
Package: qualV (via r-universe)
September 6, 2024

Title Qualitative Validation Methods

Version 0.3-5

Author K. Gerald van den Boogaart [aut, ths]
(<https://orcid.org/0000-0003-4646-943X>), Stefanie Rost [aut],
Thomas Petzoldt [aut, ths, cre]
(<https://orcid.org/0000-0002-4951-6468>)

Description Qualitative methods for the validation of dynamic models.
It contains (i) an orthogonal set of deviance measures for
absolute, relative and ordinal scale and (ii) approaches
accounting for time shifts. The first approach transforms time
to take time delays and speed differences into account. The
second divides the time series into interval units according to
their main features and finds the longest common subsequence
(LCS) using a dynamic programming algorithm.

Maintainer Thomas Petzoldt <thomas.petzoldt@tu-dresden.de>

Depends R (>= 2.0.0), KernSmooth

Imports graphics, grDevices, stats, utils

License GPL (>= 2)

URL http://qualV.R-Forge.R-Project.org/

Repository https://r-forge.r-universe.dev

RemoteUrl https://github.com/r-forge/qualv

RemoteRef HEAD

RemoteSha 18b6e20603ae36f080ec52d2fd66c1ae06cf5459

Contents
qualV-package . 2
compareME . 2
EF . 4
features . 5
GRI . 7

1

https://orcid.org/0000-0003-4646-943X
https://orcid.org/0000-0002-4951-6468
http://qualV.R-Forge.R-Project.org/

2 compareME

LCS . 8
phyto . 9
quantV . 10
qvalLCS . 14
timetrans . 17
timeTransME . 18

Index 24

qualV-package Qualitative Validation Methods

Description

Qualitative methods for model validation.

Details

This package contains functions for a qualitative model comparison. Common quantitative deviance
measures underestimate the similarity of patterns if there are shifts in time between measurement
and simulation. Qualitative validation methods are additional methods to validate models, espe-
cially useful to compare the patterns of observed and simulated values.

For a complete list of functions with individual help pages, use library(help="qualV").

References

Jachner, S., van den Boogaart, K.G. and Petzoldt, T. (2007) Statistical methods for the qualitative
assessment of dynamic models with time delay (R package qualV), Journal of Statistical Software,
22(8), 1–30. doi:10.18637/jss.v022.i08.

compareME Compute Several Deviance Measures for Comparison

Description

Various deviance measures are computed allowing the user to find the aspects in which two time
series differ.

https://doi.org/10.18637/jss.v022.i08

compareME 3

Usage

compareME(o, p,
o.t = seq(0, 1, length.out = length(o)),
p.t = seq(0, 1, length.out = length(p)),
ignore = c("raw", "centered", "scaled", "ordered"),
geometry = c("real", "logarithmic", "geometric", "ordinal"),
measure = c("mad", "var", "sd"),
type = "normalized",
time = "fixed", ..., col.vars=c("time", "ignore")

)
S3 method for class 'compareME'
print(x, ..., digits = 3)
S3 method for class 'compareME'
summary(object, ...)

Arguments

o vector of observed values,

p vector of predicted values,

o.t vector of observation times,

p.t vector of times for predicted values,

ignore a subset of c("raw", "centered", "scaled", "ordered") as defined in generalME
to specify the aspects of the data to be ignored,

geometry a subset of c("real", "logarithmic", "geometric", "ordinal") as defined
in generalME to specify the geometry of the observed data,

measure a subset of c("mad", "var", "sd") to specify the type of error to be measured,

type a subset of c("dissimilarity", "normalized", "similarity", "reference")
as defined in generalME to specify the type of deviance measure to be used,

time a subset of c("fixed", "transform"), indicates wether the time should actu-
ally be transformed. If this argument and the time arguments are missing the
comparison is based on values only without time matching.

... further arguments passed to timeTransME,

col.vars a subset of c("ignore", "geometry", "measure", "time") to be displayed in
the columns of the resulting ftable,

digits number of significant digits displayed,

x, object objects of class compareME.

Details

The function provides a simple standard interface to get a first idea on the similarities and dissimi-
larities of two time series spanning the same time interval. The print and summary methods extract
the relevant information, rounded to an optional number of significant digits.

4 EF

Value

The result is a list of ftables containing the deviance measures of all requested combinations of
parameters. The list is done over the different types of measures requested.

See Also

timeTransME, generalME

Examples

a constructed example
x <- seq(0, 2*pi, 0.1)
y <- 5 + sin(x) # a process
o <- y + rnorm(x, sd = 0.2) # observation with random error
p <- y + 0.1 # simulation with systematic bias

os <- ksmooth(x, o, kernel = "normal",
bandwidth = dpill(x, o), x.points = x)$y

plot(x, o); lines(x, p); lines(x, os, col = "red")

compareME(o, p)
compareME(os, p)

observed and measured data with non-matching time intervals
data(phyto)
compareME(obsy, simy, obst, simt, time = "fixed")
tt <- timeTransME(obsy, simy, obst, simt, ME = SMSLE, trials = 5)
compareME(ttyo, ttyp)

show names of deviance measures
compareME(type = "name")

EF Efficiency Factor as Suggested by Nash and Sutcliffe

Description

The efficiency factor is a dimensionless statistic which directly relates predictions to observed data.

