Title: | Rmetrics - Analysing and Modelling Financial Assets |
---|---|
Description: | A collection of functions to manage, to investigate and to analyze data sets of financial assets from different points of view. |
Authors: | Diethelm Wuertz [aut], Tobias Setz [aut], Yohan Chalabi [aut], Stefan Theussl [aut, cre] |
Maintainer: | Stefan Theussl <[email protected]> |
License: | GPL (>= 2) |
Version: | 4023.85.9000 |
Built: | 2024-10-24 20:15:29 UTC |
Source: | https://github.com/r-forge/rmetrics |
The Rmetrics fAssets
package is a collection of functions
to manage, to investigate and to analyze data sets of financial
assets from different points of view.
Package: | fAssets |
Type: | Package |
Date: | 2014 |
License: | GPL Version 2 or later |
Copyright: | (c) 1999-2014 Rmetrics Association |
Repository: | R-FORGE |
URL: | https://www.rmetrics.org |
The package fAssets
was written to explore and investigate
data sets of financial asssets
Included are functions to make the the asset selection process easier, to robustify return and covariances for modeling portfolios, to test financial returns for multivariate normality, and to measure in a simple way performance and risk of funds and portfolios.
Beside this many functions for graphs and plots, and for a more sophisticated explorative data analysis are provided. They range from simple time series plots to more elaborated statisitical chart tools: histogram, density, boxplots, and QQ plots; pairs,similaries, and covarinace ellipses plots; star plots, and risk/reward graphs.
The assets selection chapter containts functions which arrange assets from a data set according to different measaures applying ideas from principal component analysis, from hierarchical clustering, or by a user defined statistical measure:
assetsArrange Rearranges the columns in a data set of assets pcaArrange Returns PCA correlation ordered column names hclustArrange Returns hierarchical clustered column names abcArrange Returns assets sorted by column names orderArrange Returns assets ordered by column names sampleArrange Returns a re-sampled set of assets statsArrange Returns statistically rearranged column names
In addition we have summarized and bundle of distance measure functions to determine the similarity or dissimilarity of individual assets from a set of multivariate financial return series.
assetsDist Computes the distances between assets corDist Returns correlation distance measure kendallDist Returns kendalls correlation distance measure spearmanDist Returns spearmans correlation distance measure mutinfoDist Returns mutual information distance measure euclideanDist Returns Euclidean distance measure maximumDist Returns maximum distance measure manhattanDist Returns Manhattan distance measure canberraDist Returns Canberra distance measure binaryDist Returns binary distance measure minkowskiDist Returns Minkowsky distance measure braycurtisDist Returns Bray Curtis distance measure mahalanobisDist Returns Mahalanobis distance measure jaccardDist Returns Jaccard distance mesaure sorensenDist Returns Sorensen distance measure
A last group of functions allows to select assets by concepts from hierarchical or k-means clustering:
assetsSelect Selects similar or dissimilar assets .hclustSelect Selects due to hierarchical clustering .kmeansSelect Selects due to k-means clustering
We provide several functions to compute robust measures for mean and/or covariance estimates which can be used for example in robustified Markowitz portfolio Optimization.
assetsMeanCov Estimates mean and variance for a set of assets .covMeanCov uses sample covariance estimation .mveMeanCov uses "cov.mve" from [MASS] .mcdMeanCov uses "cov.mcd" from [MASS] .studentMeanCov uses "cov.trob" from [MASS] .MCDMeanCov requires "covMcd" from [robustbase] .OGKMeanCov requires "covOGK" from [robustbase] .nnveMeanCov uses builtin from [covRobust] .shrinkMeanCov uses builtin from [corpcor] .baggedMeanCov uses builtin from [corpcor] .arwMeanCov uses builtin from [mvoutlier] .donostahMeanCov uses builtin from [robust] .bayesSteinMeanCov uses builtin from Alexios Ghalanos .ledoitWolfMeanCov uses builtin from [tawny] .rmtMeanCov uses builtin from [tawny]
An additional function allows to detect outliers from a PCA outlier analysis.
assetsOutliers Detects outliers in multivariate assets sets
The multivariate Shapiro test and the E-Statistic Energy Test allow to test multivariate Normality of financial returns.
assetsTest Tests for multivariate Normal Assets mvshapiroTest Multivariate Shapiro Test mvenergyTest Multivariate E-Statistic (Energy) Test
The computation of Lower partial moments is done by the following two functions:
assetsLPM Computes asymmetric lower partial moments assetsSLPM Computes symmetric lower partial moments
Dozens of tailored plot functions are included in the fAssets
package. This makes it very easy to visualize properties and to
perform an explorative data analysis. Starting from simple time
series functions.
assetsReturnPlot Displays time series of individual assets assetsCumulatedPlot Displays time series of individual assets assetsSeriesPlot Displays time series of individual assets
we can also explore the distributional properties of the returns by histogram, density, boxplots, and QQ Plots:
assetsHistPlot Displays a histograms of a single asset assetsLogDensityPlot Displays a pdf plot on logarithmic scale assetsHistPairsPlot Displays a bivariate histogram plot assetsBoxPlot Displays a standard box plot assetsBoxPercentilePlot Displays a side-by-side box-percentile plot assetsQQNormPlot Displays normal qq-plots of individual assets
Corellation and similarities are another source of information about the dependence structure of individual financial returns. The functions which help us to detect those properties in data sets of financial assets include:
assetsPairsPlot Displays pairs of scatterplots of assets assetsCorgramPlot Displays pairwise correlations between assets assetsCorTestPlot Displays and tests pairwise correlations assetsCorImagePlot Displays an image plot of a correlations covEllipsesPlot Displays a covariance ellipses plot assetsDendrogramPlot Displays hierarchical clustering dendrogram assetsCorEigenPlot Displays ratio of the largest two eigenvalues
Beside correlations und dependencies also risk/reward graphs give additional insight into the structure of assets.
