Title: | Plot Publication-Grade Gene and Genome Maps |
---|---|
Description: | Draws gene or genome maps and comparisons between these, in a publication-grade manner. Starting from simple, common files, it will draw postscript or PDF files that can be sent as such to journals. |
Authors: | Lionel Guy <[email protected]> |
Maintainer: | Lionel Guy <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.8.11 |
Built: | 2025-01-10 02:44:58 UTC |
Source: | https://github.com/r-forge/genoplotr |
Draws gene or genome maps and comparisons between these, in a publication-grade manner. Starting from simple, common files, it will draw postscript or PDF files that can be sent as such to journals.
Package: | genoPlotR |
Type: | Package |
Title: | Plot Publication-Grade Gene and Genome Maps |
Version: | 0.8.11 |
Date: | 2021-01-05 |
Author: | Lionel Guy <[email protected]> |
URL: | http://genoplotr.r-forge.r-project.org/ |
Depends: | R (>= 2.10.0), ade4, grid |
Imports: | methods |
Maintainer: | Lionel Guy <[email protected]> |
Description: | Draws gene or genome maps and comparisons between these, in a publication-grade manner. Starting from simple, common files, it will draw postscript or PDF files that can be sent as such to journals. |
License: | GPL (>= 2) |
LazyLoad: | yes |
Repository: | https://r-forge.r-universe.dev |
RemoteUrl: | https://github.com/r-forge/genoplotr |
RemoteRef: | HEAD |
RemoteSha: | dc8e1d95b33f598cd0c9f9d0c299524e7b9f8792 |
RemoteSubdir: | pkg |
Index of help topics:
annotation Annotation class and class functions apply_color_scheme Apply a color scheme artemisColors Artemis Colors auto_annotate Auto-annotate dna_segs barto Comparison of 4 Bartonella genomes c.dna_seg Concatenate dna_seg objects chrY_subseg Comparisons of subsegments of the Y chromosome in human and chimp comparison Comparison class and class functions dna_seg DNA segment (dna_seg) class and class functions gene_types Gene types genoPlotR-package Plot Publication-Grade Gene and Genome Maps human_nt Human-readable nucleotide scale mauve_bbone Mauve backbone of 4 Bartonella genomes middle Middles of a dna_seg plot_gene_map Plot gene and genome maps range.dna_seg Range calculation read_functions Reading functions reverse Reverse objects seg_plot seg_plot class and class functions three_genes Three genes data set trim Trimming data frames or more complex objects with >= 2 numeric columns
The only plotting function is plot_gene_map
, which
produces link[grid]{grid}
graphics. Data is composed mainly of
DNA segments (dna_seg
) objects, which represent
collections of genes or segments of genomes, and of
comparison
objects, which are the pairwise comparisons
between the dna_seg
s. Data can be read from files (see
read_functions
) or from R objects like
data.frame
s or list
s, with dna_seg
and
comparison
conversion functions.
Lionel Guy <[email protected]>
Maintainer: Lionel Guy <[email protected]>
Guy, L., Roat Kultima, J, and Andersson, S.G.E. (2010). genoPlotR: comparative gene and genome visualization in R. Bioinformatics 26(18):2334-2335.
plot_gene_map
for plotting. dna_seg
and
comparison
for the base objects and conversion functions.
read_dna_seg_from_tab
, read_dna_seg_from_ptt
,
read_comparison_from_tab
and
read_comparison_from_blast
to read from files.
## simple example ## dna segments ## data.frame with several genes names1 <- c("feat1", "feat2", "feat3") starts1 <- c(2, 1000, 1050) ends1 <- c(600, 800, 1345) strands1 <- c("-", -1, 1) cols1 <- c("blue", "grey", "red") df1 <- data.frame(name=names1, start=starts1, end=ends1, strand=strands1, col=cols1) dna_seg1 <- dna_seg(df1) is.dna_seg(dna_seg1) ## with only one gene, or two, and merging gene2a <- dna_seg(list(name="feat1", start=50, end=900, strand="-", col="blue")) genes2b <- dna_seg(data.frame(name=c("feat2", "feat3"), start=c(800, 1200), end=c(1100, 1322), strand=c("+", 1), col=c("grey", "red"))) dna_seg2 <- c.dna_seg(gene2a, genes2b) is.dna_seg(dna_seg2) ## reading from file dna_seg3_file <- system.file('extdata/dna_seg3.tab', package = 'genoPlotR') dna_seg3 <- read_dna_seg_from_tab(dna_seg3_file) is.dna_seg(dna_seg3) ## comparison ## from a data.frame comparison1 <- as.comparison(data.frame(start1=starts1, end1=ends1, start2=dna_seg2$start, end2=dna_seg2$end)) is.comparison(comparison1) ## from a file comparison2_file <- system.file('extdata/comparison2.tab', package = 'genoPlotR') comparison2 <- read_comparison_from_tab(comparison2_file, color_scheme="red_blue") is.comparison(comparison1) ## plot plot_gene_map(dna_segs=list(dna_seg1, dna_seg2, dna_seg3), comparisons=list(comparison1, comparison2))
## simple example ## dna segments ## data.frame with several genes names1 <- c("feat1", "feat2", "feat3") starts1 <- c(2, 1000, 1050) ends1 <- c(600, 800, 1345) strands1 <- c("-", -1, 1) cols1 <- c("blue", "grey", "red") df1 <- data.frame(name=names1, start=starts1, end=ends1, strand=strands1, col=cols1) dna_seg1 <- dna_seg(df1) is.dna_seg(dna_seg1) ## with only one gene, or two, and merging gene2a <- dna_seg(list(name="feat1", start=50, end=900, strand="-", col="blue")) genes2b <- dna_seg(data.frame(name=c("feat2", "feat3"), start=c(800, 1200), end=c(1100, 1322), strand=c("+", 1), col=c("grey", "red"))) dna_seg2 <- c.dna_seg(gene2a, genes2b) is.dna_seg(dna_seg2) ## reading from file dna_seg3_file <- system.file('extdata/dna_seg3.tab', package = 'genoPlotR') dna_seg3 <- read_dna_seg_from_tab(dna_seg3_file) is.dna_seg(dna_seg3) ## comparison ## from a data.frame comparison1 <- as.comparison(data.frame(start1=starts1, end1=ends1, start2=dna_seg2$start, end2=dna_seg2$end)) is.comparison(comparison1) ## from a file comparison2_file <- system.file('extdata/comparison2.tab', package = 'genoPlotR') comparison2 <- read_comparison_from_tab(comparison2_file, color_scheme="red_blue") is.comparison(comparison1) ## plot plot_gene_map(dna_segs=list(dna_seg1, dna_seg2, dna_seg3), comparisons=list(comparison1, comparison2))
An annotation describes a DNA segment. It has labels attached to positions. Each label can be attached to a single position or to a range.
annotation(x1, x2 = NA, text, rot = 0, col = "black") as.annotation(df, x2 = NA, rot = 0, col = "black") is.annotation(annotation)
annotation(x1, x2 = NA, text, rot = 0, col = "black") as.annotation(df, x2 = NA, rot = 0, col = "black") is.annotation(annotation)
x1 |
Numeric. A vector giving the first or only position of the label. Mandatory. |
x2 |
Numeric. A vector of the same length as |
text |
Character of the same length as |
rot |
Numeric of the same length as |
col |
Vector of the same length as |
df |
A data frame to convert to an annotation object. Should have at
least columns |
annotation |
An object to test. |
An annotation
object is a data frame with columns x0
,
x1
, text
, col
and rot
. They give,
respectively, the first (or only) position, eventually the second
position, the text, the color and the rotation of the annotation. When
plotted with plot_gene_map
, it will add an annotation row on
top of the first dna_seg
. Labels for which only one position is
given will be centered on that position. Labels for which two
positions are given are linked by an horizontal square bracket and the
label is plotted in the middle of the positions.
annotation
and as.annotation
return an annotation object.
is.annotation
returns a logical.
Lionel Guy
## loading data data(three_genes) ## Calculating middle positions mid_pos <- middle(dna_segs[[1]]) # Create first annotation annot1 <- annotation(x1=mid_pos, text=dna_segs[[1]]$name) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, annotations=annot1) ## Exploring options annot2 <- annotation(x1=c(mid_pos[1], dna_segs[[1]]$end[2]), x2=c(NA, dna_segs[[1]]$end[3]), text=c(dna_segs[[1]]$name[1], "region1"), rot=c(30, 0), col=c("grey", "black")) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, annotations=annot2, annotation_height=1.3) ## Annotations on all the segments annots <- lapply(dna_segs, function(x){ mid <- middle(x) annot <- annotation(x1=mid, text=x$name, rot=30) }) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, annotations=annots, annotation_height=1.8, annotation_cex=1) ## ## Using a bigger dataset from a 4-genome comparison ## data(barto) ## Adding a tree tree <- newick2phylog("(BB:2.5,(BG:1.8,(BH:1,BQ:0.8):1.9):3);") ## Showing several subsegments xlims2 <- list(c(1445000, 1415000, 1380000, 1412000), c( 10000, 45000, 50000, 83000, 90000, 120000), c( 15000, 36000, 90000, 120000, 74000, 98000), c( 5000, 82000)) ## Adding annotations for all genomes, allow segments to be placed out ## of the longest segment annots <- lapply(barto$dna_segs, function(x){ mid <- middle(x) annot <- annotation(x1=mid, text=x$name, rot=30) # removing gene names starting with "B" and keeping 1 in 4 idx <- grep("^[^B]", annot$text, perl=TRUE) annot[idx[idx %% 4 == 0],] }) plot_gene_map(barto$dna_segs, barto$comparisons, tree=tree, annotations=annots, xlims=xlims2, limit_to_longest_dna_seg=FALSE, dna_seg_scale=TRUE)
## loading data data(three_genes) ## Calculating middle positions mid_pos <- middle(dna_segs[[1]]) # Create first annotation annot1 <- annotation(x1=mid_pos, text=dna_segs[[1]]$name) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, annotations=annot1) ## Exploring options annot2 <- annotation(x1=c(mid_pos[1], dna_segs[[1]]$end[2]), x2=c(NA, dna_segs[[1]]$end[3]), text=c(dna_segs[[1]]$name[1], "region1"), rot=c(30, 0), col=c("grey", "black")) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, annotations=annot2, annotation_height=1.3) ## Annotations on all the segments annots <- lapply(dna_segs, function(x){ mid <- middle(x) annot <- annotation(x1=mid, text=x$name, rot=30) }) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, annotations=annots, annotation_height=1.8, annotation_cex=1) ## ## Using a bigger dataset from a 4-genome comparison ## data(barto) ## Adding a tree tree <- newick2phylog("(BB:2.5,(BG:1.8,(BH:1,BQ:0.8):1.9):3);") ## Showing several subsegments xlims2 <- list(c(1445000, 1415000, 1380000, 1412000), c( 10000, 45000, 50000, 83000, 90000, 120000), c( 15000, 36000, 90000, 120000, 74000, 98000), c( 5000, 82000)) ## Adding annotations for all genomes, allow segments to be placed out ## of the longest segment annots <- lapply(barto$dna_segs, function(x){ mid <- middle(x) annot <- annotation(x1=mid, text=x$name, rot=30) # removing gene names starting with "B" and keeping 1 in 4 idx <- grep("^[^B]", annot$text, perl=TRUE) annot[idx[idx %% 4 == 0],] }) plot_gene_map(barto$dna_segs, barto$comparisons, tree=tree, annotations=annots, xlims=xlims2, limit_to_longest_dna_seg=FALSE, dna_seg_scale=TRUE)
Apply a color scheme to a numeric vector, eventually taking the direction into account.
apply_color_scheme(x, direction = NULL, color_scheme = "grey", decreasing = FALSE, rng = NULL, transparency = 0.5)
apply_color_scheme(x, direction = NULL, color_scheme = "grey", decreasing = FALSE, rng = NULL, transparency = 0.5)
x |
A numeric, that will be used to apply a gradient of colors to a comparison. |
direction |
If a red-blue scheme is choosen, the vector (composed of -1 and 1
values and of same length as |
color_scheme |
Character. One of |
decreasing |
Logical. Are the values of the comparisons oriented such as the
lower the value, the closer the relationship (e.g. e-values, gaps,
mismatches, etc)? |
rng |
Numeric of length 2. Gives the higher and lower limit to apply a color scheme. |
transparency |
Numeric of length 1, between 0 and 1, or FALSE. Should the color scheme use transparency, and if yes how much (ratio). 0.5 by default. Not supported on all devices. |
A color scale is calculated, with the darker color corresponding to
the highest values of x
, or the contrary is decreasing
is TRUE
. For the moment, two schemes (red-blue and grey scale)
are used.