Usage

EF(o, p)

Arguments

o vector of observed values

p vector of corresponding predicted values

features 5

Details

Two time series are compared. 'EF' is an overall measure of similarity between fitted and observed
values. Any model giving a negative value cannot be recommended, whereas values close to one
indicate a ’near-perfect’ fit.

Value

EF efficiency factor

References

Nash, J. E. and Sutcliffe, J. V. (1970) River flow forecasting through conceptual models part I - A
discussion of principles. Journal of Hydrology, 10, 282-290.

Mayer, D. G. and Butler, D. G. (1993) Statistical Validation. Ecological Modelling, 68, 21-32.

See Also

MAE, MSE, MAPE, GRI

Examples

a constructed example
x <- seq(0, 2*pi, 0.1)
y <- 5 + sin(x) # a process
o <- y + rnorm(x, sd=0.2) # observation with random error
p <- y + 0.1 # simulation with systematic bias

plot(x, o); lines(x, p)
EF(o, p)

observed and measured data with non-matching time intervals
data(phyto)
obsb <- na.omit(obs[match(simt, obst),])
simb <- sim[na.omit(match(obst, simt)),]
EF(obsb$y, simb$y)

features Qualitative Features of Time Series

Description

A time series is characterised by a sequence of characters, indicating features of the time series
itself, of its first or second derivative, steepness or level of values.

Usage

f.slope(x, y, f = 0.1, scale = c("mean", "range", "IQR", "sd", "none"))
f.curve(x, y, f = 0.1, scale = c("mean", "range", "IQR", "sd", "none"))
f.steep(x, y, f1 = 1, f2 = 0.1)
f.level(y, high = 0.8, low = 0.2)

6 features

Arguments

x vector of time

y input y values

f factor defining the limit for constant (f.slope) or linear (f.curve) sequences

f1 factor for the upper bound of steepness

f2 factor for the lower bound of steepness

scale method for internal scaling, f is multiplied with mean value, range, interquartile
range (IQR) or standard deviation of increments (abs(∆y/∆x)).

high lower limit of high values

low upper limit of low values

Details

For the first derivative the segment between two values is characterised by increasing (’A’), decreas-
ing (’B’) or constant (’C’) and for the second by convex (’K’), concave (’I’) or linear (’J’). For the
property of the first derivative the segment between two values is characterised by very steep (’S’),
steep (’T’) or not steep (’U’) or the values are divided into high (’H’), low (’L’) or values in between
(’M’). Note that for the last two cases the original values and the not increments are standardised
(to [0, 1]).

Value

v interval sequence

See Also

LCS, qvalLCS

Examples

data(phyto)
bbobs <- dpill(obst, obsy)
n <- tail(obs$t, n = 1) - obs$t[1] + 1
obsdpill <- ksmooth(obst, obsy, kernel = "normal", bandwidth = bbobs,

n.points = n)
obss <- data.frame(t = obsdpill$x, y = obsdpill$y)
obss <- obss[match(sim$t, obss$t),]
f.slope(obss$t, obss$y)
f.curve(obss$t, obss$y)
f.steep(obss$t, obss$y, f1 = 30, f2 = 10)
f.level(obss$y)

GRI 7

GRI Geometric Reliability Index as Suggested by Leggett and Williams
(1981)

Description

Given a set of predictions and a corresponding set of observations, the geometric validation index
is a reliability index for the predictions.

Usage

GRI(o, p)

Arguments

o vector of observed values

p vector of corresponding predicted values

Details

One possible interpretation of ’GRI’ is that the simulation is accurate within a multiplicative factor
’GRI’, i.e. the observed values fall between 1/GRI and GRI times of the corresponding predicted
values. Values close to one indicate a good match.

Value

GRI geometric reliability index

References

Leggett, L. R. and Williams, L. R. (1981) A reliability index for models. Ecological Modelling, 13,
303-312. doi:10.1016/03043800(81)90034X

See Also

MAE, MSE, MAPE, EF

Examples

a constructed example
x <- seq(0, 2*pi, 0.1)
y <- 5 + sin(x) # a process
o <- y + rnorm(x, sd = 0.2) # observation with random error
p <- y + 0.1 # simulation with systematic bias

plot(x, o); lines(x, p)
GRI(o, p)

https://doi.org/10.1016/0304-3800%2881%2990034-X

8 LCS

observed and measured data with non-matching time intervals
data(phyto)
obsb <- na.omit(obs[match(simt, obst),])
simb <- sim[na.omit(match(obst, simt)),]
GRI(obsb$y, simb$y)

LCS Algorithm for the Longest Common Subsequence Problem

Description

Determines the longest common subsequence of two strings.