assetsRiskReturnPlot Displays risk-return diagram of assets assetsNIGShapeTrianglePlot Displays NIG Shape Triangle assetsTreePlot Displays a minimum spanning tree of assets
Statistic visualized by star plots is a very appealing tool for characterization and classification of assets by eye:
assetsStarsPlot Draws segment/star diagrams of asset sets assetsBasicStatsPlot Displays a segment plot of basic return stats assetsMomentsPlot Displays a segment plot of distribution moments assetsBoxStatsPlot Displays a segment plot of box plot statistics assetsNIGFitPlot Displays a segment plot NIG parameter estimates
The fAssets
Rmetrics package is written for educational
support in teaching "Computational Finance and Financial Engineering"
and licensed under the GPL.
Allows to rearrange a set of assets columnwise.
assetsArrange(x, method = c("pca", "hclust", "abc"), ...) pcaArrange(x, robust = FALSE, ...) hclustArrange(x, method = c("euclidean", "complete"), ...) abcArrange(x, ...) orderArrange(x, ...) sampleArrange(x, ...) statsArrange(x, FUN = colMeans, ...)
assetsArrange(x, method = c("pca", "hclust", "abc"), ...) pcaArrange(x, robust = FALSE, ...) hclustArrange(x, method = c("euclidean", "complete"), ...) abcArrange(x, ...) orderArrange(x, ...) sampleArrange(x, ...) statsArrange(x, FUN = colMeans, ...)
x |
any rectangular time series object which can be converted by the
function |
method |
a character string, which method should be applied to reaarnage
the assests?
Either
|
robust |
a logical flag. Should robust statistics applied? |
FUN |
function anme of the statistical function to be applied. |
... |
optional arguments to be passed. |
a character vector with the rearranged assets names.
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP - # Load Swiss Pension Fund Data: LPP <- LPP2005REC[, 1:3] head(LPP) ## assetsArrange - # Arrange Assets Columns: assetsArrange(x=LPP, "pca") assetsArrange(x=LPP, "hclust") assetsArrange(x=LPP, "abc") ## Alternative Usage - pcaArrange(x=LPP, robust=FALSE) pcaArrange(x=LPP, robust=TRUE) hclustArrange(x=LPP, method = c("euclidean", "complete")) abcArrange(x=LPP) orderArrange(x=LPP) sampleArrange(x=LPP) statsArrange(x=LPP, FUN=colMeans)
## LPP - # Load Swiss Pension Fund Data: LPP <- LPP2005REC[, 1:3] head(LPP) ## assetsArrange - # Arrange Assets Columns: assetsArrange(x=LPP, "pca") assetsArrange(x=LPP, "hclust") assetsArrange(x=LPP, "abc") ## Alternative Usage - pcaArrange(x=LPP, robust=FALSE) pcaArrange(x=LPP, robust=TRUE) hclustArrange(x=LPP, method = c("euclidean", "complete")) abcArrange(x=LPP) orderArrange(x=LPP) sampleArrange(x=LPP) statsArrange(x=LPP, FUN=colMeans)
Allows to measure the distance or similarity between assets.
assetsDist(x, method="cor", ...) corDist(x) kendallDist(x) spearmanDist(x) mutinfoDist(x, nbin=10) euclideanDist(x) maximumDist(x) manhattanDist(x) canberraDist(x) binaryDist(x) minkowskiDist(x) braycurtisDist(x) mahalanobisDist(x) jaccardDist(x) sorensenDist(x)
assetsDist(x, method="cor", ...) corDist(x) kendallDist(x) spearmanDist(x) mutinfoDist(x, nbin=10) euclideanDist(x) maximumDist(x) manhattanDist(x) canberraDist(x) binaryDist(x) minkowskiDist(x) braycurtisDist(x) mahalanobisDist(x) jaccardDist(x) sorensenDist(x)
x |
any rectangular time series object which can be converted by the
function |
method |
a character string, the method from which to compute the
distances. Allowed methods include |
nbin |
an integer value, the number of bins, by default 10. |
... |
optional argument to be passed the distance function. |
corDist
, kendallDist
, and spearmanDist
call the
base cov
function from R.
mutinfoDist
calls the function mutinfo
from the contributed
R package bioDist
.
euclideanDist
, maximumDist
, manhattanDist
,
canberraDist
, binaryDist
, and minkowskiDist
are functions build on top of R's base package.
braycurtisDist
, mahalanobisDist
, jaccardDist
,
and sorensenDist
call functions from
the contributed R package ecodist
.
