)

Cox mixed-effects model fit by maximum likelihood
Data: eortc
events, n = 1463, 2323
Iterations= 10 54
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NULL Integrated Fitted
Log-likelihood -10639 -10518 -10464

Chisq df p AIC BIC
Integrated loglik 242 3.0 0 236 220.4
Penalized loglik 349 39.3 0 270 62.6

Model: Surv(y, uncens) ~ trt + (1 | center/trt)
Fixed coefficients

coef exp(coef) se(coef) z p
trt1 0.742 2.1 0.0827 8.97 0

Random effects
Group Variable Std Dev Variance
center/trt (Intercept) 0.2045 0.0418
center (Intercept) 0.2627 0.0690

This package follows a different approach to estimate a mixed-effects Cox model by leaving the baseline
hazards unspecified and maximizing the integrated partial likelihood. As a result, the parameter
estimates are slightly different from the ones we got using the CoxphME() function, but the results are
comparable, and the conclusions are identical, nevertheless.

Mixed-effects transformation models for discrete ordinal outcomes

Our last example demonstrates how the mixed-effects transformation framework can be used in
modeling correlated discrete ordinal outcomes. As an example, we take the soup tasting dataset by
Christensen et al. (2011). The dataset contains 1847 observations from 185 respondents in a soup
tasting experiment. The subjects were familiarized with a reference product prior to the experiment
and, during the experiment, were asked to distinguish between samples from the reference product
and test product using a six-level ordinal scale indicating their level of confidence. The scale ranges
from “reference, sure” (sureness = 1) to “not reference, sure” (sureness = 6). Figure 12 presents the
proportions of response categories for the test and reference samples for respondent groups defined
by how often they consume soup.
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Figure 12: Data from the soup tasting study reported by Christensen et al. (2011): Proportions of
responses of sureness levels (six levels, ranging from “reference, sure” to “not reference, sure”) after
tasting test and reference products. The data points are grouped by how often the respondents
consume soup (more than once a week, one to four times a month, less than once a month).

Let us assume that we are interested in comparing the distributions of sureness ratings for reference
products and test products while taking the repeated nature of the design into account. Moreover, in
doing so, we also want to control for how often the respondents usually consume soup (denoted by
the covariate freq). With k = 1 . . . 5, indicating the sureness levels except the last one, i = 1 . . . , 185
indexing the respondents, and j = 0, 1 indexing the reference and test products (covariate prod),
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respectively, the regression model we estimate can be written as

P
(
sureness ≤ k | prod, freq, γ1i, γ2j(i)

)
= Φ

(
ϑk − βtest − β1-4/month − β<1/month

− γ1i − γ2j(i)
) (9)

γ1i ∼ N (0, τ2
1 ), γ2j(i) ∼ N (0, τ2

2 ).

The PolrME() function of the tramME package estimates models for ordered discrete outcomes.
Depending on the choice of the error distribution, the user can fit proportional odds (logistic dis-
tribution), ordinal probit (standard normal distribution), proportional hazards (minimum extreme
value distribution), or cumulative maximum extreme value models. In our example, we set method =
'probit' to estimate the probit model,

R> soup_pr <- PolrME(SURENESS ~ PROD + SOUPFREQ + (1 | RESP/PROD),
+ data = soup, method = "probit")
R> logLik(soup_pr)

'log Lik.' -2666 (df=10)

The R package ordinal by Christensen (2019) also implements mixed-effects regression models for
ordered discrete outcomes. As a cross-check, we can re-estimate the same model with the function
clmm(),

R> library("ordinal")
R> soup_or <- clmm(SURENESS ~ PROD + SOUPFREQ + (1 | RESP/PROD), data = soup,
+ link = "probit")
R> logLik(soup_or)

'log Lik.' -2666 (df=10)

Based on the likelihood values and the parameter estimates,

R> max(abs(coef(soup_or) - coef(soup_pr, with_baseline = TRUE)))

[1] 1.76e-05

the results are essentially the same.