For the red-blue scale (as in ACT), the direct comparisons are colored in red hues, and the reversed ones in blue hues.
This is especially useful to replace comparison values (such as BLAST percent identity values) by color hues.
A character vector of same length as x
, representing colors.
Lionel Guy
Artemis Comparison Tool, https://www.sanger.ac.uk/tool/artemis-comparison-tool-act/
## Load data data(three_genes) ## Color schemes ## Greys comparisons[[1]]$values <- c(70, 80, 90) comparisons[[1]]$col <- apply_color_scheme(comparisons[[1]]$values, color_scheme="grey") plot_gene_map(dna_segs=dna_segs, comparisons=comparisons) ## Red-blue comparisons[[1]]$col <- apply_color_scheme(comparisons[[1]]$values, direction=comparisons[[1]]$direction, color_scheme="red_blue") plot_gene_map(dna_segs=dna_segs, comparisons=comparisons) ## Decreasing comparisons[[1]]$col <- apply_color_scheme(comparisons[[1]]$values, direction=comparisons[[1]]$direction, color_scheme="red_blue", decreasing=TRUE) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons) ## Range comparisons[[1]]$col <- apply_color_scheme(comparisons[[1]]$values, direction=comparisons[[1]]$direction, color_scheme="red_blue", rng=c(30,100)) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons) ## Transparency x1 <- seq(100, 600, by=50) x2 <- seq(1100, 700, by=-50) comparisons[[2]] <- as.comparison(data.frame(start1=c(x1, x2), end1=c(x1+250, x2+300), start2=c(x1+150, x2-300)+2000, end2=c(x1+250, x2-500)+2000 )) comparisons[[2]]$col <- apply_color_scheme(1:nrow(comparisons[[2]]), comparisons[[2]]$direction, color_scheme="blue_red") comparisons[[1]]$col <- apply_color_scheme(comparisons[[1]]$values, color_scheme="grey", transparency=0.8) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons) comparisons[[1]]$col <- apply_color_scheme(comparisons[[1]]$values, color_scheme="grey", transparency=1) comparisons[[2]]$col <- apply_color_scheme(1:nrow(comparisons[[2]]), comparisons[[2]]$direction, color_scheme="blue_red", transparency=0.2) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons)
## Load data data(three_genes) ## Color schemes ## Greys comparisons[[1]]$values <- c(70, 80, 90) comparisons[[1]]$col <- apply_color_scheme(comparisons[[1]]$values, color_scheme="grey") plot_gene_map(dna_segs=dna_segs, comparisons=comparisons) ## Red-blue comparisons[[1]]$col <- apply_color_scheme(comparisons[[1]]$values, direction=comparisons[[1]]$direction, color_scheme="red_blue") plot_gene_map(dna_segs=dna_segs, comparisons=comparisons) ## Decreasing comparisons[[1]]$col <- apply_color_scheme(comparisons[[1]]$values, direction=comparisons[[1]]$direction, color_scheme="red_blue", decreasing=TRUE) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons) ## Range comparisons[[1]]$col <- apply_color_scheme(comparisons[[1]]$values, direction=comparisons[[1]]$direction, color_scheme="red_blue", rng=c(30,100)) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons) ## Transparency x1 <- seq(100, 600, by=50) x2 <- seq(1100, 700, by=-50) comparisons[[2]] <- as.comparison(data.frame(start1=c(x1, x2), end1=c(x1+250, x2+300), start2=c(x1+150, x2-300)+2000, end2=c(x1+250, x2-500)+2000 )) comparisons[[2]]$col <- apply_color_scheme(1:nrow(comparisons[[2]]), comparisons[[2]]$direction, color_scheme="blue_red") comparisons[[1]]$col <- apply_color_scheme(comparisons[[1]]$values, color_scheme="grey", transparency=0.8) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons) comparisons[[1]]$col <- apply_color_scheme(comparisons[[1]]$values, color_scheme="grey", transparency=1) comparisons[[2]]$col <- apply_color_scheme(1:nrow(comparisons[[2]]), comparisons[[2]]$direction, color_scheme="blue_red", transparency=0.2) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons)
Returns a data frame with the standard artemis colors.
artemisColors()
artemisColors()
A data.frame
with the following columns: n
, names
,
colors
, r
, g
and g
. The 3 first columns
give the Artemis color number, its name, and its equivalent in R. The
3 last give the r, g and b values.
Lionel Guy
Artemis website: http://www.sanger.ac.uk/resources/software/artemis/
artCol <- artemisColors() plot(rep(1, nrow(artCol)), artCol$n, xlim=c(1, 2), type="n") text(rep(1, nrow(artCol)), artCol$n, labels=artCol$n, col=artCol$colors) text(rep(1, nrow(artCol)), artCol$n, labels=artCol$names, col=artCol$colors, pos=4, offset=1)
artCol <- artemisColors() plot(rep(1, nrow(artCol)), artCol$n, xlim=c(1, 2), type="n") text(rep(1, nrow(artCol)), artCol$n, labels=artCol$n, col=artCol$colors) text(rep(1, nrow(artCol)), artCol$n, labels=artCol$names, col=artCol$colors, pos=4, offset=1)
Annotate dna_segs in a smart way. This is especially designed for
dna_seg
s read from genbank or embl files, but can be extended for
other uses. In short, it produces annotations from dna_seg
s, grouping
the tags for operons (atpA, atpB, atC) into one tag (atpA-C), and
similarly for numbered genes (bep1-9).
auto_annotate(dna_seg, locus_tag_pattern=NULL, names=dna_seg$gene, keep_genes_only=TRUE, ...)
auto_annotate(dna_seg, locus_tag_pattern=NULL, names=dna_seg$gene, keep_genes_only=TRUE, ...)
dna_seg |
A |
locus_tag_pattern |
|
names |
A character vector with as many elements as there are rows in the
|
keep_genes_only |
A logical, |
... |
Further arguments to be passed to |
An annotation
object.
Lionel Guy
## Prepare dna_seg names <- paste("Eco", sprintf("%04d", 1:20), sep="") gene <- c("-", "atpC", "atpB", "atpA", "atp2", "-", "-", "cda1", "cda2", "cda3", "vcx23", "vcx22", "vcx21", "cde20", "-", "gfrU", "gfrT", "gfrY", "gfrX", "gfrW") ds <- dna_seg(data.frame(name=names, start=(1:20)*3, end=(1:20)*3+2, strand=rep(1, 20), gene=gene, stringsAsFactors=FALSE)) ## Original annotation annot1 <- annotation(x1=middle(ds), text=ds$gene, rot=30) ## auto_annotate with various options annot2 <- auto_annotate(ds) annot3 <- auto_annotate(ds, keep_genes_only=FALSE, rot=45) annot4 <- auto_annotate(ds, keep_genes_only=FALSE, locus_tag_pattern="Eco", col="red") ## Plot plot_gene_map(list(ds, ds, ds, ds), annotations=list(annot1, annot2, annot3, annot4))
## Prepare dna_seg names <- paste("Eco", sprintf("%04d", 1:20), sep="") gene <- c("-", "atpC", "atpB", "atpA", "atp2", "-", "-", "cda1", "cda2", "cda3", "vcx23", "vcx22", "vcx21", "cde20", "-", "gfrU", "gfrT", "gfrY", "gfrX", "gfrW") ds <- dna_seg(data.frame(name=names, start=(1:20)*3, end=(1:20)*3+2, strand=rep(1, 20), gene=gene, stringsAsFactors=FALSE)) ## Original annotation annot1 <- annotation(x1=middle(ds), text=ds$gene, rot=30) ## auto_annotate with various options annot2 <- auto_annotate(ds) annot3 <- auto_annotate(ds, keep_genes_only=FALSE, rot=45) annot4 <- auto_annotate(ds, keep_genes_only=FALSE, locus_tag_pattern="Eco", col="red") ## Plot plot_gene_map(list(ds, ds, ds, ds), annotations=list(annot1, annot2, annot3, annot4))
Comparison of 4 Bartonella genomes by BLAST.
data(barto)
data(barto)
barto
, a list of three dataframes, representing the four genomes
and their pairwise comparisons:
dna_segs
which is a list of 4 dna_seg
objects, containing all the protein genes for each genome. Obtained
by reading ptt files downloaded from NCBI with
read_dna_seg_from_ptt
.
comparisons
which is a list of 3 comparison
objects, obtained by doing genome-to-genome (fasta files) BLASTS,
and then reading the resulting tab files with
read_comparison_from_blast
.
rnt_segs
which is a list of 4 dna_seg
objects,
containing all the RNA genes of the four genomes. Obtained by
reading rnt files downloaded from NCBI with
read_dna_seg_from_ptt
.
A bash script to obtain the same file as in the dataset is
available in the extdata
folder of the package. Find its
location by running
system.file('extdata/barto.sh', package = 'genoPlotR')
.
BLAST: http://www.ncbi.nlm.nih.gov/blast/
data(barto) plot_gene_map(barto$rnt_segs, barto$comparisons, gene_type="blocks")
data(barto) plot_gene_map(barto$rnt_segs, barto$comparisons, gene_type="blocks")
Concatenate dna_seg objects.
## S3 method for class 'dna_seg' c(...)
## S3 method for class 'dna_seg' c(...)
... |
|
A dna_seg
object
Lionel Guy
## load data data(three_genes) dna_segs[1:2] c(dna_segs[[1]], dna_segs[[2]])
## load data data(three_genes) dna_segs[1:2] c(dna_segs[[1]], dna_segs[[2]])
A subsegment of the Y chromosome in Homo sapiens and Pan troglodytes, to illustrate support for exons and introns.
data(chrY_subseg)
data(chrY_subseg)
A list of two data frames, representing the Y segment in the two species, and containing:
dna_segs
which is a list of two dna_seg
objects, containing each three rows (or genes).
comparison
which is a list of one comparison
objects.
