
Package: rNOMADS (via r-universe)
October 3, 2024

Type Package

Title An interface to the NOAA Operational Model Archive and
Distribution System

Version 2.0.2

Date 2014-07-04

Depends R (>= 3.1.0)

Imports scrapeR (>= 0.1.6), stringr (>= 0.6.2), fields (>= 6.7.6), XML
(>= 3.98.1.1), GEOmap (>= 2.1), MBA, RCurl (>= 1.95-4.1)

Description An interface to the National Oceanic and Atmospheric
Administration's Operational Model Archive and Distribution
System (NOMADS) that allows R users to quickly and efficiently
download global and regional weather model data for processing.
rNOMADS currently supports a variety of models ranging from
global weather data to an altitude of 40 km, to high resolution
regional weather models, to wave and sea ice models. It can
also retrieve archived NOMADS models. rNOMADS can retrieve
binary data in GRIB format as well as import ascii data
directly into R by interfacing with the GrADS-DODS system.

License GPL (>= 3)

URL http://code.google.com/p/bovine-aerospace/ (subversion repository)

http://www.unc.edu/~haksaeng/rNOMADS/rNOMADS_dods_examples.pdf

http://www.unc.edu/~haksaeng/rNOMADS/rNOMADS_grib_examples.pdf

Maintainer Daniel C. Bowman <daniel.bowman@unc.edu>

Repository https://r-forge.r-universe.dev

RemoteUrl https://github.com/r-forge/rnomads

RemoteRef HEAD

RemoteSha dfc7d4abb57ec58d559dfee170eadbbde676aff9

1

http://code.google.com/p/bovine-aerospace/
http://www.unc.edu/~haksaeng/rNOMADS/rNOMADS_dods_examples.pdf
http://www.unc.edu/~haksaeng/rNOMADS/rNOMADS_grib_examples.pdf

2 rNOMADS-package

Contents
rNOMADS-package . 2
ArchiveGribGrab . 4
BuildProfile . 6
CheckNOMADSArchive . 7
CrawlModels . 9
DODSGrab . 10
GetClosestGFSForecasts . 11
GetDODSDates . 13
GetDODSModelRunInfo . 14
GetDODSModelRuns . 16
GribGrab . 17
MagnitudeAzimuth . 19
ModelGrid . 20
NOMADSArchiveList . 21
NOMADSRealTimeList . 22
ParseModelPage . 23
ReadGrib . 24
RTModelProfile . 27
WebCrawler . 29

Index 31

rNOMADS-package An interface to the NOAA Operational Model Archive and Distribution
System

Description

Automatically download forecast data from the National Oceanic and Atmospheric Administra-
tion’s Operational Model Archive and Distribution System (NOMADS) and read it into R. This can
be done in two ways: reading ascii data directly from the server using the DODS-GrADS system
(all operating systems, just needs an internet connection) or downloading binary files in GRIB for-
mat (linux only, or until a native R reader for GRIB is available). The grib capability of rNOMADS
uses an external series of routines called wgrib2 to read operational model data; get wgrib2 at
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/. The package will also attempt to
call another external routine called wgrib if the user wishes to read GRIB1 files; get wgrib at
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html.

Details

Package: rNOMADS
Type: Package
Version: 2.0.0
Date: 2014-05-15
License: GPL v3

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

rNOMADS-package 3

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

References

NOMADS website:
http://nomads.ncep.noaa.gov/
wgrib2 download page:
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
wgrib2 reference:
Ebisuzaki, W, Bokhorst, R., Hyvatti, J., Jovic, D., Nilssen, K, Pfeiffer, K., Romero, P., Schwarb, M.,
da Silva, A., Sondell, N., and Varlamov, S. (2011). wgrib2: read and write GRIB2 files. National
Weather Service Climate Prediction Center,
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
wgrib download page:
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

Examples

#Getting temperature for North Carolina, USA,
#6-12 hours ago depending on when the latest model run was.
#Get values at the ground surface and at the 800 mb level
#Then make a contour plot of the surface temperature.
#We use GrADS-DODS here for compatibility.