Usage

LCS(a, b)

Arguments

a vector (numeric or character), missing values are not accepted

b vector (numeric or character), missing values are not accepted

Details

A longest common subsequence (LCS) is a common subsequence of two strings of maximum length.
The LCS Problem consists of finding a LCS of two given strings and its length (LLCS). A qualitative
similarity index QSI is computed by division of the LLCS over maximum length of 'a' and 'b'.

Value

a vector 'a'

b vector 'b'

LLCS length of LCS

LCS longest common subsequence

QSI quality similarity index

va one possible LCS of vector 'a'

vb one possible LCS of vector 'b'

Note

LCS is now using a C version of the algorithm provided by Dominik Reusser.

phyto 9

References

Wagner, R. A. and Fischer, M. J. (1974) The String-to-String Correction Problem. Journal of the
ACM, 21, 168-173.

Paterson, M. and Dancik, V. (1994) Longest Common Subsequences. Mathematical Foundations
of Computer Science, 841, 127-142.

Gusfield, D. (1997) Algorithms on Strings, Trees, and Sequences: Computer Science and Compu-
tational Biology. Cambridge University Press, England, ISBN 0-521-58519-8.

Examples

direct use
a <- c("b", "c", "a", "b", "c", "b")
b <- c("a", "b", "c", "c", "b")
print(LCS(a, b))

a constructed example
x <- seq(0, 2 * pi, 0.1) # time
y <- 5 + sin(x) # a process
o <- y + rnorm(x, sd=0.2) # observation with random error
p <- y + 0.1 # simulation with systematic bias
plot(x, o); lines(x, p)

lcs <- LCS(f.slope(x, o), f.slope(x, p)) # too much noise
lcs$LLCS
lcs$QSI

os <- ksmooth(x, o, kernel = "normal", bandwidth = dpill(x, o), x.points = x)$y
lcs <- LCS(f.slope(x, os), f.slope(x, p))
lcs$LLCS
lcs$QSI

observed and measured data with non-matching time intervals
data(phyto)
bbobs <- dpill(obst, obsy)
n <- tail(obs$t, n = 1) - obs$t[1] + 1
obsdpill <- ksmooth(obst, obsy, kernel = "normal", bandwidth = bbobs,

n.points = n)
obss <- data.frame(t = obsdpill$x, y = obsdpill$y)
obss <- obss[match(sim$t, obss$t),]
obs_f1 <- f.slope(obss$t, obss$y)
sim_f1 <- f.slope(simt, simy)
lcs <- LCS(obs_f1, sim_f1)
lcs$QSI

phyto Observed and Predicted Data of Phytoplankton

10 quantV

Description

The data contain the day since 1.1.1994 and observed/predicted biovolumes of phytoplankton.

Usage

data(phyto)

Format

Two data frames of two variables with the following components:

obs: A data frame of observed phytoplankton concentration in Bautzen reservoir 1994 (TU Dres-
den, Institute of Hydrobiology, workgroup limnology) with the elements:

t: time code
y: observed biovolume (mg/L)

sim: A data frame of predicted phytoplankton concentration in Bautzen reservoir 1994 (TU Dres-
den, Institute of Hydrobiology, workgroup Limnology) with the elements:

t: time code
y: predicted biovolume (mg/L)

quantV Quantitative Validation Methods

Description

Different methods for calculating the difference between two vectors.

Usage

generalME(o, p,
ignore = c("raw", "centered", "scaled", "ordered"),
geometry = c("real", "logarithmic", "geometric", "ordinal"),
measure = c("mad", "var", "sd"),
type = c("dissimilarity", "normalized", "similarity",

"reference", "formula", "name", "function"),
method = NULL)

MAE(o, p, type = "dissimilarity")
MAPE(o, p, type = "dissimilarity")
MSE(o, p, type = "dissimilarity")

RMSE(o, p, type = "dissimilarity")
CMAE(o, p, type = "dissimilarity")
CMSE(o, p, type = "dissimilarity")
RCMSE(o, p, type = "dissimilarity")
SMAE(o, p, type = "dissimilarity")
SMSE(o, p, type = "dissimilarity")

quantV 11

RSMSE(o, p, type = "dissimilarity")
MALE(o, p, type = "dissimilarity")
MAGE(o, p, type = "dissimilarity")
RMSLE(o, p, type = "dissimilarity")
RMSGE(o, p, type = "dissimilarity")

SMALE(o, p, type = "dissimilarity")
SMAGE(o, p, type = "dissimilarity")
SMSLE(o, p, type = "dissimilarity")

RSMSLE(o, p, type = "dissimilarity")
RSMSGE(o, p, type = "dissimilarity")

MAOE(o, p, type = "dissimilarity")
MSOE(o, p, type = "dissimilarity")
RMSOE(o, p, type = "dissimilarity")

Arguments

o vector of observed values

p vector of corresponding predicted values

type one of "dissimilarity", "normalized", "similarity", "reference", "formula",
for the dissimilarity measure, the normalized dissimilarity measure, the similar-
ity measure, or the formula for the normalized measure. For generalME it is
additionally possible to specify "function" for getting the corresponding func-
tion and "name" for getting the name of the function.

ignore specifies which aspects should be ignored: "raw" compares original values,
"centered" removes differences in mean, "scaled" ignores scaling, "ordered"
indicates the use of the ordinal geometry only.

geometry indicating the geometry to be used for the data and the output, "real" corre-
sponds to arithmetic differences and means, "logarithmic" to handling relative
data on a logarithmic scale, "geometric" to geometric means and differences
and "ordinal" to a pure ordinal treatment.

measure indicates how distances should be measured: as mean absolute distances like in
MAD, as squared distances like in a variance, or as the root of mean squared
distances like in sd.

method optionally the function to be used can specified directly as a function or as a
string.