an object of class dist
.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP - # Load Swiss Pension Fund Data: LPP <- LPP2005REC[, 1:6] head(LPP) ## Returns correlation distance measure corDist(LPP) ## Returns kendalls correlation distance measure kendallDist(LPP) ## Returns spearmans correlation distance measure spearmanDist(LPP) ## Return mutual information distance measure mutinfoDist(LPP) ## Return Euclidean distance measure euclideanDist(LPP) ## Return maximum distance measure maximumDist(LPP) ## Return Manhattan distance measure manhattanDist(LPP) ## Return Canberra distance measure canberraDist(LPP) ## Return binary distance measure binaryDist(LPP) ## Return Minkowsky distance measure minkowskiDist(LPP) ## Return Bray Curtis distance measure braycurtisDist(LPP) ## Return Mahalanobis distance measure # mahalanobisDist(LPP) ## Return Jaccard distance mesaure jaccardDist(LPP) ## Return Sorensen distance measure sorensenDist(LPP)
## LPP - # Load Swiss Pension Fund Data: LPP <- LPP2005REC[, 1:6] head(LPP) ## Returns correlation distance measure corDist(LPP) ## Returns kendalls correlation distance measure kendallDist(LPP) ## Returns spearmans correlation distance measure spearmanDist(LPP) ## Return mutual information distance measure mutinfoDist(LPP) ## Return Euclidean distance measure euclideanDist(LPP) ## Return maximum distance measure maximumDist(LPP) ## Return Manhattan distance measure manhattanDist(LPP) ## Return Canberra distance measure canberraDist(LPP) ## Return binary distance measure binaryDist(LPP) ## Return Minkowsky distance measure minkowskiDist(LPP) ## Return Bray Curtis distance measure braycurtisDist(LPP) ## Return Mahalanobis distance measure # mahalanobisDist(LPP) ## Return Jaccard distance mesaure jaccardDist(LPP) ## Return Sorensen distance measure sorensenDist(LPP)
Computes lower partial moments from a time series of assets.
assetsLPM(x, tau, a, ...) assetsSLPM(x, tau, a, ...)
assetsLPM(x, tau, a, ...) assetsSLPM(x, tau, a, ...)
x |
any rectangular time series object which can be converted by the
function |
tau |
the target return. |
a |
the value of the moment. |
... |
optional arguments to be passed. |
returns a list with two entries named mu
and Sigma
.
The first denotes the vector of lower partial moments, and the
second the co-LPM matrix. Note, that the output of this function
can be used as data input for the portfolio functions to compute
the LPM efficient frontier.
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP - # Percentual Returns: LPP <- 100 * as.timeSeries(data(LPP2005REC))[, 1:6] colnames(LPP)
## LPP - # Percentual Returns: LPP <- 100 * as.timeSeries(data(LPP2005REC))[, 1:6] colnames(LPP)
Estimates the mean and/or covariance matrix of a time series of assets by traditional and robust methods.
assetsMeanCov(x, method = c("cov", "mve", "mcd", "MCD", "OGK", "nnve", "shrink", "bagged"), check = TRUE, force = TRUE, baggedR = 100, sigmamu = scaleTau2, alpha = 1/2, ...) getCenterRob(object) getCovRob(object)
assetsMeanCov(x, method = c("cov", "mve", "mcd", "MCD", "OGK", "nnve", "shrink", "bagged"), check = TRUE, force = TRUE, baggedR = 100, sigmamu = scaleTau2, alpha = 1/2, ...) getCenterRob(object) getCovRob(object)
x |
any rectangular time series object which can be converted by the
function |
method |
a character string, whicht determines how to compute the covariance
matix. If |
check |
a logical flag. Should the covariance matrix be tested to be
positive definite? By default |
force |
a logical flag. Should the covariance matrix be forced to be
positive definite? By default |
baggedR |
when |
sigmamu |
when |
object |
a list as returned by the function |
alpha |
when |
... |
optional arguments to be passed to the underlying estimators.
For details we refer to the manual pages of the functions
|
assetsMeanCov
returns a list with for entries named center
cov
,
mu
and Sigma
. The list may have a character vector
attributed with additional control parameters.
getCenterRob
extracts the center from an object as returned by the function
assetsMeanCov
.
getCovRob
extracts the covariance from an object as returned by the function
assetsMeanCov
.
Juliane Schaefer and Korbinian Strimmer for R's corpcov
package,
Diethelm Wuertz for the Rmetrics port.
Breiman L. (1996); Bagging Predictors, Machine Learning 24, 123–140.
Ledoit O., Wolf. M. (2003); ImprovedEestimation of the Covariance Matrix of Stock Returns with an Application to Portfolio Selection, Journal of Empirical Finance 10, 503–621.
Schaefer J., Strimmer K. (2005); A Shrinkage Approach to Large-Scale Covariance Estimation and Implications for Functional Genomics, Statist. Appl. Genet. Mol. Biol. 4, 32.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP - LPP <- as.timeSeries(data(LPP2005REC))[, 1:6] colnames(LPP) ## Sample Covariance Estimation: assetsMeanCov(LPP) ## Shrinked Estimation: shrink <- assetsMeanCov(LPP, "shrink") shrink ## Extract Covariance Matrix: getCovRob(shrink)
## LPP - LPP <- as.timeSeries(data(LPP2005REC))[, 1:6] colnames(LPP) ## Sample Covariance Estimation: assetsMeanCov(LPP) ## Shrinked Estimation: shrink <- assetsMeanCov(LPP, "shrink") shrink ## Extract Covariance Matrix: getCovRob(shrink)
Fitting and Simulatingassets from multivariate asset sets based on modeling skew normal and related distributions.
assetsFit(x, method = c("st", "sn", "sc"), title=NULL, description=NULL, fixed.df=NA, ...) assetsSim(n, method=c("st", "sn", "sc"), model=list(beta=rep(0, 2), Omega=diag(2), alpha=rep(0, 2), nu=4), assetNames=NULL)
assetsFit(x, method = c("st", "sn", "sc"), title=NULL, description=NULL, fixed.df=NA, ...) assetsSim(n, method=c("st", "sn", "sc"), model=list(beta=rep(0, 2), Omega=diag(2), alpha=rep(0, 2), nu=4), assetNames=NULL)
x |
any rectangular time series object which can be converted by the
function |
n |
a numeric value which represents the number of random vectors to be drawn. |
method |
a character string with the names of the supported distributions:
|
model |
a list with the model parameters.
|
fixed.df |
a logical value, should the degreess of freedom fitted or held fixed? |
title |
an optional project title. |
description |
an option project desctiption. |
assetNames |
a character vector with optional asset names. |
... |
optional arguments passed to the underlying functions. |
assetsFit
returns the fitted parameters, assetsSim
returns a simulated (return) series.