#Using the Global Forecast System 0.5x0.5 model
Not run: urls.out <- GetDODSDates(abbrev = "gfs_hd")
model.url <- tail(urls.out$url, 1) #Get most recent model date

End(Not run)

#Get most recent model run

Not run: model.runs <- GetDODSModelRuns(model.url)
model.run <- tail(model.runs$model.run, 1)

End(Not run)

#Get ground temperature for the 6 hour prediction
variable <- "tmp2m" #temp at 2 m
time <- c(2,2) #6 hour prediction
lon.dom <- seq(0, 360, by = 0.5) #domain of longitudes in model
lat.dom <- seq(-90, 90, by = 0.5) #domain of latitudes in model
lon <- which((lon.dom >= 360 - 84) & (lon.dom <= 360 - 74)) - 1 #NOMADS indexes start at 0
lat <- which((lat.dom <= 37) & (lat.dom >= 32)) - 1 #NOMADS indexes start at 0

http://nomads.ncep.noaa.gov/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html

4 ArchiveGribGrab

Not run: model.data.surface <- DODSGrab(model.url, model.run, variable, time, c(min(lon), max(lon)),
c(min(lat), max(lat)))

End(Not run)

lev <- c(8, 8) #800 mb level
variable <- "tmpprs"
Not run: model.data.800mb <- DODSGrab(model.url, model.run, variable, time, c(min(lon), max(lon)),

c(min(lat), max(lat)), level = lev)
End(Not run)

#Make results into arrays
Not run: model.array.surface <- ModelGrid(model.data.surface, c(0.5, 0.5), "latlon")
Not run: model.array.800mb <- ModelGrid(model.data.800mb, c(0.5, 0.5), "latlon")

#Make a contour plot of the temperature around North Carolina, USA:
Not run: contour(x = model.array.surface$x - 360, y = model.array.surface$y,

model.array.surface$z[1,1,,] - 273.15, xlab = "Longitude", ylab = "Latitude",
main = paste("North Carolina Surface Temperatures for",
model.array.surface$fcst.date, "GMT in Celsius"))

dev.new()
contour(x = model.array.800mb$x - 360, y = model.array.800mb$y,

model.array.800mb$z[1,1,,] - 273.15, xlab = "Longitude", ylab = "Latitude",
main = paste("North Carolina Temperatures at 800 mb for",
model.array.surface$fcst.date, "GMT in Celsius"))

End(Not run)

ArchiveGribGrab Download archived model data from the NOMADS server.

Description

This function interfaces with the programming API at http://nomads.ncdc.noaa.gov/ to down-
load archived NOMADS model data. The available models can be viewed by calling NOMADSArchiveList
without arguments. The data arrives in grib (gridded binary) format that can be read with ReadGrib.
Some of these files are in GRIB format, others are in GRIB2 format; select the appropriate file type
when calling ReadGrib.

Usage

ArchiveGribGrab(abbrev, model.date, model.run, pred,
local.dir = ".", file.name = "fcst.grb", tidy = FALSE,
verbose = TRUE, download.method = NULL, file.type = "grib2")

Arguments

abbrev Model abbreviation per NOMADSArchiveList.

model.date The year, month, and day of the model run, in YYYYMMDD format

http://nomads.ncdc.noaa.gov/

ArchiveGribGrab 5

model.run Which hour the model was run (i.e. 00, 06, 12, 18 for GFS)

pred Which prediction to get (analysis is 00)

local.dir Where to save the grib file, defaults to the current directory.

file.name What to name the grib file, defaults to "fcst.grb".

tidy If TRUE, remove all files with the suffix ".grb" from local.dir prior to down-
loading a new grib file.

verbose If TRUE, give information on connection status. Default TRUE
download.method

Allows the user to set the download method used by download.file: "internal",
"wget" "curl", "lynx". If NULL (the default), let R decide.

file.type Determine whether to get GRIB1 ("grib1") or GRIB2 ("grib2") file formats.
Sometimes both are available, sometimes only one.

Value
grib.info$local.dir

The absolute path to the grib file that was downloaded.
grib.info$file.name

The name of the grib file that was downloaded.

grib.info$url The URL that the grib file was downloaded from

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

References

http://nomads.ncdc.noaa.gov/

See Also

CheckNOMADSArchive, NOMADSArchiveList, ReadGrib

Examples

#An example for the Global Forecast System
#Get data for January 1 2014
#Temperature at 2 m above ground
#3 hour prediction
using GRIB

abbrev <- "gfsanl"
model.date <- 20140101
model.run <- 06
pred <- 3

Not run: model.info <- ArchiveGribGrab(abbrev, model.date,
model.run, pred, file.type = "grib2")

http://nomads.ncdc.noaa.gov/

6 BuildProfile

End(Not run)
Not run: model.data <- ReadGrib(model.info$file.name, c("2 m above ground"), c("TMP"))

#Transform to grid
Not run: gridded.data <- ModelGrid(model.data, c(0.5, 0.5))

#Get surface temperature in Chapel Hill, NC
lat <- 35.907605
lon <- -79.052147

Not run: profile.data <- BuildProfile(gridded.data, lon, lat, TRUE)
Not run: print(paste0("The temperature prediction in Chapel Hill was ",

sprintf("%.0f", profile.data[1,1] - 272.15), " degrees Celsius."))
End(Not run)

BuildProfile Get model data at a specific point.