Details

These comparison criteria are designed for a semiquantitative comparison of observed values o with
predicted values p to validate the performance of the prediction.
The general naming convention follows the grammar scheme
[R][C|S]M[S|A][L|G|O]E
corresponding to [Root] [Centered | Scaled] Mean [Squared | Absolute]
[Logarithmic, Geometric, Ordinal] Error

12 quantV

Root is used together with squared errors to indicate, that a root is applied to the mean.
Centered indicates that an additive constant is allowed.
Scaled indicates that a scaling of the predictive sequence is allowed. Scaled implies centered for

real scale.
Squared indicates that squared error is used.
Absolute indicates that absolute error is used.
Logarithmic indicates that the error is calculated based on the logarithms of the values. This is

useful for data on a relative scale.
Geometric indicates that the result is to be understood as a factor, similar to a geometric mean.
Ordinal indicates that only the order of the observations is taken into account by analyzing the

data by ranks scaled to the interval [0, 1].

The mean errors for squared error measures are based on the number of degrees of freedom of the
residuals.

Value

generalME selects the best deviance measure according to the description given in the pa-
rameters. It has the two additional possibilities of name and function in the type
parameter.

MAE mean absolute error 1
n

MAPE mean absolute percentage error
MSE mean squared error
RMSE root mean squared error
CMAE centered mean absolute error
CMSE centered mean squared error
RCMSE root centered mean squared error
SMAE scaled mean absolute error
SMSE scaled mean squared error
RSMSE root scaled mean squared error
MALE mean absolute logarithmic error
MAGE mean absolute geometric error
MSLE mean squared logarithmic error
MSGE mean squared geometric error
RMSLE root mean squared logarithmic error
SMALE scaled mean absolute logarithmic error
SMAGE scaled mean absolute relative error
SMSLE scaled mean squared logarithmic error
RSMSLE root scaled mean squared logarithmic error
RSMSGE root scaled mean squared geometric error
MAOE mean absolute ordinal error
MSOE mean squared ordinal error
RMSOE root mean squared ordinal error

quantV 13

References

Mayer, D. G. and Butler, D. G. (1993) Statistical Validation. Ecological Modelling, 68, 21-32.

Jachner, S., van den Boogaart, K.G. and Petzoldt, T. (2007) Statistical methods for the qualitative
assessment of dynamic models with time delay (R package qualV), Journal of Statistical Software,
22(8), 1–30. doi:10.18637/jss.v022.i08.

See Also

EF, GRI, compareME

Examples

data(phyto)
obsb <- na.omit(obs[match(simt, obst),])
simb <- sim[na.omit(match(obst, simt)),]
o <- obsb$y
p <- simb$y

generalME(o, p, ignore = "raw", geometry = "real")

MAE(o, p)
MAPE(o, p)
MSE(o, p)
RMSE(o, p)
CMAE(o, p)
CMSE(o, p)
RCMSE(o, p)
SMAE(o, p)
SMSE(o, p)
RSMSE(o, p)
MALE(o, p)
MAGE(o, p)
RMSLE(o, p)
RMSGE(o, p)

SMALE(o, p)
SMAGE(o, p)
SMSLE(o, p)

RSMSLE(o, p)
RSMSGE(o, p)

MAOE(o, p)
MSOE(o, p)
RMSOE(o, p)

MAE(o, p)
MAPE(o, p)

MSE(o, p, type = "s")
RMSE(o, p, type = "s")

https://doi.org/10.18637/jss.v022.i08

14 qvalLCS

CMAE(o, p, type = "s")
CMSE(o, p, type = "s")
RCMSE(o, p, type = "s")
SMAE(o, p, type = "s")
SMSE(o, p, type = "s")
RSMSE(o, p, type = "s")
MALE(o, p, type = "s")
MAGE(o, p, type = "s")
RMSLE(o, p, type = "s")
RMSGE(o, p, type = "s")

SMALE(o, p, type = "s")
SMAGE(o, p, type = "s")
SMSLE(o, p, type = "s")

RSMSLE(o, p, type = "s")
RSMSGE(o, p, type = "s")

MAOE(o, p, type = "s")
MSOE(o, p, type = "s")
RMSOE(o, p, type = "s")

qvalLCS Qualitative Validation by Means of Interval Sequences and LCS

Description

Dividing time series into interval sequences of qualitative features and determining the similarity of
the qualitative behavior by means of the length of LCS.