Header for the Homo sapiens genbank file: LOCUS NC_000023 220001 bp DNA linear CON 10-JUN-2009 DEFINITION Homo sapiens chromosome X, GRCh37 primary reference assembly. ACCESSION NC_000023 REGION: 2600000..2820000 GPC_000000047
Header for the Pan troglodytes file: LOCUS NC_006491 220001 bp DNA linear CON 18-SEP-2006 DEFINITION Pan troglodytes chromosome X, reference assembly (based on Pan_troglodytes-2.1). ACCESSION NC_006491 REGION: 2620000..2840000
data(chrY_subseg) plot_gene_map(chrY_subseg$dna_segs, chrY_subseg$comparison, dna_seg_scale=TRUE, scale=FALSE)
data(chrY_subseg) plot_gene_map(chrY_subseg$dna_segs, chrY_subseg$comparison, dna_seg_scale=TRUE, scale=FALSE)
A comparison is a collection of similarities, representing the comparison between two DNA segments. These functions are class functions to create, convert and test comparison objects.
comparison(x) as.comparison(df) is.comparison(comparison)
comparison(x) as.comparison(df) is.comparison(comparison)
x |
Can be a |
df |
A |
comparison |
Any object to test. |
Objects (either data frames or lists) should have at least named
elements start1
, end1
, start2
and end2
. In
addition, it can take a col
or column. Additional numeric columns can
be used for color-coding (via apply_color_scheme
.
comparison
tries to build a comparison object from either a
data frame or a list, as.comparison
accepts only data.frames.
is.comparison
returns TRUE
if the object tested is a
comparison object.
Read functions such as read_comparison_from_tab
and
read_comparison_from_blast
also return comparison objects.
A comparison object for comparison
and
as.comparison
. Comparison objects are also of class
data.frame
. They contain the columns start1
,
end1
, start2
, end2
, direction
and
col
(color).
A logical for is.comparison
.
Lionel Guy
dna_seg
, read_comparison_from_tab
,
read_comparison_from_blast
,
trim.comparison
, reverse.comparison
.
## Get some values starts1 <- c(2, 1000, 1050) ends1 <- c(600, 800, 1345) starts2 <- c(50, 800, 1200) ends2 <- c(900, 1100, 1322) ## From a data.frame comparison1 <- as.comparison(data.frame(start1=starts1, end1=ends1, start2=starts2, end2=ends2)) comparison1 is.comparison(comparison1) is.data.frame(comparison1) comparison(data.frame(start1=starts1, end1=ends1, start2=starts2, end2=ends2)) ## From a list comparison(list(start1=starts1, end1=ends1, start2=starts2, end2=ends2)) ## From a file comparison2_file <- system.file('extdata/comparison2.tab', package = 'genoPlotR') comparison2 <- read_comparison_from_tab(comparison2_file)
## Get some values starts1 <- c(2, 1000, 1050) ends1 <- c(600, 800, 1345) starts2 <- c(50, 800, 1200) ends2 <- c(900, 1100, 1322) ## From a data.frame comparison1 <- as.comparison(data.frame(start1=starts1, end1=ends1, start2=starts2, end2=ends2)) comparison1 is.comparison(comparison1) is.data.frame(comparison1) comparison(data.frame(start1=starts1, end1=ends1, start2=starts2, end2=ends2)) ## From a list comparison(list(start1=starts1, end1=ends1, start2=starts2, end2=ends2)) ## From a file comparison2_file <- system.file('extdata/comparison2.tab', package = 'genoPlotR') comparison2 <- read_comparison_from_tab(comparison2_file)
A DNA segment is a collection of genes or elements along a genome, to be represented on a map. These functions are class functions to create, convert and test dna_seg objects.
dna_seg(x, ...) as.dna_seg(df, col = "blue", fill = "blue", lty = 1, lwd = 1, pch = 8, cex = 1, gene_type = "arrows") is.dna_seg(dna_seg)
dna_seg(x, ...) as.dna_seg(df, col = "blue", fill = "blue", lty = 1, lwd = 1, pch = 8, cex = 1, gene_type = "arrows") is.dna_seg(dna_seg)
x |
A |
... |
Arguments further passed to |
df |
A data frame representing the |
col |
Either a color vector of the same length as |
fill |
Either a fill vector of the same length as |
lty |
A vector of the same length as |
lwd |
Same as |
pch |
Same as |
cex |
Same as |
gene_type |
Vector of the same length as |
dna_seg |
Object to test. |
Objects to be converted needs to have their first 4 columns named
name
, start
, end
and strand
. Extra columns
with names col
, lty
, lwd
, pch
, cex
,
gene_type
will be used in the plotting process. Other extra
columns will be kept in the object, but not used.
dna_seg
tries to build a dna_seg object from a data frame or a
list.
as.dna_seg
tries to build a dna_seg object from a data frame.
Read functions such as read_dna_seg_from_tab
and
read_dna_seg_from_ptt
also return dna_seg objects.
A comparison object for comparison
and
as.comparison
. DNA seg objects are also of class
data.frame
. They contain the following columns: name
,
start
, end
, strand
, col
, lty
, lwd
,
pch
, cex
, gene_type
.
A logical for is.comparison
.
Lionel Guy
read_dna_seg_from_tab
,
read_dna_seg_from_ptt
, gene_types
.
## generate data names1 <- c("feat1", "feat2", "feat3") starts1 <- c(2, 1000, 1050) ends1 <- c(600, 800, 1345) strands1 <- c("-", -1, 1) cols1 <- c("blue", "grey", "red") ## create data.frame df1 <- data.frame(name=names1, start=starts1, end=ends1, strand=strands1, col=cols1) ## with dna_seg dna_seg1 <- dna_seg(df1) dna_seg1 as.dna_seg(df1) ## test is.dna_seg(dna_seg1) ## directly readable with read_dna_seg_from_tab ## Not run: write.table(x=dna_seg1, file="dna_seg1.tab", quote=FALSE, row.names=FALSE, sep="\t") ## End(Not run) ## with only one gene and with list, or two, and merging with c.dna_seg gene2a <- dna_seg(list(name="feat1", start=50, end=900, strand="-", col="blue")) genes2b <- dna_seg(data.frame(name=c("feat2", "feat3"), start=c(800, 1200), end=c(1100, 1322), strand=c("+", 1), col=c("grey", "red"), fill=c("transparent", "grey"), gene_type=c("arrows", "blocks"))) dna_seg2 <- c(gene2a, genes2b) ## test is.dna_seg(dna_seg2) ## reading from file dna_seg3_file <- system.file('extdata/dna_seg3.tab', package = 'genoPlotR') dna_seg3 <- read_dna_seg_from_tab(dna_seg3_file) is.dna_seg(dna_seg3)
## generate data names1 <- c("feat1", "feat2", "feat3") starts1 <- c(2, 1000, 1050) ends1 <- c(600, 800, 1345) strands1 <- c("-", -1, 1) cols1 <- c("blue", "grey", "red") ## create data.frame df1 <- data.frame(name=names1, start=starts1, end=ends1, strand=strands1, col=cols1) ## with dna_seg dna_seg1 <- dna_seg(df1) dna_seg1 as.dna_seg(df1) ## test is.dna_seg(dna_seg1) ## directly readable with read_dna_seg_from_tab ## Not run: write.table(x=dna_seg1, file="dna_seg1.tab", quote=FALSE, row.names=FALSE, sep="\t") ## End(Not run) ## with only one gene and with list, or two, and merging with c.dna_seg gene2a <- dna_seg(list(name="feat1", start=50, end=900, strand="-", col="blue")) genes2b <- dna_seg(data.frame(name=c("feat2", "feat3"), start=c(800, 1200), end=c(1100, 1322), strand=c("+", 1), col=c("grey", "red"), fill=c("transparent", "grey"), gene_type=c("arrows", "blocks"))) dna_seg2 <- c(gene2a, genes2b) ## test is.dna_seg(dna_seg2) ## reading from file dna_seg3_file <- system.file('extdata/dna_seg3.tab', package = 'genoPlotR') dna_seg3 <- read_dna_seg_from_tab(dna_seg3_file) is.dna_seg(dna_seg3)
Returns a vector containing the available gene types. In addition to
these gene types, the user can provide graphical functions that return
a list or a single grob
object.
gene_types(auto = TRUE)
gene_types(auto = TRUE)
auto |
Logical. Should type "auto" be added? |
dna_seg
s may contain one character column
gene_type
. Elements in this column should either be one of the
predefined gene types, or refer to a graphical function that has
exactly the same name and that returns a grob
or a gList
object.
A gene object (i.e. a single row of a dna_seg
) is passed to the
graphical function, as well as the contents of the .... The start
and line width of an element can thus be accessed via
gene$start
and gene$lwd
. Extra columns that would be
added in the dna_seg
can be used similarly. Extra arguments can
also be globally passed via ... when calling plot_gene_map
.
A character vector.
Lionel Guy
## To view pre-coded gene types: gene_types() ## Load data data(barto) n <- length(gene_types(auto=FALSE)) ## Get a small subset from the barto dataset dna_seg <- barto$dna_segs[[3]][1:n,] plot_gene_map(list(dna_seg)) ## Change gene_types and plot again dna_seg$gene_type <- gene_types(auto=FALSE) dna_seg$fill <- rainbow(n) dna_seg_r <- dna_seg dna_seg_r$strand <- -dna_seg$strand ## Add an annotation annot <- annotation(middle(dna_seg), text=dna_seg$gene_type, rot=45, col=dna_seg$col) ## Plot plot_gene_map(list(dna_seg, dna_seg_r), annotations=list(annot, annot), annotation_height=5, dna_seg_line=grey(0.7)) ## Using home-made graphical functions ## Data data(three_genes) ## Functions returning grobs. ## Creates a triangle triangleGrob <- function(gene, ...) { x <- c(gene$start, (gene$start+gene$end)/2, gene$end) y1 <- 0.5 + 0.4*gene$strand y <- c(y1, 0.5, y1) polygonGrob(x, y, gp=gpar(fill=gene$fill, col=gene$col, lty=gene$lty, lwd=gene$lwd), default.units="native") } ## Draws a star. Note that the limits of the dna_seg region are ## voluntarily not respected starGrob <- function(gene, ...){ ## Coordinates for the star x <- sin(((0:5)/2.5)*pi)*(gene$end-gene$start)/2 + (gene$end+gene$start)/2 y <- cos(((0:5)/2.5)*pi)*gene$strand*2 + 0.5 idx <- c(1, 3, 5, 2, 4, 1) ## Attribute line_col only if present in the gene line_col <- if (!is.null(gene$line_col)) gene$line_col else gene$col ## Having a conditional transparency, depending on a length cut-off ## passed via dots length_cutoff <- list(...)$length_cutoff if (!is.null(length_cutoff)){ alpha <- if ((gene$end-gene$start) < length_cutoff) 0.3 else 0.8 } else alpha <- 1 ## Grobs g <- polygonGrob(x[idx], y[idx], gp=gpar(fill=gene$col, col=line_col, lty=gene$lty, lwd=gene$lwd, alpha=alpha), default.units="native") t <- textGrob(label="***", x=(gene$end+gene$start)/2, y=0.5, default.units="native") gList(g, t) } ## Replacing the standard types dna_segs[[1]]$gene_type <- "triangleGrob" dna_segs[[2]]$gene_type <- "starGrob" ## Adding more variables dna_segs[[2]]$line_col <- c("black", grey(0.3), "blue") ## Mix of several types on the same line dna_segs[[3]]$gene_type <- c("starGrob", "triangleGrob", "arrows") ## Plot plot_gene_map(dna_segs, comparisons, length_cutoff=600)
## To view pre-coded gene types: gene_types() ## Load data data(barto) n <- length(gene_types(auto=FALSE)) ## Get a small subset from the barto dataset dna_seg <- barto$dna_segs[[3]][1:n,] plot_gene_map(list(dna_seg)) ## Change gene_types and plot again dna_seg$gene_type <- gene_types(auto=FALSE) dna_seg$fill <- rainbow(n) dna_seg_r <- dna_seg dna_seg_r$strand <- -dna_seg$strand ## Add an annotation annot <- annotation(middle(dna_seg), text=dna_seg$gene_type, rot=45, col=dna_seg$col) ## Plot plot_gene_map(list(dna_seg, dna_seg_r), annotations=list(annot, annot), annotation_height=5, dna_seg_line=grey(0.7)) ## Using home-made graphical functions ## Data data(three_genes) ## Functions returning grobs. ## Creates a triangle triangleGrob <- function(gene, ...) { x <- c(gene$start, (gene$start+gene$end)/2, gene$end) y1 <- 0.5 + 0.4*gene$strand y <- c(y1, 0.5, y1) polygonGrob(x, y, gp=gpar(fill=gene$fill, col=gene$col, lty=gene$lty, lwd=gene$lwd), default.units="native") } ## Draws a star. Note that the limits of the dna_seg region are ## voluntarily not respected starGrob <- function(gene, ...){ ## Coordinates for the star x <- sin(((0:5)/2.5)*pi)*(gene$end-gene$start)/2 + (gene$end+gene$start)/2 y <- cos(((0:5)/2.5)*pi)*gene$strand*2 + 0.5 idx <- c(1, 3, 5, 2, 4, 1) ## Attribute line_col only if present in the gene line_col <- if (!is.null(gene$line_col)) gene$line_col else gene$col ## Having a conditional transparency, depending on a length cut-off ## passed via dots length_cutoff <- list(...)$length_cutoff if (!is.null(length_cutoff)){ alpha <- if ((gene$end-gene$start) < length_cutoff) 0.3 else 0.8 } else alpha <- 1 ## Grobs g <- polygonGrob(x[idx], y[idx], gp=gpar(fill=gene$col, col=line_col, lty=gene$lty, lwd=gene$lwd, alpha=alpha), default.units="native") t <- textGrob(label="***", x=(gene$end+gene$start)/2, y=0.5, default.units="native") gList(g, t) } ## Replacing the standard types dna_segs[[1]]$gene_type <- "triangleGrob" dna_segs[[2]]$gene_type <- "starGrob" ## Adding more variables dna_segs[[2]]$line_col <- c("black", grey(0.3), "blue") ## Mix of several types on the same line dna_segs[[3]]$gene_type <- c("starGrob", "triangleGrob", "arrows") ## Plot plot_gene_map(dna_segs, comparisons, length_cutoff=600)
Return a human readable list from a nucleotide position or lenght.