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP2005REC - # Load Swiss Pension Fund Data as Percentual Returns: LPP <- 100 * LPP2005REC[, 1:3] head(LPP) ## assetsFit - # Fit a Skew-Student-t Distribution: fit <- assetsFit(LPP) # Extract the Model: model <- fit@fit$dp # Show Model Slot: print(model) ## assetsSim - # Simulate set with same statistical properties: set.seed(1953) LPP.SIM <- assetsSim(n=nrow(LPP), model=model) colnames(LPP.SIM) <- colnames(LPP) head(LPP.SIM)
## LPP2005REC - # Load Swiss Pension Fund Data as Percentual Returns: LPP <- 100 * LPP2005REC[, 1:3] head(LPP) ## assetsFit - # Fit a Skew-Student-t Distribution: fit <- assetsFit(LPP) # Extract the Model: model <- fit@fit$dp # Show Model Slot: print(model) ## assetsSim - # Simulate set with same statistical properties: set.seed(1953) LPP.SIM <- assetsSim(n=nrow(LPP), model=model) colnames(LPP.SIM) <- colnames(LPP) head(LPP.SIM)
Detects multivariate outliers in asset sets.
assetsOutliers(x, center, cov, ...)
assetsOutliers(x, center, cov, ...)
x |
an object of class |
center |
a numeric vector, a (robust) estimate of the vector of means
of the multivariate time series |
cov |
a numeric matrix, a (robust) estimate of the covariance matrix
of the multivariate time series |
... |
optional arguments to be passed. |
returns a list with the following entries:
the estimate for the location named center
,
the estimate for the covariance matrix named cov
,
the estimate for the correlation matrix named cor
,
the quantile named quantile
,
the outliers named outliers
, and
the time series named series
.
Moritz Gschwandtner and Peter Filzmoser for the original R code
from package "mvoutliers",
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP - LPP <- as.timeSeries(data(LPP2005REC))[, 1:6] colnames(LPP) ## assetsOutliers - assetsOutliers(LPP, colMeans(LPP), cov(LPP))
## LPP - LPP <- as.timeSeries(data(LPP2005REC))[, 1:6] colnames(LPP) ## assetsOutliers - assetsOutliers(LPP, colMeans(LPP), cov(LPP))
Selet assets from Multivariate Asset Sets based on clustering.
assetsSelect(x, method = c("hclust", "kmeans"), control = NULL, ...)
assetsSelect(x, method = c("hclust", "kmeans"), control = NULL, ...)
x |
any rectangular time series object which can be converted by the
function |
method |
a character string, which clustering method should be used?
Either |
control |
a character string with two entries controlling the parameters used
in the underlying cluster algorithms. If set to NULL, then
default settings are taken: For hierarchical clustering this is
|
... |
optional arguments to be passed. Note, for the k-means algorithm the number of centers has to be specified! |
The function assetsSelect
calls the functions hclust
or kmeans
from R's "stats"
package. hclust
performs a hierarchical cluster analysis on the set of dissimilarities
hclust(dist(t(x)))
and kmeans
performs a k-means
clustering on the data matrix itself.
Note, the hierarchical clustering method has in addition a plot method.
if use="hclust"
was selected then the function returns a
S3 object of class "hclust", otherwise if use="kmeans"
was
selected then the function returns an object of class "kmeans".
For details we refer to the help pages of hclust
and
kmeans
.
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP - # Load Swiss Pension Fund Data: LPP <- LPP2005REC colnames(LPP) ## assetsSelect - # Hierarchical Clustering: hclust <- assetsSelect(LPP, "hclust") plot(hclust) ## assetsSelect - # kmeans Clustering: assetsSelect(LPP, "kmeans", control = c(centers = 3, algorithm = "Hartigan-Wong"))
## LPP - # Load Swiss Pension Fund Data: LPP <- LPP2005REC colnames(LPP) ## assetsSelect - # Hierarchical Clustering: hclust <- assetsSelect(LPP, "hclust") plot(hclust) ## assetsSelect - # kmeans Clustering: assetsSelect(LPP, "kmeans", control = c(centers = 3, algorithm = "Hartigan-Wong"))
Tests if the returns of a set of assets are normally distributed.
assetsTest(x, method = c("shapiro", "energy"), Replicates = 99) mvshapiroTest(x) mvenergyTest(x, Replicates = 99)
assetsTest(x, method = c("shapiro", "energy"), Replicates = 99) mvshapiroTest(x) mvenergyTest(x, Replicates = 99)
x |
any rectangular time series object which can be converted by the
function |
method |
a character string, which allows to select the test.
If |
Replicates |
an integer value, the number of bootstrap replicates, by
default 100. This value is only used if |
returns an object of class htest
.
Diethelm Wuertz for this Rmetrics port.
Rizzo M.L. (2002); A New Rotation Invariant Goodness-of-Fit Test, PhD dissertation, Bowling Green State University.
Szekely G.J., Rizzo, M.L. (2005); A New Test for Multivariate Normality, Journal of Multivariate Analysis 93, 58–80.
Szekely G.J. (1989); Potential and Kinetic Energy in Statistics, Lecture Notes, Budapest Institute of Technology, TechnicalUniversity.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP - # Load Swiss Pension Fund Data: LPP <- LPP2005REC[, 1:6] head(LPP) ## assetsTest - # Multivariate Shapiro Test - assetsTest(LPP, "shapiro") ## assetsTest - # Multivariate Energy Test - assetsTest(LPP, "energy")
## LPP - # Load Swiss Pension Fund Data: LPP <- LPP2005REC[, 1:6] head(LPP) ## assetsTest - # Multivariate Shapiro Test - assetsTest(LPP, "shapiro") ## assetsTest - # Multivariate Energy Test - assetsTest(LPP, "energy")
Helper functions for estimating the mean and/or covariance matrix of a time series of assets by traditional and robust methods.