Usage

qvalLCS(o, p,
o.t = seq(0, 1, length.out = length(o)),
p.t = seq(0, 1, length.out = length(p)),
smooth = c("none", "both", "obs", "sim"),
feature = c("f.slope", "f.curve", "f.steep", "f.level"))

S3 method for class 'qvalLCS'
print(x, ...)
S3 method for class 'qvalLCS'
plot(x, y = NULL, ..., xlim = range(c(xobsx, xsimx)),
ylim = range(c(xobsy, xsimy)), xlab = "time", ylab = " ",
col.obs = "black", col.pred = "red",
plot.title = paste("LLCS =", xlcsLLCS, ", QSI =", xlcsQSI),
legend = TRUE)
S3 method for class 'qvalLCS'
summary(object, ...)

qvalLCS 15

Arguments

o vector of observed values

p vector of predicted values

o.t vector of observation times

p.t vector of times for predicted values

smooth character string to decide if values should be smoothed before validation, de-
fault no smoothing "none" is set, "both" observed and predicted values will
be smoothed, "obs" only observed, and "sim" only simulated values will be
smoothed.

feature one of "f.slope", "f.curve", "f.steep", "f.level" as defined in features
to divide the time series into interval sequences of these feature. As default the
first derivative "f.slope" is used.

x a result from a call of qvalLCS

y y unused

... further parameters to be past to plot

xlim the size of the plot in x-direction

ylim the size of the plot in y-direction

xlab the label of the x-axis of the plot

ylab the label of the y-axis of the plot

col.obs color to plot the observations

col.pred color to plot the predictions

plot.title title for the plot

legend tegend for the plot

object a result from a call of qvalLCS

Details

Common quantitative deviance measures underestimate the similarity of patterns if there are shifts
in time between measurement and simulation. These methods also assume compareable values in
each time series of the whole time sequence. To compare values independent of time the qualita-
tive behavior of the time series could be analyzed. Here the time series are divided into interval
sequences of their local shape. The comparison occurs on the basis of these segments and not with
the original time series. Here shifts in time are possible, i.e. missing or additional segments are
acceptable without losing similarity. The dynamic programming algorithm of the longest common
subsequence LCS is used to determine QSI as index of similarity of the patterns.
If selected the data are smoothed using a weighted average and a Gaussian curve as kernel. The
bandwidth is automatically selected based on the plug-in methodology (dpill, see package KernS-
mooth for more details).

print.qvalLCS prints only the requested value, without additional information.

summary.qvalLCS prints all the additional information.

plot.qvalLCS shows a picture visualizing a LCS.

16 qvalLCS

Value

The result is an object of type qvalLCS with the following entries:

smooth smoothing parameter

feature feature parameter

o xy-table of observed values

p xy-table of predicted values

obs xy-table of (smoothed) observed values

sim xy-table of (smoothed) simulated values

obsf interval sequence of observation according to selected features

simf interval sequence of simulation according to selected features

lcs output of LCS function

obs.lcs one LCS of observation

sim.lcs one LCS of simulation

References

Agrawal R., K. Lin., H. Sawhney and K. Shim (1995). Fast similarity search in the presence of
noise, scaling, and translation in time-series databases. In VLDB ’95: Proceedings of the 21.
International Conference on Very Large Data Bases, pp. 490-501. Morgan Kaufmann Publishers
Inc. ISBN 1-55860-379-4.

Cuberos F., J. Ortega, R. Gasca, M. Toro and J. Torres (2002). Qualitative comparison of temporal
series - QSI. Topics in Artificial Intelligence. Lecture Notes in Artificial Intelligence, 2504, 75-87.

Jachner, S., K.G. v.d. Boogaart, T. Petzoldt (2007) Statistical methods for the qualitative assessment
of dynamic models with time delay (R package qualV), Journal of Statistical Software, 22(8), 1–30.
doi:10.18637/jss.v022.i08.

See Also

LCS, features

Examples

a constructed example
x <- seq(0, 2*pi, 0.1)
y <- 5 + sin(x) # a process
o <- y + rnorm(x, sd=0.2) # observation with random error
p <- y + 0.1 # simulation with systematic bias

qvalLCS(o, p)
qvalLCS(o, p, smooth="both", feature="f.curve")

qv <- qvalLCS(o, p, smooth = "obs")
print(qv)
plot(qv, ylim=c(3, 8))

https://doi.org/10.18637/jss.v022.i08

timetrans 17

observed and measured data with non-matching time steps
data(phyto)
qvlcs <- qvalLCS(obsy, simy, obst, simt, smooth = "obs")

basedate <- as.Date("1960/1/1")
qvlcsox <- qvlcsox + basedate
qvlcsobsx <- qvlcsobsx + basedate
qvlcssimx <- qvlcssimx + basedate
qvlcs$obs.lcs$x <- qvlcs$obs.lcs$x + basedate
qvlcs$sim.lcs$x <- qvlcs$sim.lcs$x + basedate

plot.qvalLCS(qvlcs)
summary(qvlcs)

timetrans Bijective Transformations of Time

Description

Various function models for isoton bijective transformation of a time interval to itself.