human_nt(nt, signif = FALSE)
human_nt(nt, signif = FALSE)
nt |
A nucleotide position |
signif |
Either a logical or an integer. If |
Return a nucleotide value in nt, kb, Mb or Gb, according to the value given. This is particularly useful to display nice scales without too many trailing zeros.
Returns a list with 4 elements
n |
A numeric value corresponding to |
tag |
A character, giving the multiplier used in text. |
mult |
The muliplier used, in numeric value. |
text |
A character, giving the value in a human readable format. |
Lionel Guy
human_nt(123456) human_nt(123456, signif=2) human_nt(123456890, signif=2)
human_nt(123456) human_nt(123456, signif=2) human_nt(123456890, signif=2)
The result of a multiple genome alignment with Mauve.
data(mauve_bbone)
data(mauve_bbone)
bbone
, a list of two dataframes, representing the regions which
are conserved in at least two genomes:
dna_segs
which is a list of 4 dna_seg
objects, containing the mauve blocks for each genome.
comparisons
which is a list of 3 comparison
objects.
A bash script to obtain the same file as in the data is
available in the extdata
folder of the package. Find its
location by running
system.file('extdata/mauve.sh', package = 'genoPlotR')
.
The resulting backone file can then be read with
read_mauve_backbone
.
Mauve: http://asap.ahabs.wisc.edu/mauve/
data(mauve_bbone) plot_gene_map(bbone$dna_segs, bbone$comparisons)
data(mauve_bbone) plot_gene_map(bbone$dna_segs, bbone$comparisons)
Returns a vector containing the middle of the genes of a dna_seg. Useful to prepare annotations, for example.
middle(dna_seg)
middle(dna_seg)
dna_seg |
A |
A numeric vector.
Lionel Guy
## Load data data(barto) ## Get middles of the first dna_seg mid <- middle(barto$dna_segs[[1]])
## Load data data(barto) ## Get middles of the first dna_seg mid <- middle(barto$dna_segs[[1]])
This plotting function represents linearly DNA segments and their comparisons. It will plot one line per DNA segment, eventually separated by the comparisons. In addition, a tree can be plotted on the left of the plot, and annotations on the top row. Since this is a grid plot, it can be placed into other graphics, or modified subsequently.
plot_gene_map(dna_segs, comparisons = NULL, tree = NULL, tree_width = NULL, tree_branch_labels_cex = NULL, tree_scale = FALSE, legend = NULL, annotations = NULL, annotation_height = 1, annotation_cex = 0.8, seg_plots=NULL, # user-defined plots seg_plot_height=3, # height of plots (in lines) seg_plot_height_unit="lines", # unit of preceding seg_plot_yaxis=3, # if non-null or non false, ticks seg_plot_yaxis_cex=scale_cex, xlims = NULL, offsets = NULL, minimum_gap_size = 0.05, fixed_gap_length = FALSE, limit_to_longest_dna_seg = TRUE, main = NULL, main_pos = "centre", dna_seg_labels = NULL, dna_seg_label_cex=1, dna_seg_label_col="black", gene_type = NULL, arrow_head_len = 200, dna_seg_line = TRUE, scale = TRUE, dna_seg_scale = !scale, n_scale_ticks=7, scale_cex=0.6, global_color_scheme = c("auto", "auto", "blue_red", 0.5), override_color_schemes = FALSE, plot_new=TRUE, debug = 0, ...)
plot_gene_map(dna_segs, comparisons = NULL, tree = NULL, tree_width = NULL, tree_branch_labels_cex = NULL, tree_scale = FALSE, legend = NULL, annotations = NULL, annotation_height = 1, annotation_cex = 0.8, seg_plots=NULL, # user-defined plots seg_plot_height=3, # height of plots (in lines) seg_plot_height_unit="lines", # unit of preceding seg_plot_yaxis=3, # if non-null or non false, ticks seg_plot_yaxis_cex=scale_cex, xlims = NULL, offsets = NULL, minimum_gap_size = 0.05, fixed_gap_length = FALSE, limit_to_longest_dna_seg = TRUE, main = NULL, main_pos = "centre", dna_seg_labels = NULL, dna_seg_label_cex=1, dna_seg_label_col="black", gene_type = NULL, arrow_head_len = 200, dna_seg_line = TRUE, scale = TRUE, dna_seg_scale = !scale, n_scale_ticks=7, scale_cex=0.6, global_color_scheme = c("auto", "auto", "blue_red", 0.5), override_color_schemes = FALSE, plot_new=TRUE, debug = 0, ...)
dna_segs |
A list of |
comparisons |
A list of |
tree |
A tree, under the form of a |
tree_width |
Numeric. The width of the tree area in the plot, in inches. By default, takes 20 percent of the total plot. |
tree_branch_labels_cex |
Numeric or |
tree_scale |
Logical. Plot a scale for the tree? Default is FALSE. |
legend |
Yet unimplemented. |
annotations |
An |
annotation_height |
Numeric. The height, in lines, of the annotation line. One by
default, if |
annotation_cex |
Numeric. The |
seg_plots |
A list of |
seg_plot_height |
The height of the |
seg_plot_height_unit |
The unit of the height of the |
seg_plot_yaxis |
Can be |
seg_plot_yaxis_cex |
The character expansion of the |
xlims |
A list with as many elements as there are |
offsets |
A list or a vector with as many elements as there are
|
minimum_gap_size |
A numeric. How much of the plotting region should a gap be, at least. Default is 0.05 (20% of the plotting region). |
fixed_gap_length |
Should the gaps have a fixed length? Otherwise, the gap length will
be optimized to minimize the size of comparisons. |
limit_to_longest_dna_seg |
A logical. Should the plot be restricted to the longest
|
main |
A character. Main title of the plot. |
main_pos |
Position of the main title. One of |
dna_seg_labels |
A character, same length as |
dna_seg_label_cex |
A numeric. The character size for the DNA segments labels, or tree labels. Default is 1. |
dna_seg_label_col |
A color, of length 1 or of the same length as |
gene_type |
A character. Describes the type of representation of genes or
|
arrow_head_len |
A numeric. Gives the length of arrow heads for gene type
"arrows". The arrow head extends at maximum at half of the gene. Set
to |
dna_seg_line |
A vector, either logical or giving colors, of length 1 or of same
length as |
scale |
A logical. Should the scale be displayed on the plot. |
dna_seg_scale |
A logical, of length one or of the same length as
|
n_scale_ticks |
A integer. The (approximate) number of ticks on the longest segment. Default: 7. |
scale_cex |
A numeric. The character size for the scale labels. Default is 1. |
global_color_scheme |
A character of length 4. If no |
override_color_schemes |
A logical. If |
plot_new |
Logical. Produce a new plot? If |
debug |
A numeric. If > 0, only that number of element will be plotted for
each |
... |
Further arguments to be passed to user-defined graphical functions. |
One line is plotted per dna_seg
. Eventually, the space
between the lines will be filled with the
comparison
s. dna_seg
s can be annotated with
annotation
s, and accompagnying data can be plotted using
seg_plot
.
A phylogenetic tree (a phylog
object from package ade4
)
can be drawn at the left of the plot. The tree does not need to be
ordered as the dna_seg_labels
, but a permutation of the tree
with that order should exist. If the tree is large, the number of
permutations become too large, and the function will stop (>100000
permutations). The solution is then to provide segments that are
ordered in the same manner as the tree labels (or vice-versa).
There is an (experimental) support for branch annotations. These are
given in the Newick tree, directly after the parenthesis closing a
node. They can be characters or integers, but so far
newick2phylog
doesn't support decimal values. Tags will be
ignored if they start with "I", and trimmed if they start with "X".
The format of the elements of dna_segs
is previously determined
in the object or can be globally set by gene_type
. See the
function gene_types
to return the available types. Gene
type can also be user-defined, using a function returning a
grob
. See gene_types
for more details.
xlims
allow the user to plot subsegments of a
dna_seg
. xlims
consists of a list composed of as many
numeric vectors as there are segments. Each of these numeric vectors
give pairs of left and right borders, and gives the
direction. For example, c(1,2,6,4) will plot two subsegments, segment
1 to 2 which is plotted left to right and segment 4 to 6, plotted
right to left. -Inf
and Inf
values are
accepted. NULL
values will result in plotting the whole
segment.
offsets
allows to user to define the placement of the
subsegments. If a list is provided, each element of the list should
have as many elements as there are subsegments. It will give the size
of the gaps, including the first one from the border of the plot to
the first subsegment.
A main title (main
) can also be added at the top of the plot,
at the position defined by main_pos
. A general scale
can be added at the bottom right of the plot (scale
).
dna_seg_scale
gives the ability to plot scales on one, some or
every segment. c(TRUE, FALSE, TRUE)
will add scales to the
first and third segments.
The four elements of global_color_scheme
are (i) which column
serves as scale to apply the color scheme, or "auto" (default);
(ii) if the scale is "increasing" or "decreasing" (see
apply_color_scheme
for more details), or "auto" (default);
(iii) the color scheme to apply; (iv) the transparency to apply (0.5
by default).
Nothing. A lattice graphic is plotted on the current device.
This plotting function has been tested as far as possible, but given its complexity and that the package is young, bugs or strange behaviors are possible. Please report them to the author.
As of 10/3/2010, support for viewing exons/introns is only available using genbank and embl formats, not when importing ptt files.