Description

Takes the output of ModelGrid and extracts data at a specific point, performing interpolation if
required.

Usage

BuildProfile(gridded.data, lon, lat, spatial.average)

Arguments

gridded.data Data structure returned by ModelGrid.

lon Longitude of point of interest.

lat Latitude of point of interest.
spatial.average

Whether to interpolate data using b-splines to obtain value at the requested point
(spatial.average = TRUE) or use the nearest model node (spatial.average
= FALSE).

Details

It is much more efficient to download a large chunk of data and extract profile points from that as
opposed to downloading individual small model chunks in the vicinity of each point of interest.

Value

profile.data A levels x variables matrix with data for a given point.

CheckNOMADSArchive 7

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

See Also

ModelGrid, BuildProfile

Examples

#Get temperature profile in Chapel Hill, NC.

#First, define each location
lon <- -79.052094
lat <- 35.907562

#Get latest GFS 0.5 model, use analysis forecast
Not run:
model.url <- CrawlModels(abbrev = "gfs_hd", depth = 1)[1]
pred <- ParseModelPage(model.url)$pred[1]

End(Not run)

#Get levels
pressure <- c(1, 2, 3, 5, 7,
10, 20, 30, 50, 70,
seq(100, 1000, by = 25))
levels <- paste(pressure, " mb", sep = "")

#Variables - temperature and height only
variables <- c("TMP", "HGT")

Not run:
grib.info <- GribGrab(model.url, pred, levels, variables,

model.domain = c(-85, -75, 37, 32))
grib.data <- ReadGrib(grib.info$file.name, levels, variables)
gridded.data <- ModelGrid(grib.data, c(0.5, 0.5))

profile <- BuildProfile(gridded.data, lon, lat, TRUE)
plot(profile[,2] - 273.15, profile[,1], xlab = "Temperature (C)",

ylab = "Height (m)", main = "Temperature Profile above Chapel Hill, NC")

End(Not run)

CheckNOMADSArchive Check to see if archived data exists.

Description

This function checks to see if data exists for a given date and model. It checks for both GRIB1 or
GRIB2 files.

8 CheckNOMADSArchive

Usage

CheckNOMADSArchive(abbrev, model.date = NULL)

Arguments

abbrev Model abbreviation per NOMADSArchiveList.

model.date The year, month, and day to check for data, in YYYYMMDD format. If NULL,
check all available dates in NOMADS archive.

Value
available.models$date

What date the file is for, in YYYYMMDD format.
available.models$model.run

At what hour (GMT) the model was run.

available.models$pred

What predictions are available

available.models$file.name

List of file names for available model dates, runs, and predictions

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

References

http://nomads.ncdc.noaa.gov/

See Also

NOMADSArchiveList, ArchiveGribGrab

Examples

#See what is available for January 1 2014

abbrev <- "gfs4"
model.date <- 20140101
Not run: gfs.available.models <- CheckNOMADSArchive(abbrev, model.date)

#Determine all available North American Mesoscale models in the archive
#This will take some time
Not run: nam.available.models <- CheckNOMADSArchive("namanl")

http://nomads.ncdc.noaa.gov/

CrawlModels 9

CrawlModels Get Available Model Runs

Description

This function determine which instances of a given model are available for download.

Usage

CrawlModels(abbrev = NULL, url = NULL, depth = NULL, verbose = TRUE)

Arguments

abbrev The model abbreviation, see NOMADSRealTimeList. Defaults to NULL.

url A URL to use instead of using the abbreviations in NOMADSRealTimeList. De-
faults to NULL.

depth How many model instances to return. This avoids having to download the en-
tire model list (sometimes several hundred) if only the first few instances are
required. Defaults to NULL, which returns everything.

verbose Print out each link as it is discovered. Defaults to TRUE.