Usage

transBeta(x, p, interval = c(0, 1), inv = FALSE,
pmin = -3, pmax = 3, p0 = c(0, 0))

transSimplex(x, p, interval = c(0, 1), inv = FALSE,
pmin = -2, pmax = 2, p0 = c(0, 0, 0, 0, 0))

transBezier(x, p, interval = c(0, 1), inv = FALSE,
pmin = 0, pmax = 1, p0 = c(0.25, 0.25, 0.75, 0.75))

Arguments

x a vector of values to be transformed,

p the vector of parameters for the transformation,

interval a vector of length 2 giving the minimum and maximum value in the transforma-
tion interval.

inv a boolean, if true the inverse transform is computed.

pmin a number or a vector giving the minimal useful value for the parameters. This
information is not used by the function itself, but rather provides a meta infor-
mation about the function used in timeTransME. The chosen values are quite
restrictive to avoid stupid extreme transformation.

pmax provides similar to pmin the upper useful bounds for the parameters.

p0 provides similar to pmin and pmax the parameterization for the identify trans-
form.

18 timeTransME

Details

transBeta The transformation provided is the distribution function of the Beta-Distribution with
parameters exp(p[1]) and exp(p[2]) scaled to the given interval. This function is guaran-
teed to be strictly isotonic for every choice of p. p has length 2. The strength of the Beta
transformation is the reasonable behavior for strong time deformations.

transSimplex The transformation provided a simple linear interpolation. The interval is separated
into equidistant time spans, which are transformed to non-equidistant length. The length of
the new time spans is the proportional to exp(c(p, 0)). This function is guaranteed to be
strictly isotonic for every choice of p. p can have any length. The strength of the Simplex
transformation is the possibility to have totally different speeds at different times.

transBezier The transformation is provided by a Bezier-Curve of order length(p) / 2 + 1. The
first and last control point are given by c(0, 0) and c(1, 1) and the intermediate control
points are given by p[c(1, 2) + 2 * i - 2]. This function is not guaranteed to be isotonic for
length(p) > 4. However it seams useful. A major theoretical advantage is that this model
is symmetric between image and coimage. The strength of the Bezier transformation is fine
tuning of transformation.

Value

The value is a vector of the same length as x providing the transformed values.

See Also

timeTransME

Examples

t <- seq(0, 1, length.out = 101)
par(mfrow = c(3, 3))
plot(t, transBeta(t, c(0, 0)), type = "l")
plot(t, transBeta(t, c(0, 1)), type = "l")
plot(t, transBeta(t, c(-1,1)), type = "l")
plot(t, transSimplex(t, c(0)), type = "l")
plot(t, transSimplex(t, c(3, 2, 1)), type = "l")
plot(t, transSimplex(t, c(0, 2)), type = "l")
plot(t, transBezier(t, c(0, 1)), type = "l")
plot(t, transBezier(t, c(0, 1, 1, 0)), type = "l")
plot(t, transBezier(t, c(0.4, 0.6)), type = "l")

timeTransME Transformation of Time to Match Two Time Series

Description

Transforming the time of predicted values by means of a monotonic mapping.

timeTransME 19

Usage

timeTransME(o, p,
o.t = seq(0, 1, length.out = length(o)),
p.t = seq(0, 1, length.out = length(p)),
ignore = "scaled",
geometry = "real",
measure = "mad",
type = c("dissimilarity", "normalized",

"similarity", "reference"),
interval = range(c(o.t, p.t)),
time = c("transformed", "fixed"),
trans = transBeta,
p0 = eval(formals(trans)$p0),
pmin = eval(formals(trans)$pmin, list(p = p0)),
pmax = eval(formals(trans)$pmax, list(p = p0)),
timeMEFactor = 0,
timeME = MAE,
timeMEtype = "normalized",
timeScale = 1,
ME = generalME(o, p, ignore, geometry, measure,

type = "function"),
MEtype = c("dissimilarity", "normalized"),
trials = 100,
debug = FALSE)

S3 method for class 'timeTransME'
print(x, ..., digits = 3)
S3 method for class 'timeTransME'
summary(object, ...)
S3 method for class 'timeTransME'
plot(x, y = NULL, ..., col.obs = "black", col.pred = "green",

col.map = "red", sub = x$call, xlab = "t",
xlim = range(x$x), ylim = range(c(0, x$yo, x$yp)))

Arguments

x a result from a call to timeTransME

object a result from a call to timeTransME

o vector of observed values

p vector of predicted values

o.t vector of observation times

p.t vector of times for predicted values

ignore one of "raw", "centered", "scaled" or "ordered" as defined in generalME
to specify the aspects of the data to be ignored.

geometry one of "real", "logarithmic", "geometric", "ordinal" as defined in generalME
to specify the geometry of the observed data.

measure one of "mad", "sd", "var" to specify the type of error to be measured.