.baggedMeanCov(x, baggedR = 100, ...) .bayesSteinMeanCov(x, ...) .cov.arw(x, center, cov, alpha = 0.025, pcrit = NULL) .cov.nnve(datamat, k = 12, pnoise = 0.05, emconv = 0.001, bound = 1.5, extension = TRUE, devsm = 0.01) .cov.shrink(x, lambda, verbose = FALSE) .donostahMeanCov(x, ...) .ledoitWolfMeanCov(x, ...) .rmtMeanCov(x, ...) .studentMeanCov(x, ...)
.baggedMeanCov(x, baggedR = 100, ...) .bayesSteinMeanCov(x, ...) .cov.arw(x, center, cov, alpha = 0.025, pcrit = NULL) .cov.nnve(datamat, k = 12, pnoise = 0.05, emconv = 0.001, bound = 1.5, extension = TRUE, devsm = 0.01) .cov.shrink(x, lambda, verbose = FALSE) .donostahMeanCov(x, ...) .ledoitWolfMeanCov(x, ...) .rmtMeanCov(x, ...) .studentMeanCov(x, ...)
x |
any rectangular time series object which can be converted by the
function |
baggedR |
when |
center |
specifies for a data set (n x p), the initial location estimator(1 x p). |
cov |
Initial scatter estimator (p x p). |
alpha |
Maximum thresholding proportion (optional scalar, default:
|
pcrit |
critical value for outlier probability (optional scalar, default values from simulations). |
datamat |
a matrix in which each row represents an observation or point and each column represents a variable. |
k |
desired number of nearest neighbors (default is 12). |
pnoise |
percent of added noise |
emconv |
convergence tolerance for EM. |
bound |
value used to identify surges in variance caused by outliers wrongly included as signal points (bound = 1.5 means a 50 percent increase). |
extension |
whether or not to continue after reaching the last chi-square
distance. The default is to continue, which is indicated by
setting |
devsm |
when |
lambda |
the correlation shrinkage intensity (range 0-1). If lambda is
not specified (the default) it is estimated using an analytic
formula from Schaefer and Strimmer (2005) - see details
below. For |
verbose |
a logical indicating whether to print progress information to the stdout. |
... |
optional arguments to be passed to the underlying estimators.
For details we refer to the manual pages of the functions
|
The functions return a list with elements containing the covariance and mean. The list may contain additional control parameters.
Displays bivariate histogram plots of assets returns.
assetsHistPairsPlot(x, bins = 30, method = c("square", "hex"), ...)
assetsHistPairsPlot(x, bins = 30, method = c("square", "hex"), ...)
x |
any rectangular time series object which can be converted by the
function |
bins |
an integer value, the number of bins used for the biariate histogram. |
method |
a character string denoting whic h type of binning should be
used, either |
... |
optional arguments to be passed. |
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC head(LPP) ## assetsHistPairsPlot - # Create a bivariate Binning Plot: assetsHistPairsPlot - assetsHistPairsPlot(LPP[, c("LMI", "ALT")]) ## assetsHistPairsPlot - # Now with hexagonal Bins: assetsHistPairsPlot(LPP[, c("LMI", "ALT")], method = "hex") grid(col="red")
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC head(LPP) ## assetsHistPairsPlot - # Create a bivariate Binning Plot: assetsHistPairsPlot - assetsHistPairsPlot(LPP[, c("LMI", "ALT")]) ## assetsHistPairsPlot - # Now with hexagonal Bins: assetsHistPairsPlot(LPP[, c("LMI", "ALT")], method = "hex") grid(col="red")
Displays standard box and box-percentile plots of assets.
assetsBoxPlot(x, col = "bisque", ...) assetsBoxPercentilePlot(x, col = "bisque", ...)
assetsBoxPlot(x, col = "bisque", ...) assetsBoxPercentilePlot(x, col = "bisque", ...)
x |
any rectangular time series object which can be converted by the
function |
col |
a character string, defining the color to fill the boxes. |
... |
optional arguments to be passed. |
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP - # Load Swiss Pension Fund Data: LPP <- LPP2005REC[, 1:6] head(LPP) ## assetsBoxPlot - # Create a Boxplot: assetsBoxPlot - assetsBoxPlot(LPP) ## assetsBoxPercentilePlot - # Create a Box Percentile Plot: assetsBoxPercentilePlot - assetsBoxPercentilePlot(LPP) grid(NA, NULL, col="red")
## LPP - # Load Swiss Pension Fund Data: LPP <- LPP2005REC[, 1:6] head(LPP) ## assetsBoxPlot - # Create a Boxplot: assetsBoxPlot - assetsBoxPlot(LPP) ## assetsBoxPercentilePlot - # Create a Box Percentile Plot: assetsBoxPercentilePlot - assetsBoxPercentilePlot(LPP) grid(NA, NULL, col="red")
Displays a covariance ellipses plot.
covEllipsesPlot(x = list(), ...)
covEllipsesPlot(x = list(), ...)