Lionel Guy [email protected], Jens Roat Kultima
dna_seg
and comparison
for the base objects;
read_dna_seg_from_tab
, read_dna_seg_from_ptt
,
read_comparison_from_tab
and
read_comparison_from_blast
to read from files;
annotation
to annotate dna_seg
s;
seg_plot
to draw plots next to dna_seg
s;
gene_types
for gene_type
argument;
apply_color_scheme
for color schemes;
old.par <- par(no.readonly=TRUE) data("three_genes") ## Segments only plot_gene_map(dna_segs=dna_segs) ## With comparisons plot_gene_map(dna_segs=dna_segs, comparisons=comparisons) ## Tree names <- c("A_aaa", "B_bbb", "C_ccc") names(dna_segs) <- names tree <- newick2phylog("(((A_aaa:4.2,B_bbb:3.9):3.1,C_ccc:7.3):1);") plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, tree=tree) ## Increasing tree width plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, tree=tree, tree_width=3) ## Annotations on the tree tree2 <- newick2phylog("(((A_aaa:4.2,B_bbb:3.9)97:3.1,C_ccc:7.3)78:1);") plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, tree=tree2, tree_width=3) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, tree=tree2, tree_width=3, tree_branch_labels_cex=0.5) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, tree=tree2, tree_width=3, tree_branch_labels_cex=0) ## Annotation ## Calculating middle positions mid_pos <- middle(dna_segs[[1]]) # Create first annotation annot1 <- annotation(x1=mid_pos, text=dna_segs[[1]]$name) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, annotations=annot1) ## Exploring options annot2 <- annotation(x1=c(mid_pos[1], dna_segs[[1]]$end[2]), x2=c(NA, dna_segs[[1]]$end[3]), text=c(dna_segs[[1]]$name[1], "region1"), rot=c(30, 0), col=c("grey", "black")) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, annotations=annot2, annotation_height=1.3) ## xlims ## Just returning a segment plot_gene_map(dna_segs, comparisons, xlims=list(NULL, NULL, c(Inf,-Inf)), dna_seg_scale=TRUE) ## Removing one gene plot_gene_map(dna_segs, comparisons, xlims=list(NULL, NULL, c(-Inf,2800)), dna_seg_scale=TRUE) ## offsets offsets <- c(0, 0, 0) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, offsets=offsets) offsets <- c(200, 400, 0) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, offsets=offsets) ## main plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, main="Comparison of A, B and C") plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, main="Comparison of A, B and C", main_pos="left") ## dna_seg_labels plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, dna_seg_labels=c("Huey", "Dewey", "Louie")) ## dna_seg_labels size plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, dna_seg_labels=c("Huey", "Dewey", "Louie"), dna_seg_label_cex=2) ## dna_seg_line plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, dna_seg_line=c("FALSE", "red", grey(0.6))) ## gene_type plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, gene_type="side_blocks") ## ## From here on, using a bigger dataset from a 4-genome comparison ## data("barto") ## Adding a tree tree <- newick2phylog("(BB:2.5,(BG:1.8,(BH:1,BQ:0.8):1.9):3);") ## Showing only subsegments xlims1 <- list(c(1380000, 1445000), c(10000, 83000), c(15000, 98000), c(5000, 82000)) ## Reducing dataset size for speed purpose for (i in 1:length(barto$dna_segs)){ barto$dna_segs[[i]] <- trim(barto$dna_segs[[i]], xlim=xlims1[[i]]) if (i < length(barto$dna_segs)) barto$comparisons[[i]] <- trim(barto$comparisons[[i]], xlim1=xlims1[[i]], xlims1[[i+1]]) } plot_gene_map(barto$dna_segs, barto$comparisons, tree=tree, xlims=xlims1, dna_seg_scale=TRUE) ## Showing several subsegments per genome xlims2 <- list(c(1445000, 1415000, 1380000, 1412000), c( 10000, 45000, 50000, 83000, 90000, 120000), c( 15000, 36000, 90000, 120000, 74000, 98000), c( 5000, 82000)) ## dna_seg_scale, global_color_scheme, size, number, color of dna_seg_scale, ## size of dna_seg_scale labels plot_gene_map(barto$dna_segs, barto$comparisons, tree=tree, xlims=xlims2, dna_seg_scale=c(TRUE, FALSE, FALSE, TRUE), scale=FALSE, dna_seg_label_cex=1.7, dna_seg_label_col=c("black", "grey", "blue", "red"), global_color_scheme=c("e_value", "auto", "grey", "0.7"), n_scale_ticks=3, scale_cex=1) ## Hand-made offsets: size of all gaps offsets2 <- list(c(10000, 10000), c(2000, 2000, 2000), c(10000, 5000, 2000), c(10000)) plot_gene_map(barto$dna_segs, barto$comparisons, tree=tree, #annotations=annots, xlims=xlims2, offsets=offsets2, dna_seg_scale=TRUE) ## ## Exploring and modifying a previously plotted gene map plot ## ## View viewports current.vpTree() ## Go down to one of the viewports, add an xaxis, go back up to root viewport downViewport("dna_seg_scale.3.2") grid.rect() upViewport(0) ## Get all the names of the objects grobNames <- getNames() grobNames ## Change the color ot the scale line grid.edit("scale.lines", gp=gpar(col="grey")) ## Remove first dna_seg_lines grid.remove("dna_seg_line.1.1") ## ## Plot genoPlotR logo ## col <- c("#B2182B", "#D6604D", "#F4A582", "#FDDBC7", "#D1E5F0", "#92C5DE", "#4393C3", "#2166AC") cex <- 2.3 ## First segment start1 <- c(150, 390, 570) end1 <- c( 1, 490, 690) genoR <- c(270, 530) ## Second segment start2 <- c(100, 520, 550) end2 <- c(240, 420, 650) Plot <- c(330) ## dna_segs ds1 <- as.dna_seg(data.frame(name=c("", "", ""), start=start1, end=end1, strand=rep(1, 3), col=col[c(2, 6, 1)], stringsAsFactor=FALSE)) ds_genoR <- as.dna_seg(data.frame(name=c("geno", "R"), start=genoR, end=genoR, strand=rep(1, 2), col=c(col[8], "black"), stringsAsFactor=FALSE), cex=cex, gene_type="text") ds2 <- as.dna_seg(data.frame(name=c("", "", ""), start=start2, end=end2, strand=rep(1, 3), col=col[c(5, 3, 7)], stringsAsFactor=FALSE)) ds_Plot <- as.dna_seg(data.frame(name="Plot", start=Plot, end=Plot, strand=1, col=col[c(1)], stringsAsFactor=FALSE), cex=cex, gene_type="text") ## comparison c1 <- as.comparison(data.frame(start1=start1, end1=end1, start2=start2, end2=end2, col=grey(c(0.6, 0.8, 0.5)))) ## Generate genoPlotR logo ## Not run: pdf("logo.pdf", h=0.7, w=3) ## End(Not run) par(fin=c(0.7, 3)) plot_gene_map(dna_segs=list(c(ds1, ds_genoR), c(ds2, ds_Plot)), comparisons=list(c1), scale=FALSE, dna_seg_scale=FALSE, dna_seg_line=grey(0.7), offsets=c(-20,160)) ## Not run: dev.off() ## End(Not run) par(old.par)
old.par <- par(no.readonly=TRUE) data("three_genes") ## Segments only plot_gene_map(dna_segs=dna_segs) ## With comparisons plot_gene_map(dna_segs=dna_segs, comparisons=comparisons) ## Tree names <- c("A_aaa", "B_bbb", "C_ccc") names(dna_segs) <- names tree <- newick2phylog("(((A_aaa:4.2,B_bbb:3.9):3.1,C_ccc:7.3):1);") plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, tree=tree) ## Increasing tree width plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, tree=tree, tree_width=3) ## Annotations on the tree tree2 <- newick2phylog("(((A_aaa:4.2,B_bbb:3.9)97:3.1,C_ccc:7.3)78:1);") plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, tree=tree2, tree_width=3) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, tree=tree2, tree_width=3, tree_branch_labels_cex=0.5) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, tree=tree2, tree_width=3, tree_branch_labels_cex=0) ## Annotation ## Calculating middle positions mid_pos <- middle(dna_segs[[1]]) # Create first annotation annot1 <- annotation(x1=mid_pos, text=dna_segs[[1]]$name) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, annotations=annot1) ## Exploring options annot2 <- annotation(x1=c(mid_pos[1], dna_segs[[1]]$end[2]), x2=c(NA, dna_segs[[1]]$end[3]), text=c(dna_segs[[1]]$name[1], "region1"), rot=c(30, 0), col=c("grey", "black")) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, annotations=annot2, annotation_height=1.3) ## xlims ## Just returning a segment plot_gene_map(dna_segs, comparisons, xlims=list(NULL, NULL, c(Inf,-Inf)), dna_seg_scale=TRUE) ## Removing one gene plot_gene_map(dna_segs, comparisons, xlims=list(NULL, NULL, c(-Inf,2800)), dna_seg_scale=TRUE) ## offsets offsets <- c(0, 0, 0) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, offsets=offsets) offsets <- c(200, 400, 0) plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, offsets=offsets) ## main plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, main="Comparison of A, B and C") plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, main="Comparison of A, B and C", main_pos="left") ## dna_seg_labels plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, dna_seg_labels=c("Huey", "Dewey", "Louie")) ## dna_seg_labels size plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, dna_seg_labels=c("Huey", "Dewey", "Louie"), dna_seg_label_cex=2) ## dna_seg_line plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, dna_seg_line=c("FALSE", "red", grey(0.6))) ## gene_type plot_gene_map(dna_segs=dna_segs, comparisons=comparisons, gene_type="side_blocks") ## ## From here on, using a bigger dataset from a 4-genome comparison ## data("barto") ## Adding a tree tree <- newick2phylog("(BB:2.5,(BG:1.8,(BH:1,BQ:0.8):1.9):3);") ## Showing only subsegments xlims1 <- list(c(1380000, 1445000), c(10000, 83000), c(15000, 98000), c(5000, 82000)) ## Reducing dataset size for speed purpose for (i in 1:length(barto$dna_segs)){ barto$dna_segs[[i]] <- trim(barto$dna_segs[[i]], xlim=xlims1[[i]]) if (i < length(barto$dna_segs)) barto$comparisons[[i]] <- trim(barto$comparisons[[i]], xlim1=xlims1[[i]], xlims1[[i+1]]) } plot_gene_map(barto$dna_segs, barto$comparisons, tree=tree, xlims=xlims1, dna_seg_scale=TRUE) ## Showing several subsegments per genome xlims2 <- list(c(1445000, 1415000, 1380000, 1412000), c( 10000, 45000, 50000, 83000, 90000, 120000), c( 15000, 36000, 90000, 120000, 74000, 98000), c( 5000, 82000)) ## dna_seg_scale, global_color_scheme, size, number, color of dna_seg_scale, ## size of dna_seg_scale labels plot_gene_map(barto$dna_segs, barto$comparisons, tree=tree, xlims=xlims2, dna_seg_scale=c(TRUE, FALSE, FALSE, TRUE), scale=FALSE, dna_seg_label_cex=1.7, dna_seg_label_col=c("black", "grey", "blue", "red"), global_color_scheme=c("e_value", "auto", "grey", "0.7"), n_scale_ticks=3, scale_cex=1) ## Hand-made offsets: size of all gaps offsets2 <- list(c(10000, 10000), c(2000, 2000, 2000), c(10000, 5000, 2000), c(10000)) plot_gene_map(barto$dna_segs, barto$comparisons, tree=tree, #annotations=annots, xlims=xlims2, offsets=offsets2, dna_seg_scale=TRUE) ## ## Exploring and modifying a previously plotted gene map plot ## ## View viewports current.vpTree() ## Go down to one of the viewports, add an xaxis, go back up to root viewport downViewport("dna_seg_scale.3.2") grid.rect() upViewport(0) ## Get all the names of the objects grobNames <- getNames() grobNames ## Change the color ot the scale line grid.edit("scale.lines", gp=gpar(col="grey")) ## Remove first dna_seg_lines grid.remove("dna_seg_line.1.1") ## ## Plot genoPlotR logo ## col <- c("#B2182B", "#D6604D", "#F4A582", "#FDDBC7", "#D1E5F0", "#92C5DE", "#4393C3", "#2166AC") cex <- 2.3 ## First segment start1 <- c(150, 390, 570) end1 <- c( 1, 490, 690) genoR <- c(270, 530) ## Second segment start2 <- c(100, 520, 550) end2 <- c(240, 420, 650) Plot <- c(330) ## dna_segs ds1 <- as.dna_seg(data.frame(name=c("", "", ""), start=start1, end=end1, strand=rep(1, 3), col=col[c(2, 6, 1)], stringsAsFactor=FALSE)) ds_genoR <- as.dna_seg(data.frame(name=c("geno", "R"), start=genoR, end=genoR, strand=rep(1, 2), col=c(col[8], "black"), stringsAsFactor=FALSE), cex=cex, gene_type="text") ds2 <- as.dna_seg(data.frame(name=c("", "", ""), start=start2, end=end2, strand=rep(1, 3), col=col[c(5, 3, 7)], stringsAsFactor=FALSE)) ds_Plot <- as.dna_seg(data.frame(name="Plot", start=Plot, end=Plot, strand=1, col=col[c(1)], stringsAsFactor=FALSE), cex=cex, gene_type="text") ## comparison c1 <- as.comparison(data.frame(start1=start1, end1=end1, start2=start2, end2=end2, col=grey(c(0.6, 0.8, 0.5)))) ## Generate genoPlotR logo ## Not run: pdf("logo.pdf", h=0.7, w=3) ## End(Not run) par(fin=c(0.7, 3)) plot_gene_map(dna_segs=list(c(ds1, ds_genoR), c(ds2, ds_Plot)), comparisons=list(c1), scale=FALSE, dna_seg_scale=FALSE, dna_seg_line=grey(0.7), offsets=c(-20,160)) ## Not run: dev.off() ## End(Not run) par(old.par)
Calculate the range of dna_seg and comparisons.