20 timeTransME

type one of "dissimilarity", "normalized", "similarity" or "reference" as
defined in generalME to specify the type of deviance measure to be used.

interval a vector with two entries giving start and end time of the experiment.

time indicates wether the time should actually be transformed. LCS is currently not
implemented. Use the LCS method directly.

trans the model function for the time transformation. See transBezier for possible
alternatives.

p0 the identity parameters for the time-transformation. A non identity value can be
given to force specific parameters for the transformation with time = "fixed".

pmin number or vector providing the minimal allowed values for the parameters of
the transformation.

pmax number or vector providing the minimal allowed values for the parameters of
the transformation.

timeME The timeTransME minimizes a weighted sum of the deformation of the time
scale and of the data values according to totalME = minimum of

ME(o(x), p(trans(x, timep)), MEtype) +
timeMEFactor * timeME(x * timeScale,
trans(x, timep) * timeScale, timeMEtype)

over p for x = c(ot, trans(pt, timep, inv = TRUE)).
timeME specifies the function to be used to quantify the temporal deformation.

timeMEtype the type of deviance measure (“dissimilarity” or “normalized”) to be used for
timeME.

timeMEFactor a real value specifying the weighting of the time deformation against the value
deformation. A value of 0 avoids penalty for time deformation.

timeScale a scaling applied to the time values before timeME is applied. This can be used
to change the units of measurement for the time.

ME the deviance function to be used for the data. See MSE for alternatives.

MEtype the type of Mean Error to be used in the calculations. This is not the type of
Measure to be reported.

trials The number of random starting values that should be used during the optimiza-
tion of the time transformation. The optimization of the time transformation is a
very critical task of this procedure and it had been shown by practical tests that
a single local optimization typically fails to find the globally best fit. Depending
on the number of parameters a value between 100 and 10000 seems reasonable
for this parameter.

debug a logical. If true some diagnostic information for the optimization step is printed.

... further parameters to be passed to plot

col.obs color to plot the observations

col.pred color to plot the predictions

col.map color to plot the mapped predictions

sub the sub-headline of the plot

timeTransME 21

xlab the label of the x-axis of the plot

xlim the size of the plot in x-direction

ylim the size of the plot in y-direction

y y unused

digits number of significant digits displayed

Details

Common quantitative deviance measures underestimate the similarity of patterns if there are shifts
in time between measurement and simulation. An alternative to measure model performance in-
dependent of shifts in time is to transform the time of the simulation, i.e. to run the time faster or
slower, and to compare the performance before and after the transformation. The applied transfor-
mation function must be monotonic. timeTransME minimizes the joint criterium
ME(o(x), p(trans(x, timep)), MEtype) +
timeMEFactor * timeME(x * timeScale, trans(x, timep) * timeScale, timeMEtype) to find a
best fitting time transformation.

print.timeTransME prints only the requested value, without additional information.

summary.timeTransME prints all the additional information.

plot.timeTransME shows a picture visualising the fit of the transformed dataset. This can be used
as a diagnostic.

Value

The result is an object of type timeTransME with the following entries:

totalME the requested measure with specified type,

criterium the "dissimilarity" measure, which was calculated as a minimum of

ME(o(x), p(trans(x, timep)), MEtype) + timeMEFactor *
timeME(x * timeScale, trans(x, timep) * timeScale,
timeMEtype)

.

reference the reference value of this criterium achieved without time deformation and full
dissimilarity.

call the call used to generate this deviance.

x the times at which the series were compared from the perspective of the obser-
vations.

xp the transformed times at which the series were compared from the perspective
of the prediction.

yo the interpolated values of the observations at times x.

yp the interpolated values of the time transformed predictions at times x.

timeME the deviance of the time transformation:
timeME(x, trans(x, ME), timeMEtype)).

timeMEref the reference value of timeME

22 timeTransME

timeMEFactor the factor to be used for timeME in the weighting with respect to ME.

timeScale the scaling to time to account for an other unit.

p the parameter of trans minimizing the criterium.

interval the interval of time under consideration

trans the transformation function used for the time.

optim contains informations about the convergence of the optimization procedure and
a list of secondary minima found. This additional list element occurs only if
there is actually a minimisation performed.

Note

The deviance calculated by timeTransME(..., time = "fixed") and the corresponding deviance
measure are different because the timeTransME does an interpolation and compares time sequences
at different spacing, while a simple deviance measure compares values only.
The CPU usage of the calculation of the minimum, when trans = "transform" is very high, be-
cause the optimization is done a hundred times with random starting values for the parameters. This
is necessary since with the given objective the general purpose optimizers often run into local min-
ima and/or do not converge. The number of iterations can be controlled with the parameter trials.
Setting debug = TRUE gives an impression how long it takes to find an improved optimum.