x |
a list of at least two covariance matrices. |
... |
optional arguments to be passed. |
This plot visualizes the difference between two or more covariance matrices. It is meant to compare different methods of covariance estimation.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP - # Load Swiss Pension Fund Data: LPP <- LPP2005REC[, 1:6] head(LPP) ## assetsMeanCov - # Compute Robust Covariance Matrix: assetsMeanCov - Cov <- cov(LPP) robustCov <- assetsMeanCov(LPP, "MCD")$Sigma ## covEllipsesPlot - # Create Covariance Ellipse Plot: covEllipsesPlot(list(Cov, robustCov))
## LPP - # Load Swiss Pension Fund Data: LPP <- LPP2005REC[, 1:6] head(LPP) ## assetsMeanCov - # Compute Robust Covariance Matrix: assetsMeanCov - Cov <- cov(LPP) robustCov <- assetsMeanCov(LPP, "MCD")$Sigma ## covEllipsesPlot - # Create Covariance Ellipse Plot: covEllipsesPlot(list(Cov, robustCov))
Displays density of assets returns as a histogram and/or as log density plot.
assetsHistPlot(x, col = "steelblue", skipZeros = FALSE, ...) assetsLogDensityPlot(x, estimator = c("hubers", "sample", "both"), labels = TRUE, ...)
assetsHistPlot(x, col = "steelblue", skipZeros = FALSE, ...) assetsLogDensityPlot(x, estimator = c("hubers", "sample", "both"), labels = TRUE, ...)
x |
any rectangular time series object which can be converted by the
function |
skipZeros |
a logical, should zeros be skipped in the histogram plot of the return series ? |
col |
a character string, defining the color to fill the boxes. |
estimator |
a character string naming the type of estimator to fit the mean
and variance of the normal density. This may be either |
labels |
a logical flag, if |
... |
optional arguments to be passed. |
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP2005REC - # Load Swiss Pension Fund Data: x <- LPP2005REC head(x) ## assetsHistPlot - # Create Histogram Plot: assetsHistPlot - # par(mfrow = c(2, 2)) assetsHistPlot(x[, 1:4]) ## assetsLogDensityPlot - #Create Log Density Plot: assetsLogDensityPlot - # par(mfrow = c(1, 1)) assetsLogDensityPlot(x[, "ALT"], estimator = "both")
## LPP2005REC - # Load Swiss Pension Fund Data: x <- LPP2005REC head(x) ## assetsHistPlot - # Create Histogram Plot: assetsHistPlot - # par(mfrow = c(2, 2)) assetsHistPlot(x[, 1:4]) ## assetsLogDensityPlot - #Create Log Density Plot: assetsLogDensityPlot - # par(mfrow = c(1, 1)) assetsLogDensityPlot(x[, "ALT"], estimator = "both")
Creates and displays a minimum spanning tree of assets.
assetsTreePlot(x, labels = TRUE, title = TRUE, box = TRUE, method = "euclidian", seed = NULL, ...)
assetsTreePlot(x, labels = TRUE, title = TRUE, box = TRUE, method = "euclidian", seed = NULL, ...)
x |
a multivariate |
labels |
a logical flag, if |
title |
a logical flag, should a default title be added? By default
|
box |
a logical flag, should a box be added around the plot? By default
|
method |
a character string, the method used to compute the distance
matrix, see function |
seed |
an integer value setting the seed in the computation of the sample ranks. |
... |
optional arguments to be passed. |
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC[, 1:6] head(LPP) ## assetsTreePlot(LPP) - # Create Minimum Spanning Tree Graph: assetsTreePlot - # par(mfrow = c(2, 2)) assetsTreePlot(LPP) # new seeds ... for (i in 1:3) assetsTreePlot(LPP)
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC[, 1:6] head(LPP) ## assetsTreePlot(LPP) - # Create Minimum Spanning Tree Graph: assetsTreePlot - # par(mfrow = c(2, 2)) assetsTreePlot(LPP) # new seeds ... for (i in 1:3) assetsTreePlot(LPP)
Display several aspects of correlation bettween pairs of assets.
assetsPairsPlot(x, ...) assetsCorgramPlot(x, method = c("pie", "shade"), ...) assetsCorTestPlot(x, ...) assetsCorImagePlot(x, labels = TRUE, show = c("cor", "test"), use = c("pearson", "kendall", "spearman"), abbreviate = 3, ...)
assetsPairsPlot(x, ...) assetsCorgramPlot(x, method = c("pie", "shade"), ...) assetsCorTestPlot(x, ...) assetsCorImagePlot(x, labels = TRUE, show = c("cor", "test"), use = c("pearson", "kendall", "spearman"), abbreviate = 3, ...)
x |
any rectangular time series object which can be converted by the
function |
labels |
a logical flag, if |
method |
a character string, the type of graph used in the lower panel. |
show |
a character string, what should be pressented, correlations or results from correlation tests? |
use |
a character string indicating which correlation coefficient or
covariance is to be computed. One of |
abbreviate |
allows to abbreviate strings to at least |
... |
optional arguments to be passed. |
assetsPairsPlot
displays pairs of scatterplots of individual assets,
assetsCorgramPlot
displays correlations between assets,
assetsCorTestPlot
displays and tests pairwise correlations,
assetsCorImagePlot
displays an image plot of a correlations.