Details

This function calls WebCrawler, a recursive algorithm that discovers each link available in the URL
provided. It then searches each link in turn, and follows those links until it reaches a dead end. At
that point, it returns the URL. For the model pages on the NOMADS web site, each dead end is a
model instance that can be examined using ParseModelPage or have data retrieved from it using
GribGrab.

Value

urls.out A list of web page addresses, each of which corresponds to a model instance.

Note

It is a good idea to set depth to a small number rather than leave it at the default value. Some
models (such as the Global Forecast System) have a large number of instances, and crawling each
one can take a lot of time. I recommend depth = 2, since the first URL may not have an active
model on it yet if the model is still being uploaded to the server. In that case,the first URL will
contain no data, and the second URL can be used instead.

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

See Also

WebCrawler, ParseModelPage, NOMADSRealTimeList, GribGrab

10 DODSGrab

Examples

#Get the latest 5 instances
#for the Global Forecast System 0.5 degree model

Not run: urls.out <- CrawlModels(abbrev = "gfs_hd", depth = 5)

DODSGrab Download model data from the NOMADS server using the DODS -
GrADS system.

Description

This function interfaces with the NOMADS server to download weather, ocean, and sea ice data.
The available models can be viewed by calling NOMADSRealTimeList and NOMADSArchiveList.
The data arrives in ascii format, so this function can be used to retrieve data on any operating
system.

Usage

DODSGrab(model.url, model.run, variable, time, lon, lat,
levels = NULL, display.url = TRUE)

Arguments

model.url A model URL for a specific date, probably from GetDODSDates.

model.run A specific model run to get, probably from GetDODSModelRuns.

variable The data type to get.

time An two component vector denoting which time indices to get.

lon An two component vector denoting which longitude indices to get.

lat An two component vector denoting which latitude indices to get.

levels An two component vector denoting which levels to get, if applicable.

display.url If TRUE, print out the URL for the data request.

Value

model.data A structure with a series of elements containing data extracted from GrADS-
DODS system.

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

References

http://nomads.ncep.noaa.gov/

http://nomads.ncep.noaa.gov/

GetClosestGFSForecasts 11

See Also

GetDODSDates, GetDODSModelRuns, GetDODSModelRunInfo

Examples

#An example for the Global Forecast System 0.5 degree model
#Make a world temperature map for the latest model run

Not run:
#Figure out which model is most recent
model.urls <- GetDODSDates("gfs_hd")
latest.model <- tail(model.urls$url, 1)
model.runs <- GetDODSModelRuns(latest.model)
latest.model.run <- tail(model.runs$model.run, 1)

#Download worldwide temperature data at 2 m
variable <- "tmp2m"
time <- c(0, 0) #Analysis run, index starts at 0
lon <- c(0, 719) #All 720 longitude points
lat <- c(0, 360) #All 361 latitude points
model.data <- DODSGrab(latest.model, latest.model.run,

variable, time, lon, lat)

#Make it into a nice array and plot it
model.grid <- ModelGrid(model.data, c(0.5, 0.5), "latlon")
image(model.grid$z[1,1,,])

End(Not run)

GetClosestGFSForecasts

Get the GFS forecast time closest to a given date

Description

This function determines which GFS forecast is closest to a given date. It returns which forecast
precedes the date, and which forecast follows the date. Thus a user can average the two forecasts
together to provide a precise forecast for a given date.

Usage

GetClosestGFSForecasts(forecast.date, model.date = "latest",
depth = NULL, verbose = TRUE)

Arguments

forecast.date What date you want a forecast for, as a date/time object. It must be in the GMT
time zone.

12 GetClosestGFSForecasts

model.date Which model run to use, in YYYYMMDDHH, where HH is 00, 06, 12, 18.
Defaults to "latest", which gets the most recent model uploaded to the server.

depth How many model instances to return. This avoids having to download the en-
tire model list (sometimes several hundred) if only the first few instances are
required. Defaults to NULL, which returns everything. This input only makes
sense when model.date != "latest".

verbose Gives a detailed account of progress. Defaults to TRUE.

Value
forecasts$model.url

URL to send to GribGrab for downloading data.
forecasts$model.run.date

When the model was run.
forecasts$back.forecast

Nearest forecast behind requested date.
forecasts$fore.forecast

Nearest forecast after requested date.
forecasts$back.hr

How many hours the back forecast is behind the requested date.
forecasts$fore.hr

How many hours the fore forecast is in front of the requested date.