See Also

transBeta, transBezier

Examples

set.seed(123)
a constructed example
x <- seq(0, 2*pi, length=10)
o <- 5 + sin(x) + rnorm(x, sd=0.2) # observation with random error
p <- 5 + sin(x-1) # simulation with time shift

timeTransME(o, p) # reasonably accurate but takes very long!
timeTransME(o, p, trials=5, debug=TRUE)

ttbeta <- timeTransME(o, p, trials=5)
plot(ttbeta)
Not run:
ttsimplex <- timeTransME(o, p, trans = transSimplex, trials=5)
plot(ttsimplex)

ttbezier <- timeTransME(o, p, trans = transBezier, trials=5)
plot(ttbezier)

End(Not run)

observed and measured data with non-matching time intervals
data(phyto)
bbobs <- dpill(obst, obsy)
n <- diff(range(obs$t)) + 1

timeTransME 23

obss <- ksmooth(obst, obsy, kernel = "normal", bandwidth = bbobs,
n.points = n)

names(obss) <- c("t", "y")
obss <- as.data.frame(obss)[match(sim$t, obss$t),]

tt <- timeTransME(obssy, simy, obsst, simt, ME = SMSE,
timeMEFactor = 0, time = "transform", type = "n", trials = 5)

round(tt$totalME, digits = 3)

basedate <- as.Date("1960/1/1")
plot(basedate + simt, simy, type="l", ylim = c(min(obsy, simy),

max(obsy, simy)), xlab = "time", ylab = "Phytoplankton (mg/L)",
col = 2, font = 2, lwd = 2, cex.lab = 1.2, las = 1)

lines(basedate + obss$t, obss$y, lwd = 2)
points(basedate + obst, obsy, lwd = 2)
lines(basedate + ttx, ttyp, lwd = 2, col = 2, lty = 2)
legend(basedate + 12600, 50, c("measurement", "smoothed measurement",
"simulation", "transformed simulation"), lty = c(0, 1, 1, 2),
pch = c(1, NA, NA, NA), lwd = 2, col = c(1, 1, 2, 2))

tt1 <- timeTransME(obsy, simy, obst, simt, ME = SMSLE, type = "n",
time = "fixed")

tt1
plot(tt1)
summary(tt1)

Not run:
tt2 <- timeTransME(obssy, simy, obsst, simt, ME = SMSLE, type = "n",

time = "trans", debug = TRUE)
tt2
plot(tt2) # logarithm (SMSLE) is not appropriate for the example
summary(tt2)
tt3 <- timeTransME(obssy, simy, obsst, simt, ME = SMSE, type = "n",

time = "trans", trans = transBezier, debug = TRUE)
tt3
plot(tt3)
summary(tt3)
tt4 <- timeTransME(obssy, simy, obsst, simt, ME = MSOE, type = "n",

time = "trans", trans = transBezier, debug = TRUE)
tt4
plot(tt4)
summary(tt4)

End(Not run)

Index

∗ datasets
phyto, 9

∗ misc
compareME, 2
EF, 4
features, 5
GRI, 7
LCS, 8
qualV-package, 2
quantV, 10
qvalLCS, 14
timetrans, 17
timeTransME, 18

CMAE (quantV), 10
CMSE (quantV), 10
compareME, 2, 13

EF, 4, 7, 13

f.curve (features), 5
f.level (features), 5
f.slope (features), 5
f.steep (features), 5
features, 5, 15, 16

generalME, 3, 4, 19, 20
generalME (quantV), 10
GRI, 5, 7, 13

LCS, 6, 8, 15, 16

MAE, 5, 7
MAE (quantV), 10
MAGE (quantV), 10
MALE (quantV), 10
MAOE (quantV), 10
MAPE, 5, 7
MAPE (quantV), 10
MSE, 5, 7, 20
MSE (quantV), 10

MSLE (quantV), 10
MSOE (quantV), 10

obs (phyto), 9

phyto, 9
plot, 15, 20
plot.qvalLCS (qvalLCS), 14
plot.timeTransME (timeTransME), 18
print.compareME (compareME), 2
print.qvalLCS (qvalLCS), 14
print.timeTransME (timeTransME), 18

qualV (qualV-package), 2
qualV-package, 2
quantV, 10
qvalLCS, 6, 14

RCMSE (quantV), 10
RMSE (quantV), 10
RMSGE (quantV), 10
RMSLE (quantV), 10
RMSOE (quantV), 10
RSMSE (quantV), 10
RSMSGE (quantV), 10
RSMSLE (quantV), 10

sim (phyto), 9
SMAE (quantV), 10
SMAGE (quantV), 10
SMALE (quantV), 10
SMSE (quantV), 10
SMSLE (quantV), 10
summary.compareME (compareME), 2
summary.qvalLCS (qvalLCS), 14
summary.timeTransME (timeTransME), 18

timetrans, 17
timeTransME, 3, 4, 17, 18, 18
timetransme (timeTransME), 18
transBeta, 22

24

INDEX 25

transBeta (timetrans), 17
transBezier, 20, 22
transBezier (timetrans), 17
transSimplex (timetrans), 17

	qualV-package
	compareME
	EF
	features
	GRI
	LCS
	phyto
	quantV
	qvalLCS
	timetrans
	timeTransME
	Index