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC[, 1:6] head(LPP) ## assetsPairsPlot - # Create Pairs Plot: assetsPairsPlot(LPP) ## assetsCorgramPlot - # Create Corellogram Plot: assetsCorgramPlot(LPP, method = "pie") assetsCorgramPlot(LPP, method = "shade") ## assetsCorTestPlot - # Create Correlation Test Plot: assetsCorTestPlot(LPP) ## assetsCorImagePlot - # Create Correlation Image Plot: assetsCorImagePlot(LPP)
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC[, 1:6] head(LPP) ## assetsPairsPlot - # Create Pairs Plot: assetsPairsPlot(LPP) ## assetsCorgramPlot - # Create Corellogram Plot: assetsCorgramPlot(LPP, method = "pie") assetsCorgramPlot(LPP, method = "shade") ## assetsCorTestPlot - # Create Correlation Test Plot: assetsCorTestPlot(LPP) ## assetsCorImagePlot - # Create Correlation Image Plot: assetsCorImagePlot(LPP)
Displays a normal quantile-quantile plot
assetsQQNormPlot(x, col = "steelblue", skipZeros = FALSE, ...)
assetsQQNormPlot(x, col = "steelblue", skipZeros = FALSE, ...)
x |
any rectangular time series object which can be converted by the
function |
col |
a character string, defining the color to fill the boxes. |
skipZeros |
a logical, should zeros be skipped in the histogram plot of the return series? |
... |
optional arguments to be passed. |
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC head(LPP) ## assetsQQNormPlot - # Create normal Quantile-Quantile Plot: # par(mfrow = c(2, 2)) assetsQQNormPlot(LPP[, 1:3])
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC head(LPP) ## assetsQQNormPlot - # Create normal Quantile-Quantile Plot: # par(mfrow = c(2, 2)) assetsQQNormPlot(LPP[, 1:3])
Displays risk plot from asseets.
assetsRiskReturnPlot(x, col = "steelblue", percentage = FALSE, scale = 252, labels = TRUE, add = TRUE, ...) assetsNIGShapeTrianglePlot(x, labels, col = "steelblue", ...)
assetsRiskReturnPlot(x, col = "steelblue", percentage = FALSE, scale = 252, labels = TRUE, add = TRUE, ...) assetsNIGShapeTrianglePlot(x, labels, col = "steelblue", ...)
x |
any rectangular time series object which can be converted by the
function |
col |
a character string, defining the color to fill the boxes. |
percentage |
a logical flag. Are the returns given by log or percentual log returns? |
scale |
an integer value, the scale, i..e number of days, in a year. Used by daily data sets. |
labels |
a logical flag, if |
add |
a logical flag, defining the color to fill the boxes. |
... |
optional arguments to be passed. |
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC head(LPP) ## assetsRiskReturnPlot - # Create Risk/Return Plot: # par(mfrow = c(2, 2)) assetsRiskReturnPlot(LPP) ## assetsNIGShapeTrianglePlot - # Create NIG Shape Triangle Plot: assetsNIGShapeTrianglePlot(LPP)
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC head(LPP) ## assetsRiskReturnPlot - # Create Risk/Return Plot: # par(mfrow = c(2, 2)) assetsRiskReturnPlot(LPP) ## assetsNIGShapeTrianglePlot - # Create NIG Shape Triangle Plot: assetsNIGShapeTrianglePlot(LPP)
Displays series from sets of assets.
assetsReturnPlot(x, col = "steelblue", ...) assetsCumulatedPlot(x, col = "steelblue", ...) assetsSeriesPlot(x, col = "steelblue", ...)
assetsReturnPlot(x, col = "steelblue", ...) assetsCumulatedPlot(x, col = "steelblue", ...) assetsSeriesPlot(x, col = "steelblue", ...)
x |
an object of class |
col |
a character string, defining the color to fill the boxes. |
... |
optional arguments to be passed. |
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC head(LPP) ## assetsReturnPlot - # Create Return Series Plot: # par(mfrow = c(3, 2)) assetsReturnPlot(LPP[, 1:3]) ## assetsCumulatedPlot - # Create Cumulated Price/Index Plot: assetsCumulatedPlot(LPP[, "LPP40"], col = "red") ## assetsSeriesPlot # Crete Time Series Plot: assetsSeriesPlot(LPP[, c("LMI", "ALT")], col = c("orange", "brown"))
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC head(LPP) ## assetsReturnPlot - # Create Return Series Plot: # par(mfrow = c(3, 2)) assetsReturnPlot(LPP[, 1:3]) ## assetsCumulatedPlot - # Create Cumulated Price/Index Plot: assetsCumulatedPlot(LPP[, "LPP40"], col = "red") ## assetsSeriesPlot # Crete Time Series Plot: assetsSeriesPlot(LPP[, c("LMI", "ALT")], col = c("orange", "brown"))
Displays plots of similariaies and dissimilarities between data sets of assets.
assetsDendrogramPlot(x, labels = TRUE, title = TRUE, box = TRUE, method = c(dist = "euclidian", clust = "complete"), ...) assetsCorEigenPlot(x, labels = TRUE, title = TRUE, box = TRUE, method = c("pearson", "kendall", "spearman"), ...)
assetsDendrogramPlot(x, labels = TRUE, title = TRUE, box = TRUE, method = c(dist = "euclidian", clust = "complete"), ...) assetsCorEigenPlot(x, labels = TRUE, title = TRUE, box = TRUE, method = c("pearson", "kendall", "spearman"), ...)
box |
a logical flag, should a box be added around the plot? By default
|
labels |
a logical flag, if |
method |
[assetsCorgramPlot] - |
title |
a logical flag, should a default title be added? By default
|
x |
any rectangular time series object which can be converted by the
function |
... |
optional arguments to be passed. |
assetsDendrogramPlot
displays a hierarchical clustering dendrogram,
assetsCorEigenPlot
displays ratio plot of the largest two eigenvalues.