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

See Also

RTModelProfile, BuildProfile, GribGrab

Examples

#Get the exact temperature profile of Chapel Hill, NC
#by performing a weighted average of GFS model forecasts.

#Figure out which forecasts to use
forecast.date <- as.POSIXlt(Sys.time(), tz = "GMT")
Not run: forecasts <- GetClosestGFSForecasts(forecast.date)

#Get levels
pressure <- c(1, 2, 3, 5, 7,
10, 20, 30, 50, 70,
seq(100, 1000, by = 25))
levels <- paste(pressure, " mb", sep = "")

#Variables - temperature and height only
variables <- c("TMP", "HGT")

GetDODSDates 13

#Location
lon <- c(-79.052083)
lat <- c(35.907492)

#Get the data for each
resolution <- c(0.5, 0.5)
grid.type <- "latlon"

Not run:
back.profile <- RTModelProfile(forecasts$model.url, forecasts$back.forecast,

levels, variables, lon, lat, resolution = resolution, grid.type = grid.type)

fore.profile <- RTModelProfile(forecasts$model.url, forecasts$fore.forecast,
levels, variables, lon, lat, resolution = resolution, grid.type = grid.type)

temps <- cbind(back.profile$profile[[1]][,2], fore.profile$profile[[1]][,2]) - 273.15
heights <- cbind(back.profile$profile[[1]][,1], fore.profile$profile[[1]][,1])
time.gap <- forecasts$fore.hr - forecasts$back.hr
exact.temp <- (temps[,1] * abs(forecasts$fore.hr) + temps[,2] * abs(forecasts$back.hr))/time.gap
exact.hgt <- (heights[,1] * abs(forecasts$fore.hr) + heights[,2] * abs(forecasts$back.hr))/time.gap

#Plot results
plot(c(min(temps), max(temps)), c(min(heights), max(heights)), type = "n",

xlab = "Temperature (C)", ylab = "Height (m)")
points(temps[,1], heights[,1], pch = 1, col = 1)
points(temps[,1], heights[,2], pch = 2, col = 2)
lines(exact.temp, exact.hgt, col = 3, lty = 2)
legend("topleft", pch = c(1, 2, NA), lty = c(NA, NA, 2), col = c(1, 2, 3),

legend = c(forecasts$back.forecast, forecasts$fore.forecast, as.character(Sys.time())))

End(Not run)

GetDODSDates Find available model run dates for data on the GrADS - DODS system.

Description

This function checks the GrADS data server to see what dates and model subsets are available for
model specified by ABBREV

Usage

GetDODSDates(abbrev, archive=FALSE, request.sleep=0)

Arguments

abbrev A model abbreviation as specified in NOMADSRealTimeList or NOMADSArchiveList.

archive Whether the model is on the NCEP real time server (FALSE) or on the NCDC
model archive server (TRUE).

request.sleep Seconds to pause between HTTP requests when scanning model pages.

14 GetDODSModelRunInfo

Details

This function determines which dates are available for download for a particular model through the
GrADS - DODS system. Once the user determines which dates are available, the output of this
function can be passed to GetDODSModelRuns to determine which model runs can be downloaded.

Value

model The model that was requested.

date A list of model run dates available for download.

url A list of URLs corresponding to the model run dates.

Note

Sometimes, sending lots of HTTP requests in rapid succession can cause errors. If messages resem-
bling "Error: failed to load HTTP resource" appear, try request.sleep = 1. The code will
take longer to execute but it will be more likely to finish successfully.

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

See Also

GetDODSModelRuns, DODSGrab

Examples

#An example for the Global Forecast System 0.5 degree model

#Get the latest model url and date
abbrev <- "gfs_hd"
Not run: urls.out <- GetDODSDates(abbrev)
Not run: print(paste("Most recent model run:",tail(urls.out$date, 1)))

#Get model dates from the GFS archive
abbrev <- "gfs-avn-hi"
Not run: urls.out <- GetDODSDates(abbrev, archive = TRUE, request.sleep = 1)

GetDODSModelRunInfo Get model coverage and data information for models on GrADS-
DODS system.

Description

Given a URL from GetDODSDates, find which model runs are available for download on the GrADS
- DODS system.

