First, let’s fix some parameters.
For the marginals, we will use location scale transformed Student distributions.
rtls <- function(n, df, mu, sigma) sigma * rt(n,df) + mu
ptls <- function(x, df, mu, sigma) pt((x - mu)/sigma,df)
qtls <- function(u, df, mu, sigma) sigma * qt(u,df) + mu
dtls <- function(u, df, mu, sigma) dt((x - mu)/sigma,df)/sigma
Let’s generate some data.
rclayton <- function(n, alpha) {
u <- runif(n+1) # innovations
v <- u
for(i in 2:(n+1))
v[i] <- ((u[i]^(-alpha/(1+alpha)) -1)*v[i-1]^(-alpha) +1)^(-1/alpha)
v[2:(n+1)]
}
n <- 200
u <- rclayton(n, alpha = alpha)
u <- qtls(u, df=df, mu=mu, sigma=sigma)
y <- u[-n]
x <- u[-1]
We now estimate the parameters under known marginals
## Call: fitCopula(claytonCopula(dim = 2), cbind(ptls(x, df, mu, sigma),
## ptls(y, df, mu, sigma)))
## Fit based on "maximum pseudo-likelihood" and 199 2-dimensional observations.
## Copula: claytonCopula
## alpha
## 11.08
## The maximized loglikelihood is 226.5
## Optimization converged
## Identical margins
M2tlsI <- mvdc(claytonCopula(dim=2), c("tls","tls"),
rep(list(list(df=NA, mu=NA, sigma=NA)), 2), marginsIdentical= TRUE)
(fit.id.mar <- fitMvdc(cbind(x,y), M2tlsI, start=c(3,1,1, 10)))
## Call: fitMvdc(data = cbind(x, y), mvdc = M2tlsI, start = c(3, 1, 1,
## 10))
## Maximum Likelihood estimation based on 199 2-dimensional observations.
## Copula: claytonCopula
## Identical margins:
## m.df m.mu m.sigma
## 3.9098 0.4095 0.7320
## Copula:
## alpha
## 5.938
## The maximized loglikelihood is -338.2
## Optimization converged
## Not necessarily identical margins
M2tls <- mvdc(claytonCopula(dim=2), c("tls","tls"),
rep(list(list(df=NA, mu=NA, sigma=NA)), 2))
fitMvdc(cbind(x,y), M2tls, start=c(3,1,1, 3,1,1, 10))
## Call: fitMvdc(data = cbind(x, y), mvdc = M2tls, start = c(3, 1, 1,
## 3, 1, 1, 10))
## Maximum Likelihood estimation based on 199 2-dimensional observations.
## Copula: claytonCopula
## Margin 1 :
## m1.df m1.mu m1.sigma
## 3.7851 0.4150 0.7288
## Margin 2 :
## m2.df m2.mu m2.sigma
## 4.0760 0.4046 0.7358
## Copula:
## alpha
## 5.944
## The maximized loglikelihood is -338.1
## Optimization converged
u.cond <- function(z, tau, df, mu, sigma, alpha)
((tau^(-alpha/(1+alpha)) -1) * ptls(z,df,mu,sigma)^(-alpha) + 1) ^ (-1/alpha)
y.cond <- function(z, tau, df, mu, sigma, alpha) {
u <- u.cond(z, tau, df, mu, sigma, alpha)
qtls(u, df=df, mu=mu, sigma=sigma)
}
plot(x, y)
title("True and estimated conditional quantile functions")
mtext(quote("for" ~~ tau == (1:5)/6))
z <- seq(min(y),max(y),len = 60)
for(i in 1:5) {
tau <- i/6
lines(z, y.cond(z, tau, df,mu,sigma, alpha))
## and compare with estimate:
b <- fit.id.mar@estimate
lines(z, y.cond(z, tau, df=b[1], mu=b[2], sigma=b[3], alpha=b[4]),
col="red")
}