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC head(LPP) ## assetsDendrogramPlot - # Display a Dendrogram Plot: assetsDendrogramPlot(LPP) ## assetsCorEigenPlot - # Display a Correlation Eigenvalue Ratio Plot: assetsCorEigenPlot(LPP)
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC head(LPP) ## assetsDendrogramPlot - # Display a Dendrogram Plot: assetsDendrogramPlot(LPP) ## assetsCorEigenPlot - # Display a Correlation Eigenvalue Ratio Plot: assetsCorEigenPlot(LPP)
Displays star plots to compare assets sets.
assetsStarsPlot(x, method = c("segments", "stars"), locOffset = c(0, 0), keyOffset = c(0, 0), ...) assetsBoxStatsPlot(x, par = TRUE, oma = c(0,0,0,0), mar = c(4, 4, 4, 4), keyOffset = c(-0.65, -0.50), main = "Assets Statistics", title = "Assets", titlePosition = c(3, 3.65), description = "Box Plot Statistics", descriptionPosition = c(3, 3.50), ...) assetsBasicStatsPlot(x, par = TRUE, oma = c(0,0,0,0), mar = c(4, 4, 4, 4), keyOffset = c(-0.65, -0.50), main = "Assets Statistics", title = "Assets", titlePosition = c(3, 3.65), description = "Basic Returns Statistics", descriptionPosition = c(3, 3.50), ...) assetsMomentsPlot(x, par = TRUE, oma = c(0,0,0,0), mar = c(4, 4, 4, 4), keyOffset = c(-0.65, -0.50), main = "Assets Statistics", title = "Assets", titlePosition = c(3, 3.65), description = "Moments Statistics", descriptionPosition = c(3, 3.50), ...) assetsNIGFitPlot(x, par = TRUE, oma = c(0,0,0,0), mar = c(4, 4, 4, 4), keyOffset = c(-0.65, -0.50), main = "Assets Statistics", title = "Assets", titlePosition = c(3, 3.65), description = "NIG Parameters", descriptionPosition = c(3, 3.50), ...)
assetsStarsPlot(x, method = c("segments", "stars"), locOffset = c(0, 0), keyOffset = c(0, 0), ...) assetsBoxStatsPlot(x, par = TRUE, oma = c(0,0,0,0), mar = c(4, 4, 4, 4), keyOffset = c(-0.65, -0.50), main = "Assets Statistics", title = "Assets", titlePosition = c(3, 3.65), description = "Box Plot Statistics", descriptionPosition = c(3, 3.50), ...) assetsBasicStatsPlot(x, par = TRUE, oma = c(0,0,0,0), mar = c(4, 4, 4, 4), keyOffset = c(-0.65, -0.50), main = "Assets Statistics", title = "Assets", titlePosition = c(3, 3.65), description = "Basic Returns Statistics", descriptionPosition = c(3, 3.50), ...) assetsMomentsPlot(x, par = TRUE, oma = c(0,0,0,0), mar = c(4, 4, 4, 4), keyOffset = c(-0.65, -0.50), main = "Assets Statistics", title = "Assets", titlePosition = c(3, 3.65), description = "Moments Statistics", descriptionPosition = c(3, 3.50), ...) assetsNIGFitPlot(x, par = TRUE, oma = c(0,0,0,0), mar = c(4, 4, 4, 4), keyOffset = c(-0.65, -0.50), main = "Assets Statistics", title = "Assets", titlePosition = c(3, 3.65), description = "NIG Parameters", descriptionPosition = c(3, 3.50), ...)
description |
a destription string. |
descriptionPosition |
the position of the description string. |
method |
a character string from to select the plot method. Eiter a
|
keyOffset |
a numeric vector of lenght two, specifying an offset in the
legend with respect to |
locOffset |
a numeric vector of lenght two, specifying an offset in the
location of the stars/circles with respect to |
main |
to set the main title. |
mar |
to set the number of lines of margin to be specified on the four
sides of the plot. The default is |
oma |
to set the size of the outer margins in lines of text. |
par |
a logical flag. Should be internal |
title |
a character string, the plot title. |
titlePosition |
the position of the title string. |
x |
any rectangular time series object which can be converted by the
function |
... |
optional arguments to be passed. |
assetsStarsPlot
draws segment or star diagrams of data sets,
assetsBasicStatsPlot
displays a segment plot of box plot statistics,
assetsMomentsPlot
displays a segment plot of distribution moments,
assetsBoxStatsPlot
displays a segment plot of box plot statistics,
assetsNIGFitPlot
displays a segment plot NIG parameter estimates.
Diethelm Wuertz for the Rmetrics port.
Wuertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmetrics eBook, Rmetrics Association and Finance Online, Zurich.
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC head(LPP) ## assetsBasicStatsPlot - # Create a basic Stats Plot: assetsBasicStatsPlot - # par(mfrow = c(1, 1)) assetsBasicStatsPlot(LPP, title = "", description = "") ## assetsMomentsPlot - # Create a Moments Plot: assetsMomentsPlot - assetsMomentsPlot(LPP, title = "", description = "") ## assetsBoxStatsPlot - # Create a Box Stats Plot: assetsBoxStatsPlot - assetsBoxStatsPlot(LPP, title = "", description = "") ## assetsNIGFitPlot - # Create a NIG Fit Plot: assetsNIGFitPlot - assetsNIGFitPlot(LPP[, 7:9], title = "", description = "")
## LPP2005REC - # Load Swiss Pension Fund Data: LPP <- LPP2005REC head(LPP) ## assetsBasicStatsPlot - # Create a basic Stats Plot: assetsBasicStatsPlot - # par(mfrow = c(1, 1)) assetsBasicStatsPlot(LPP, title = "", description = "") ## assetsMomentsPlot - # Create a Moments Plot: assetsMomentsPlot - assetsMomentsPlot(LPP, title = "", description = "") ## assetsBoxStatsPlot - # Create a Box Stats Plot: assetsBoxStatsPlot - assetsBoxStatsPlot(LPP, title = "", description = "") ## assetsNIGFitPlot - # Create a NIG Fit Plot: assetsNIGFitPlot - assetsNIGFitPlot(LPP[, 7:9], title = "", description = "")