GetDODSModelRunInfo 15

Usage

GetDODSModelRunInfo(model.url, model.run)

Arguments

model.url A URL for a model on the GrADS - DODS system, probably returned by
GetDODSDates.

model.run A specific model run, probably returned by link{GetDODSModelRuns}

Details

This routine grabs information about the latitude, longitude, and time coverage of a specific model
instance. It also finds data about levels (if present) and lists all the available variables (though they
may not have data in them). The user can refer to this information to construct calls to the DODS
system via DODSGrab.

Value

model.info Information provided by the GrADS - DODS system about the given model
instance.

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

See Also

GetDODSDates, GetDODSModelRuns, DODSGrab

Examples

#An example for the Global Forecast System 0.5 degree model

#Get some information about the latest model url and date, real time server
abbrev <- "gfs_hd"
Not run:
urls.out <- GetDODSDates(abbrev)
model.url <- tail(urls.out$url, 1)
model.runs <- GetDODSModelRuns(model.url)
model.info <- GetDODSModelRunInfo(model.url, tail(model.runs$model.run, 1))
print(model.info)
End(Not run)

16 GetDODSModelRuns

GetDODSModelRuns Find available model runs on the GrADS - DODS system.

Description

Given a URL from GetDODSDates, find which model runs are available for download on the GrADS
- DODS system.

Usage

GetDODSModelRuns(model.url)

Arguments

model.url A URL for a model on the GrADS - DODS system, probably returned by
GetDODSDates.

Details

This function determines which dates are available for download for a particular model through the
GrADS - DODS system. Once the user determines which dates are available, the output of this
function can be passed to GetDODSModelRuns to determine which model runs can be downloaded.

Value

model.run A list of model runs available for the requested date.

model.run.info Information provided by the GrADS - DODS system about each model run.

Note

To get model run information for archived analysis models, pass URLs directly from NOMADSArchiveList
directly to GetDODSModelRuns.

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

See Also

GetDODSDates, DODSGrab, GetDODSModelRunInfo

GribGrab 17

Examples

#An example for the Global Forecast System 0.5 degree model

#Get the latest model url and date, real time server
abbrev <- "gfs_hd"
Not run:
urls.out <- GetDODSDates(abbrev)
model.url <- tail(urls.out$url, 1)
model.runs <- GetDODSModelRuns(model.url)
print(paste("Latest model run", tail(model.runs$model.run.info, 1)))

End(Not run)
#Get model dates from the GFS analysis archive
abbrev <- "gfsanl"
model.url <- NOMADSArchiveList("dods", abbrev = abbrev)$url
Not run:
model.runs <- GetDODSModelRuns(model.url)
print(model.runs$model.run.info)

End(Not run)

GribGrab Download grib file from the NOMADS server.

Description

This function interfaces with the programming API at http://nomads.ncep.noaa.gov/ to down-
load NOMADS model data. The available models can be viewed by calling NOMADSRealTimeList.
The data arrives in grib (gridded binary) format that can be read with ReadGrib.

Usage

GribGrab(model.url, pred, levels, variables,
local.dir = ".", file.name = "fcst.grb",
model.domain = NULL, tidy = FALSE, verbose = TRUE,
check.url = TRUE, download.method = NULL)

Arguments

model.url The address of a model download page, probably from CrawlModels.

pred The list of predictions (or model times) determined by the specific model from
model.url

levels A list of model levels to download.

variables A list of model variables to download.

local.dir Where to save the grib file, defaults to the current directory.

file.name What to name the grib file, defaults to "fcst.grb".

http://nomads.ncep.noaa.gov/

18 GribGrab

model.domain A vector of latitudes and longitudes that specify the area to return a forecast for.
This is a rectangle with elements: west longitude, east longitude, north latitude,
south latitude.

tidy If TRUE, remove all files with the suffix ".grb" from local.dir prior to down-
loading a new grib file.

verbose If TRUE, give information on connection status. Default TRUE

check.url If TRUE, verify that the model URL is real and contains data. Default TRUE
download.method

Allows the user to set the download method used by download.file: "internal",
"wget" "curl", "lynx". If NULL (the default), let R decide.

Value
grib.info$local.dir

The absolute path to the grib file that was downloaded.
grib.info$file.name

The name of the grib file that was downloaded.

grib.info$url The URL that the grib file was downloaded from

Note

This requires the external programs wgrib2 and\or wgrib to be installed (depending on whether the
files are in GRIB2 or GRIB format). Currently, these routines are only available on Unix/Linux
systems. When a native R reader for GRIB is available, it will be integrated with rNOMADS.