## S3 method for class 'dna_seg' range(x, ...) ## S3 method for class 'comparison' range(x, overall=TRUE, ...) ## S3 method for class 'annotation' range(x, ...)
## S3 method for class 'dna_seg' range(x, ...) ## S3 method for class 'comparison' range(x, overall=TRUE, ...) ## S3 method for class 'annotation' range(x, ...)
x |
Object to calculate the range from. |
overall |
Logical, |
... |
Unused. |
Calculate the overall range of a dna_seg
, comparison
or
an annotation
object.
A numeric of length 2. For comparison
, if overall
is
FALSE
, a data frame with two rows and two columns, xlim1
and xlim2
.
Lionel Guy
dna_seg
, comparison
, trim
for further examples.
## Load data data(three_genes) ## On dna_seg dna_segs[[1]] range(dna_segs[[1]]) ## On comparison comparisons[[2]] range(comparisons[[2]]) range(comparisons[[2]], overall=FALSE)
## Load data data(three_genes) ## On dna_seg dna_segs[[1]] range(dna_segs[[1]]) ## On comparison comparisons[[2]] range(comparisons[[2]]) range(comparisons[[2]], overall=FALSE)
Functions to parse dna_seg objects from tab, embl, genbank, fasta, ptt files or from mauve backbone files, and comparison objects from tab or blast files.
read_dna_seg_from_tab(file, header = TRUE, ...) read_dna_seg_from_file(file, tagsToParse=c("CDS"), fileType = "detect", meta_lines = 2, gene_type = "auto", header = TRUE, extra_fields = NULL, ...) read_dna_seg_from_embl(file, tagsToParse=c("CDS"), ...) read_dna_seg_from_genbank(file, tagsToParse=c("CDS"), ...) read_dna_seg_from_fasta(file, ...) read_dna_seg_from_ptt(file, meta_lines = 2, header = TRUE, ...) read_comparison_from_tab(file, header = TRUE, ...) read_comparison_from_blast(file, sort_by = "per_id", filt_high_evalue = NULL, filt_low_per_id = NULL, filt_length = NULL, color_scheme = NULL, ...) read_mauve_backbone(file, ref = 1, gene_type = "side_blocks", header = TRUE, filter_low = 0, common_blocks_only = TRUE, ...)
read_dna_seg_from_tab(file, header = TRUE, ...) read_dna_seg_from_file(file, tagsToParse=c("CDS"), fileType = "detect", meta_lines = 2, gene_type = "auto", header = TRUE, extra_fields = NULL, ...) read_dna_seg_from_embl(file, tagsToParse=c("CDS"), ...) read_dna_seg_from_genbank(file, tagsToParse=c("CDS"), ...) read_dna_seg_from_fasta(file, ...) read_dna_seg_from_ptt(file, meta_lines = 2, header = TRUE, ...) read_comparison_from_tab(file, header = TRUE, ...) read_comparison_from_blast(file, sort_by = "per_id", filt_high_evalue = NULL, filt_low_per_id = NULL, filt_length = NULL, color_scheme = NULL, ...) read_mauve_backbone(file, ref = 1, gene_type = "side_blocks", header = TRUE, filter_low = 0, common_blocks_only = TRUE, ...)
file |
Path to file to load. URL are accepted. |
header |
Logical. Does the tab file has headers (column names)? |
tagsToParse |
Character vector. Tags to parse in embl or genbank files. Common tags are 'CDS', 'gene', 'misc_feature'. |
fileType |
Character string. Select file type, could be 'detect' for automatic detection, 'embl' for embl files, 'genbank' for genbank files or 'ptt' for ptt files. |
meta_lines |
The number of lines in the ptt file that represent "meta" data, not counting the header lines. Standard for NCBI files is 2 (name and length, number of proteins. Default is also 2. |
gene_type |
Determines how genes are visualized. If 'auto' genes will appear as
arrows in there are no introns and as blocks if there are introns.
Can also be set to for example 'blocks' or 'arrows'. Do note, currently
introns are not supported in the ptt file format.
Default for mauve backbone is |
extra_fields |
|
sort_by |
In BLAST-like tabs, gives the name of the column that will be used
to sort the comparisons. Accepted values are |
filt_high_evalue |
A numerical, or |
filt_low_per_id |
A numerical, or |
filt_length |
A numerical, or |
color_scheme |
A color scheme to apply. See |
ref |
In mauve backbone, which of the dna segments will be the reference, i.e. which one will have its blocks in order. |
... |
Further arguments passed to generic reading functions and class
conversion functions. See For |
filter_low |
A numeric. If larger than 0, all blocks smaller that this number will be filtered out. Defaults to 0. |
common_blocks_only |
A logical. If |
Tab files representing DNA segements should have at least the following
columns: name, start, end, strand (in that order. Additionally, if the
tab file has headers, more columns will be used to define, for
example, the color, line width and type, pch and/or cex. See
dna_seg
for more information. An example:
name | start | end | strand | col |
feat1A | 2 | 1345 | 1 | blue |
feat1B | 1399 | 2034 | 1 | red |
feat1C | 2101 | 2932 | -1 | grey |
feat1D | 2800 | 3120 | 1 | green |
Embl and Genbank files are two commonly used file types. These file types
often contain a great variety of information. To properly extract data from
these files, the user has to choose which features to extract. Commonly 'CDS'
features are of interest, but other feature tags such as 'gene' or
'misc_feature' may be of interest. Should a feature contain an inner
"pseudo" tag indicating this CDS or gene is a pseudo gene, this will
be presented as a 'CDS_pseudo' or a 'gene_pseudo' feature type
respectively in the resulting table. Certain constraints apply to
these file types, of which some are: embl files must contain one and
only one ID tag; genbank files may only contain one and only one locus
tag. In these two files, the following tags are parsed (in addition to
the regular name, start, end and strand): protein_id, product, color
(or colour). In addition, extra tags can be parsed with the argument
extra_fields
. If there are more than one field with such a tag,
only the first one is parsed.
Fasta files are read as one gene, as long as there are nucleotides in the fasta file.
Ptt (or protein table) files are a tabular format giving a bunch of information on each protein of a genome (or plasmid, or virus, etc). They are available for each published genome on the NCBI ftp site (ftp://ftp.ncbi.nlm.nih.gov/genomes/). As an example, look at ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/Bartonella_henselae_Houston-1/NC_005956.ptt.
Tabular comparison files should have at least the following columns: start1, end1, start2, end2. If no header is specified, the fifth column is parsed as the color.
start1 | end1 | start2 | end2 | col |
2 | 1345 | 10 | 1210 | red |
1399 | 2034 | 2700 | 1100 | blue |
500 | 800 | 3000 | 2500 | blue |
BLAST tabular result files are produced either with blastall using -m8 or -m9 parameter, or with any of the newer blastn/blastp/blastx/tblastx using -outfmt 6 or -outfmt 7.
In the subsequent plot_gene_map
, the comparisons are drawn in
the order of the comparison
object, i.e. the last rows of the
comparison object are on the top in the plot. For comparisons read
from BLAST output, the order can be modified by using the argument
sort_by
. In any case, the order of plotting can be modified by
modifying the order of rows in the comparison
object prior to
plotting.
Mauve backbone is another tabular data file that summarizes the blocks
that are similar between all compared genomes. Each genome gets two
columns, one start and one end of the block. There is one row per
block and eventually a header row. If named, columns have sequence
numbers, not actual names, so be careful to input the same order in
both Mauve and genoPlotR. See
http://asap.ahabs.wisc.edu/mauve-aligner/mauve-user-guide/mauve-output-file-formats.html
for more info on the file format. Normally, the function should be
able to read both progressiveMauve
and mauveAligner
outputs. The function returns both the blocks as dna_seg
s and
the links between the blocks as comparison
s.
read_dna_seg_from_tab
, read_dna_seg_from_file
, read_dna_seg_from_embl
,
read_dna_seg_from_genbank
and read_dna_seg_from_ptt
return
dna_seg
objects. read_comparison_from_tab
and
read_comparison_from_blast
return comparison
objects. read_mauve_backbone
returns a list containing a list
of dna_seg
s and comparison
s.
objects.
Formats are changing and it maybe that some functions are temporarily malfunctioning. Please report any bug to the author. Mauve examples were prepared with Mauve 2.3.1.
Lionel Guy, Jens Roat Kultima
For BLAST: http://www.ncbi.nlm.nih.gov/blast/ For Mauve: http://asap.ahabs.wisc.edu/mauve/
comparison
, dna_seg
,
apply_color_scheme
.