We can introduce non-proportional effects in the transformation model framework by stratifying
on a covariate. In our example, we might want to extend the model to allow for different effect sizes of
the soup consumption frequency covariate, depending on the level of the outcome variable. Rewriting
model (9),

P
(
sureness ≤ k | prod, freq, γ1i, γ2j(i)

)
= Φ

(
ϑk − βtest − β1-4/month,k − β<1/month,k − γ1i − γ2j(i)

)

γ1i ∼ N (0, τ2
1 ), γ2j(i) ∼ N (0, τ2

2 ),

and estimating it with tramME by stratifying for the soup frequency factor

R> soup_pr2 <- PolrME(SURENESS | SOUPFREQ ~ PROD + (1 | RESP/PROD),
+ data = soup, method = "probit")
R> logLik(soup_pr2)

'log Lik.' -2655 (df=18)

The likelihood ratio test comparing the two specifications suggests some evidence that the extended,
partially proportional model fits the data better.

R> anova(soup_pr, soup_pr2)

Model comparison

Model 1: SURENESS ~ PROD + SOUPFREQ + (1 | RESP/PROD)
Model 2: SURENESS | SOUPFREQ ~ PROD + (1 | RESP/PROD)

npar logLik AIC BIC Chisq Chisq df Pr(>Chisq)
Model 1 10 -2666 5352 5408
Model 2 18 -2655 5347 5446 21.9 8 0.0051 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Discussion

Building the implementation of mixed-effects transformation models on the package TMB leads
to significant efficiency gains in the computationally intensive steps of the maximum likelihood
estimation. This computational efficiency is partly due to the use of Laplace approximation to
integrate over the vector of random effects. However, several sources point out that Laplace’s method
can lead to biased estimates in some distributional settings. Pinheiro and Chao (2006) provide detailed
numerical comparisons of the Laplacian approximation to adaptive Gaussian quadrature algorithms
in the context of multilevel generalized models. Joe (2008) evaluates the method in the case of
discrete outcome mixed-effects models and concludes that the inaccuracy increases with the amount
of discreteness of the response variable and decreases as the cluster sizes increase.

It is worth mentioning that the conditional approach of modeling the distribution of the response,
which is the basis of the transformation models implemented in the tramME package, is not the
only way one could approach the problem of correlated outcomes in regression settings. The main
alternative to a conditional (mixed-effects) modeling approach is a marginal model that parameterizes
the marginal distribution of the outcome and treats the covariance structure as nuisance parameters.
Generalized estimating equations (GEE, Hardin and Hilbe, 2013) models represent prominent ex-
amples of such an approach. Proponents of marginal models point out that, in a conditional model,
the fixed effects parameter estimates cannot be interpreted as population averages, which is usually
of primary interest in a regression analysis. Lindsey and Lambert (1998) emphasize that marginal
parameter estimates from longitudinal studies can only be interpreted as population averages when
the participants are representative to their populations, which is usually not the case. Moreover,
they argue that defining models based on marginal distributions very often leads to complicated
and implausible conditional distributions, whereas conditional models can more easily express phys-
iologically plausible mechanisms on the level of the individual. Lee and Nelder (2004) argue that
conditional models are more fundamental as they allow for both marginal and conditional inferences,
which is not true in the case of marginal models. As we demonstrated in Sections 2.3.2 and 2.3.3, the
marginal distributions implied by the conditional transformation model can be easily approximated
using numerical techniques.

The tramME package, introduced in this article, extends the available options for modeling
grouped data structures with mixed-effects regressions in several ways: Through its dense code
base, tramME provides a unified and efficient estimation framework for a broad range of regression
models. Examples in Section 2.3 demonstrate that using this single package, several very specific
regression problems can be addressed. Relying only on a limited number of packages, in turn,
decreases the likelihood of errors in the statistical analysis. As the examples show, the modular
structure of our approach naturally leads to extensions of existing models (such as accounting for
censoring or introducing nested or crossed random effects structures) that would otherwise require a
lot of effort to re-implement from scratch. Moreover, the underlying theory of linear transformation
models provides a flexible basis for the implementation of the package and for its future extensions.
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Changes

The original paper was written using version 0.1.2. The list of changes in the
current version (1.0.0):

pp. 15: The trafo method has been removed from the package. To create similar
plots, the transformation function can be evaluated manually. An example
for this can be found in the vignette mixed-effects-additive-models:

R> Y <- model.matrix(ecoli_m1_bc, data = nd, type = "Y")$Ye

R> b <- coef(ecoli_m1_bc, with_baseline = TRUE)[1:7]

R> vc <- vcov(ecoli_m1_bc, pargroup = "baseline")

R> ci <- confint(multcomp::glht(multcomp::parm(b, vc), linfct = Y),

+ calpha = multcomp::univariate_calpha())$confint
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