## ## From tabs ## ## Read DNA segment from tab dna_seg3_file <- system.file('extdata/dna_seg3.tab', package = 'genoPlotR') dna_seg3 <- read_dna_seg_from_tab(dna_seg3_file) ## Read comparison from tab comparison2_file <- system.file('extdata/comparison2.tab', package = 'genoPlotR') comparison2 <- read_comparison_from_tab(comparison2_file) ## ## Mauve backbone ## ## File: this is only to retrieve the file from the genoPlotR ## installation folder. bbone_file <- system.file('extdata/barto.backbone', package = 'genoPlotR') ## Read backbone ## To read your own backbone, run something like ## bbone_file <- "/path/to/my/file.bbone" bbone <- read_mauve_backbone(bbone_file) names <- c("B_bacilliformis", "B_grahamii", "B_henselae", "B_quintana") names(bbone$dna_segs) <- names ## Plot plot_gene_map(dna_segs=bbone$dna_segs, comparisons=bbone$comparisons) ## Using filter_low & changing reference sequence bbone <- read_mauve_backbone(bbone_file, ref=2, filter_low=2000) names(bbone$dna_segs) <- names plot_gene_map(dna_segs=bbone$dna_segs, comparisons=bbone$comparisons) ## Read guide tree tree_file <- system.file('extdata/barto.guide_tree', package = 'genoPlotR') tree_str <- readLines(tree_file) for (i in 1:length(names)){ tree_str <- gsub(paste("seq", i, sep=""), names[i], tree_str) } tree <- newick2phylog(tree_str) ## Plot plot_gene_map(dna_segs=bbone$dna_segs, comparisons=bbone$comparisons, tree=tree) ## ## From embl file ## bq_embl_file <- system.file('extdata/BG_plasmid.embl', package = 'genoPlotR') bq <- read_dna_seg_from_embl(bq_embl_file) ## ## From genbank file ## bq_genbank_file <- system.file('extdata/BG_plasmid.gbk', package = 'genoPlotR') bq <- read_dna_seg_from_file(bq_genbank_file, fileType="detect") ## Parsing extra fields in the genbank file bq <- read_dna_seg_from_file(bq_genbank_file, extra_fields=c("db_xref", "transl_table")) names(bq) ## ## From ptt files ## ## From a file bq_ptt_file <- system.file('extdata/BQ.ptt', package = 'genoPlotR') bq <- read_dna_seg_from_ptt(bq_ptt_file) ## Read directly from NCBI ftp site: url <- "ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Bartonella_henselae_Houston-1/NC_005956.ptt" attempt <- 0 ## Not run: while (attempt < 5){ attempt <- attempt + 1 bh <- try(read_dna_seg_from_ptt(url)) if (!inherits(bh, "try-error")) { attempt <- 99 } else { print(paste("Tried", attempt, "times, retrying in 5s")) Sys.sleep(5) } } ## End(Not run) ## If attempt to connect to internet fails if (!exists("bh")){ data(barto) bh <- barto$dna_segs[[3]] } ## ## Read from blast ## bh_vs_bq_file <- system.file('extdata/BH_vs_BQ.blastn.tab', package = 'genoPlotR') bh_vs_bq <- read_comparison_from_blast(bh_vs_bq_file, color_scheme="grey") ## Plot plot_gene_map(dna_segs=list(BH=bh, BQ=bq), comparisons=list(bh_vs_bq), xlims=list(c(1,50000), c(1, 50000)))
## ## From tabs ## ## Read DNA segment from tab dna_seg3_file <- system.file('extdata/dna_seg3.tab', package = 'genoPlotR') dna_seg3 <- read_dna_seg_from_tab(dna_seg3_file) ## Read comparison from tab comparison2_file <- system.file('extdata/comparison2.tab', package = 'genoPlotR') comparison2 <- read_comparison_from_tab(comparison2_file) ## ## Mauve backbone ## ## File: this is only to retrieve the file from the genoPlotR ## installation folder. bbone_file <- system.file('extdata/barto.backbone', package = 'genoPlotR') ## Read backbone ## To read your own backbone, run something like ## bbone_file <- "/path/to/my/file.bbone" bbone <- read_mauve_backbone(bbone_file) names <- c("B_bacilliformis", "B_grahamii", "B_henselae", "B_quintana") names(bbone$dna_segs) <- names ## Plot plot_gene_map(dna_segs=bbone$dna_segs, comparisons=bbone$comparisons) ## Using filter_low & changing reference sequence bbone <- read_mauve_backbone(bbone_file, ref=2, filter_low=2000) names(bbone$dna_segs) <- names plot_gene_map(dna_segs=bbone$dna_segs, comparisons=bbone$comparisons) ## Read guide tree tree_file <- system.file('extdata/barto.guide_tree', package = 'genoPlotR') tree_str <- readLines(tree_file) for (i in 1:length(names)){ tree_str <- gsub(paste("seq", i, sep=""), names[i], tree_str) } tree <- newick2phylog(tree_str) ## Plot plot_gene_map(dna_segs=bbone$dna_segs, comparisons=bbone$comparisons, tree=tree) ## ## From embl file ## bq_embl_file <- system.file('extdata/BG_plasmid.embl', package = 'genoPlotR') bq <- read_dna_seg_from_embl(bq_embl_file) ## ## From genbank file ## bq_genbank_file <- system.file('extdata/BG_plasmid.gbk', package = 'genoPlotR') bq <- read_dna_seg_from_file(bq_genbank_file, fileType="detect") ## Parsing extra fields in the genbank file bq <- read_dna_seg_from_file(bq_genbank_file, extra_fields=c("db_xref", "transl_table")) names(bq) ## ## From ptt files ## ## From a file bq_ptt_file <- system.file('extdata/BQ.ptt', package = 'genoPlotR') bq <- read_dna_seg_from_ptt(bq_ptt_file) ## Read directly from NCBI ftp site: url <- "ftp://ftp.ncbi.nih.gov/genomes/Bacteria/Bartonella_henselae_Houston-1/NC_005956.ptt" attempt <- 0 ## Not run: while (attempt < 5){ attempt <- attempt + 1 bh <- try(read_dna_seg_from_ptt(url)) if (!inherits(bh, "try-error")) { attempt <- 99 } else { print(paste("Tried", attempt, "times, retrying in 5s")) Sys.sleep(5) } } ## End(Not run) ## If attempt to connect to internet fails if (!exists("bh")){ data(barto) bh <- barto$dna_segs[[3]] } ## ## Read from blast ## bh_vs_bq_file <- system.file('extdata/BH_vs_BQ.blastn.tab', package = 'genoPlotR') bh_vs_bq <- read_comparison_from_blast(bh_vs_bq_file, color_scheme="grey") ## Plot plot_gene_map(dna_segs=list(BH=bh, BQ=bq), comparisons=list(bh_vs_bq), xlims=list(c(1,50000), c(1, 50000)))
Reverse objects, mainly dna_seg
and comparison
reverse(x, ...) ## Default S3 method: reverse(x, ...) ## S3 method for class 'dna_seg' reverse(x, ...) ## S3 method for class 'comparison' reverse(x, side = 0, ...)
reverse(x, ...) ## Default S3 method: reverse(x, ...) ## S3 method for class 'dna_seg' reverse(x, ...) ## S3 method for class 'comparison' reverse(x, side = 0, ...)
x |
The object to reverse. |
... |
Unused. |
side |
In the case of comparisons, the side of the comparison that should
be reversed. If |
The same object as input.
Lionel Guy
## load data data(three_genes) ## on dna_seg dna_segs[[1]] reverse(dna_segs[[1]]) ## on comparison reverse(comparisons[[2]], side=1) reverse(comparisons[[2]], side=3) ## With mauve backbone data(mauve_bbone) ## Plot plot_gene_map(dna_segs=bbone$dna_segs, comparisons=bbone$comparisons) ## Reverse B_bacilliformis, and the corresponding comparison (first "side") bbone$dna_segs[[1]] <- reverse(bbone$dna_segs[[1]]) bbone$comparisons[[1]] <- reverse(bbone$comparisons[[1]], 1) plot_gene_map(dna_segs=bbone$dna_segs, comparisons=bbone$comparisons)
## load data data(three_genes) ## on dna_seg dna_segs[[1]] reverse(dna_segs[[1]]) ## on comparison reverse(comparisons[[2]], side=1) reverse(comparisons[[2]], side=3) ## With mauve backbone data(mauve_bbone) ## Plot plot_gene_map(dna_segs=bbone$dna_segs, comparisons=bbone$comparisons) ## Reverse B_bacilliformis, and the corresponding comparison (first "side") bbone$dna_segs[[1]] <- reverse(bbone$dna_segs[[1]]) bbone$comparisons[[1]] <- reverse(bbone$comparisons[[1]], 1) plot_gene_map(dna_segs=bbone$dna_segs, comparisons=bbone$comparisons)
An seg_plot is an object to plot data associated to a dna_seg
object. It is a list
with mandatory and optional arguments. The
main arguments are func
, which is a function returning a
grob
or a gList
, and args
, which
are arguments to be passed to this function.
seg_plot(func, args = NULL, xargs = c("x", "x0", "x1", "x2", "v"), yargs = c("y", "y0", "y1", "y2", "h"), ylim = NULL) as.seg_plot(seg_plot) is.seg_plot(seg_plot)
seg_plot(func, args = NULL, xargs = c("x", "x0", "x1", "x2", "v"), yargs = c("y", "y0", "y1", "y2", "h"), ylim = NULL) as.seg_plot(seg_plot) is.seg_plot(seg_plot)
func |
Mandatory, with no defaults. A function that returns a |
args |
A list, |
xargs |
A vector giving the names of which of the arguments in |
yargs |
A vector giving the names of which of the arguments in |
ylim |
A numeric vector of length 2, defining the range of the plot when
drawn with |
seg_plot |
In In |
A seg_plot
object is an object describing how to plot data
associated to a dna_seg
. It is a list composed of a function,
arguments to pass to this function, two arguments to define which of
those define x and y, and an eventual ylim
to limit the
plotting to a certain range when plotting.
The function func
should return a grob
object, or a
gList
list of grob
s. The predefined functions of
grid
, such as linesGrob
, pointsGrob
,
segmentsGrob
, textGrob
or polygonGrob
can be
used, or user-defined functions can be defined.
The arguments in args
should correspond to arguments passed to
func
. For example, if func = pointsGrob
, args
could contain the elements x = 10:1
, y = 1:10
. It will
often also contain a gp
element, the result of a call to the
gpar
function, to control graphical aspects of the plot
such as color, fill, line width and style, fonts, etc.
seg_plot
and as.seg_plot
return a seg_plot
object.
is.seg_plot
returns a logical.
Lionel Guy
## Using the existing pointsGrob x <- 1:20 y <- rnorm(20) sp <- seg_plot(func=pointsGrob, args=list(x=x, y=y, gp=gpar(col=1:20, cex=1:3))) is.seg_plot(sp) ## Function seg_plot(...) is identical to as.seg_plot(list(...)) sp2 <- as.seg_plot(list(func=pointsGrob, args=list(x=x, y=y, gp=gpar(col=1:20, cex=1:3)))) identical(sp, sp2) ## For the show, plot the obtained result grb <- do.call(sp$func, sp$args) ## Trim the seg_plot sp_trim <- trim(sp, c(3, 10)) ## Changing color and function "on the fly" sp_trim$args$gp$col <- "blue" sp_trim$func <- linesGrob grb_trim <- do.call(sp_trim$func, sp_trim$args) ## Now plot plot.new() pushViewport(viewport(xscale=c(0,21), yscale=c(-4,4))) grid.draw(grb) grid.draw(grb_trim) ## Using home-made function triangleGrob <- function(start, end, strand, col, ...) { x <- c(start, (start+end)/2, end) y1 <- 0.5 + 0.4*strand y <- c(y1, rep(0.5, length(y1)), y1) polygonGrob(x, y, gp=gpar(col=col), default.units="native", id=rep(1:7, 3)) } start <- seq(1, 19, by=3)+rnorm(7)/3 end <- start + 1 + rnorm(7) strand <- sign(rnorm(7)) sp_tr <- seg_plot(func=triangleGrob, args=list(start=start, end=end, strand=strand, col=1:length(start)), xargs=c("start", "end")) grb_tr <- do.call(sp_tr$func, sp_tr$args) plot.new() pushViewport(viewport(xscale=c(1,22), yscale=c(-2,2))) grid.draw(grb_tr) ## Trim sp_tr_trim <- trim(sp_tr, xlim=c(5, 15)) str(sp_tr_trim) ## If the correct xargs are not indicated, trimming won't work sp_tr$xargs <- c("x") sp_tr_trim2 <- trim(sp_tr, xlim=c(5, 15)) identical(sp_tr_trim, sp_tr_trim2) y1 <- convertY(grobY(grb_tr, "south"), "native") y2 <- convertY(grobY(grb_tr, "north"), "native") heightDetails(grb) grb ## Applying it to plot_gene_maps data(three_genes) ## Build data to plot xs <- lapply(dna_segs, range) colors <- c("red", "blue", "green") seg_plots <- list() for (i in 1:length(xs)){ x <- seq(xs[[i]][1], xs[[i]][2], length=20) seg_plots[[i]] <- seg_plot(func=pointsGrob, args=list(x=x, y=rnorm(20)+2*i, default.units="native", pch=3, gp=gpar(col=colors[i], cex=0.5))) } plot_gene_map(dna_segs, comparisons, seg_plots=seg_plots, seg_plot_height=0.5, seg_plot_height_unit="inches", dna_seg_scale=TRUE) ## A more complicated example data(barto) tree <- newick2phylog("(BB:2.5,(BG:1.8,(BH:1,BQ:0.8):1.9):3);") ## Showing several subsegments per genome xlims2 <- list(c(1445000, 1415000, 1380000, 1412000), c( 10000, 45000, 50000, 83000, 90000, 120000), c( 15000, 36000, 90000, 120000, 74000, 98000), c( 5000, 82000)) ## Adding fake data in 1kb windows seg_plots <- lapply(barto$dna_segs, function(ds){ x <- seq(1, range(ds)[2], by=1000) y <- jitter(seq(100, 300, length=length(x)), amount=50) seg_plot(func=linesGrob, args=list(x=x, y=y, gp=gpar(col=grey(0.3), lty=2))) }) plot_gene_map(barto$dna_segs, barto$comparisons, tree=tree, seg_plots=seg_plots, seg_plot_height=0.5, seg_plot_height_unit="inches", xlims=xlims2, limit_to_longest_dna_seg=FALSE, dna_seg_scale=TRUE, main="Random plots for the same segment in 4 Bartonella genomes")
## Using the existing pointsGrob x <- 1:20 y <- rnorm(20) sp <- seg_plot(func=pointsGrob, args=list(x=x, y=y, gp=gpar(col=1:20, cex=1:3))) is.seg_plot(sp) ## Function seg_plot(...) is identical to as.seg_plot(list(...)) sp2 <- as.seg_plot(list(func=pointsGrob, args=list(x=x, y=y, gp=gpar(col=1:20, cex=1:3)))) identical(sp, sp2) ## For the show, plot the obtained result grb <- do.call(sp$func, sp$args) ## Trim the seg_plot sp_trim <- trim(sp, c(3, 10)) ## Changing color and function "on the fly" sp_trim$args$gp$col <- "blue" sp_trim$func <- linesGrob grb_trim <- do.call(sp_trim$func, sp_trim$args) ## Now plot plot.new() pushViewport(viewport(xscale=c(0,21), yscale=c(-4,4))) grid.draw(grb) grid.draw(grb_trim) ## Using home-made function triangleGrob <- function(start, end, strand, col, ...) { x <- c(start, (start+end)/2, end) y1 <- 0.5 + 0.4*strand y <- c(y1, rep(0.5, length(y1)), y1) polygonGrob(x, y, gp=gpar(col=col), default.units="native", id=rep(1:7, 3)) } start <- seq(1, 19, by=3)+rnorm(7)/3 end <- start + 1 + rnorm(7) strand <- sign(rnorm(7)) sp_tr <- seg_plot(func=triangleGrob, args=list(start=start, end=end, strand=strand, col=1:length(start)), xargs=c("start", "end")) grb_tr <- do.call(sp_tr$func, sp_tr$args) plot.new() pushViewport(viewport(xscale=c(1,22), yscale=c(-2,2))) grid.draw(grb_tr) ## Trim sp_tr_trim <- trim(sp_tr, xlim=c(5, 15)) str(sp_tr_trim) ## If the correct xargs are not indicated, trimming won't work sp_tr$xargs <- c("x") sp_tr_trim2 <- trim(sp_tr, xlim=c(5, 15)) identical(sp_tr_trim, sp_tr_trim2) y1 <- convertY(grobY(grb_tr, "south"), "native") y2 <- convertY(grobY(grb_tr, "north"), "native") heightDetails(grb) grb ## Applying it to plot_gene_maps data(three_genes) ## Build data to plot xs <- lapply(dna_segs, range) colors <- c("red", "blue", "green") seg_plots <- list() for (i in 1:length(xs)){ x <- seq(xs[[i]][1], xs[[i]][2], length=20) seg_plots[[i]] <- seg_plot(func=pointsGrob, args=list(x=x, y=rnorm(20)+2*i, default.units="native", pch=3, gp=gpar(col=colors[i], cex=0.5))) } plot_gene_map(dna_segs, comparisons, seg_plots=seg_plots, seg_plot_height=0.5, seg_plot_height_unit="inches", dna_seg_scale=TRUE) ## A more complicated example data(barto) tree <- newick2phylog("(BB:2.5,(BG:1.8,(BH:1,BQ:0.8):1.9):3);") ## Showing several subsegments per genome xlims2 <- list(c(1445000, 1415000, 1380000, 1412000), c( 10000, 45000, 50000, 83000, 90000, 120000), c( 15000, 36000, 90000, 120000, 74000, 98000), c( 5000, 82000)) ## Adding fake data in 1kb windows seg_plots <- lapply(barto$dna_segs, function(ds){ x <- seq(1, range(ds)[2], by=1000) y <- jitter(seq(100, 300, length=length(x)), amount=50) seg_plot(func=linesGrob, args=list(x=x, y=y, gp=gpar(col=grey(0.3), lty=2))) }) plot_gene_map(barto$dna_segs, barto$comparisons, tree=tree, seg_plots=seg_plots, seg_plot_height=0.5, seg_plot_height_unit="inches", xlims=xlims2, limit_to_longest_dna_seg=FALSE, dna_seg_scale=TRUE, main="Random plots for the same segment in 4 Bartonella genomes")
A set of three made-up genes, compared in three chromosomes.
data(three_genes)
data(three_genes)
Two dataframes, representing the three genes in three DNA segments:
dna_segs
which is a list of three dna_seg
objects, containing each three rows (or genes).
comparisons
which is a list of two comparison
objects.
data(three_genes) plot_gene_map(dna_segs, comparisons)
data(three_genes) plot_gene_map(dna_segs, comparisons)
Trims data frames with 2 or more numeric columns using a
xlim. xlim
(s) are as used to filter rows whose numeric values are
included in this interval.
trim(x, ...) ## Default S3 method: trim(x, xlim = NULL, ...) ## S3 method for class 'dna_seg' trim(x, xlim = NULL, ...) ## S3 method for class 'comparison' trim(x, xlim1 = c(-Inf, Inf), xlim2 = c(-Inf, Inf), ...) ## S3 method for class 'annotation' trim(x, xlim = NULL, ...) ## S3 method for class 'seg_plot' trim(x, xlim = NULL, ...)
trim(x, ...) ## Default S3 method: trim(x, xlim = NULL, ...) ## S3 method for class 'dna_seg' trim(x, xlim = NULL, ...) ## S3 method for class 'comparison' trim(x, xlim1 = c(-Inf, Inf), xlim2 = c(-Inf, Inf), ...) ## S3 method for class 'annotation' trim(x, xlim = NULL, ...) ## S3 method for class 'seg_plot' trim(x, xlim = NULL, ...)
x |
An object to trim,. generally a data frame or a matrix, or a
|
xlim |
A numeric of length 2. In a general case, the rows whose values are included in this interval are returned. |
... |
Unused. |
xlim1 |
A numeric of length 2. In the case of comparison, where the comparison can be filtered on two sides, the interval to filter the first side. |
xlim2 |
A numeric of length 2. The interval to filter the second side. |
In the case where x
is a seg_plot
object, the function
uses the xargs
argument to define what are the vectors defining
the x position (they should be the same length). Then, all the
arguments (including those inside an eventual gp
argument) that
are the same length as the x vectors are trimmed, so that only the
rows for which the x values are inside the xlim
argument are kept.
Returns the same object as input, with the rows (or subset) corresponding to the given interval.
Lionel Guy
dna_seg
, comparison
, seg_plot
.
## Load data(barto) xlim_ref <- c(10000, 45000) ## Seg 2 (ref) barto$dna_segs[[2]] <- trim(barto$dna_segs[[2]], xlim=xlim_ref) ## Seg 1 barto$comparisons[[1]] <- trim(barto$comparisons[[1]], xlim2=xlim_ref) xlim1 <- range(barto$comparisons[[1]], overall=FALSE)$xlim1 barto$dna_segs[[1]] <- trim(barto$dna_segs[[1]], xlim=xlim1) ## Seg 3 barto$comparisons[[2]] <- trim(barto$comparisons[[2]], xlim1=xlim_ref) xlim3 <- range(barto$comparisons[[2]], overall=FALSE)$xlim2 barto$dna_segs[[3]] <- trim(barto$dna_segs[[3]], xlim=xlim3) ## Seg 4 barto$comparisons[[3]] <- trim(barto$comparisons[[3]], xlim1=xlim3) xlim4 <- range(barto$comparisons[[3]], overall=FALSE)$xlim2 barto$dna_segs[[4]] <- trim(barto$dna_segs[[4]], xlim=xlim4) ## Plot plot_gene_map(barto$dna_segs, barto$comparisons) ## With seg_plot x <- 1:20 y <- rnorm(20) sp <- seg_plot(func=pointsGrob, args=list(x=x, y=y, gp=gpar(col=1:20, cex=1:3))) ## Trim sp_trim <- trim(sp, c(3, 10)) str(sp_trim) range(sp_trim$arg$x)
## Load data(barto) xlim_ref <- c(10000, 45000) ## Seg 2 (ref) barto$dna_segs[[2]] <- trim(barto$dna_segs[[2]], xlim=xlim_ref) ## Seg 1 barto$comparisons[[1]] <- trim(barto$comparisons[[1]], xlim2=xlim_ref) xlim1 <- range(barto$comparisons[[1]], overall=FALSE)$xlim1 barto$dna_segs[[1]] <- trim(barto$dna_segs[[1]], xlim=xlim1) ## Seg 3 barto$comparisons[[2]] <- trim(barto$comparisons[[2]], xlim1=xlim_ref) xlim3 <- range(barto$comparisons[[2]], overall=FALSE)$xlim2 barto$dna_segs[[3]] <- trim(barto$dna_segs[[3]], xlim=xlim3) ## Seg 4 barto$comparisons[[3]] <- trim(barto$comparisons[[3]], xlim1=xlim3) xlim4 <- range(barto$comparisons[[3]], overall=FALSE)$xlim2 barto$dna_segs[[4]] <- trim(barto$dna_segs[[4]], xlim=xlim4) ## Plot plot_gene_map(barto$dna_segs, barto$comparisons) ## With seg_plot x <- 1:20 y <- rnorm(20) sp <- seg_plot(func=pointsGrob, args=list(x=x, y=y, gp=gpar(col=1:20, cex=1:3))) ## Trim sp_trim <- trim(sp, c(3, 10)) str(sp_trim) range(sp_trim$arg$x)