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

References

http://nomads.ncep.noaa.gov/

See Also

CrawlModels, ParseModelPage, ReadGrib

Examples

#An example for the Global Forecast System 0.5 degree model

#Get the latest model url
Not run: urls.out <- CrawlModels(abbrev = "gfs_hd", depth = 1)

#Get a list of forecasts, variables and levels
Not run: model.parameters <- ParseModelPage(urls.out[1])

#Figure out which one is the 6 hour forecast
#provided by the latest model run

http://nomads.ncep.noaa.gov/

MagnitudeAzimuth 19

#(will be the forecast from 6-12 hours from the current date)

Not run: my.pred <- model.parameters$pred[grep("06$", model.parameters$pred)]

#What region of the atmosphere to get data for
levels <- c("2 m above ground", "800 mb")

#What data to return
variables <- c("TMP", "RH") #Temperature and relative humidity

#Get the data
Not run: grib.info <- GribGrab(urls.out[1], my.pred, levels, variables)

#Extract the data
Not run: model.data <- ReadGrib(grib.info$file.name, levels, variables)

#Reformat it
Not run: model.grid <- ModelGrid(model.data, c(0.5, 0.5))

#Show an image of world temperature at ground level
Not run: image(model.grid$z[2, 1,,])

MagnitudeAzimuth Convert zonal-meridional wind speeds to magnitude/azimuth.

Description

Given zonal (East-West) and meridional (North-South) wind speeds, calculate magnitude of wind
vector and azimuth from north, in degrees.

Usage

MagnitudeAzimuth(zonal.wind, meridional.wind)

Arguments

zonal.wind A vector of zonal (East-West) winds, west negative.
meridional.wind

A vector of meridional (North-South) winds, south negative.

Value
winds$magnitude

Magnitude of wind vector.

winds$azimuth Azimuth of wind vector in degrees from North

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

20 ModelGrid

Examples

zonal.wind <- c(35.5, -2)
meridional.wind <- c(-5, 15)
winds <- MagnitudeAzimuth(zonal.wind, meridional.wind)
print(winds$magnitude)
print(winds$azimuth)

ModelGrid Transform model data into an array

Description

This function takes output from ReadGrib and produces an array with dimensions: levels x variables
x longitudes x latitudes. This greatly reduces the size of the data set as well as makes it easier to
manipulate.

Usage

ModelGrid(model.data, resolution, grid.type = "latlon",
levels = NULL, variables = NULL, model.domain = NULL)

Arguments

model.data Output from ReadGrib.
resolution Resolution of grid, in degrees if grid.type = "latlon", in kilometers if grid.type

= "cartesian", as a 2 element vector c(East-West, North-South).
grid.type Whether the grid is in lat/lon or cartesian. Options "latlon" or "cartesian".
levels The model levels to include in the grid, if NULL, include all of them.
variables The model variables to include in grid, if NULL, include all of them.
model.domain A vector c(LEFT LON, RIGHT LON, TOP LAT, BOTTOM LAT) of the region

to include in output. If NULL, include everything.

Details

If you set the spacing of lon.grid and/or lat.grid coarser than the downloaded model grid, you can
reduce the resolution of your model, possibly making it easier to handle.

Value

z An array of dimensions levels x variables x lon x lat; each level x variable con-
tains the model grid of data from that variable and level

x Vector of longitudes
y Vector of latitudes
variables The variables contained in the grid
levels The levels contained in the grid
model.run.date When the forecast model was run
fcst.date The date of the forecast

NOMADSArchiveList 21

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

See Also

ReadGrib, BuildProfile, RTModelProfile

Examples

Not run:
#Get some example data
urls.out <- CrawlModels(abbrev = "gfs_hd", depth = 1)
model.parameters <- ParseModelPage(urls.out[1])
levels <- c("2 m above ground", "100 mb")
variables <- c("TMP", "RH") #Temperature and relative humidity
grib.info <- GribGrab(urls.out[1], model.parameters$pred[1], levels, variables)
#Extract the data
model.data <- ReadGrib(grib.info$file.name, levels, variables)

#Make it into an array
gfs.array <- ModelGrid(model.data, c(0.5, 0.5))

#What variables and levels we have
print(gfs.array$levels)
print(gfs.array$variables)

#Find minimum temperature at the ground surface, and where it is
min.temp <- min(gfs.array$z[2, 1,,] - 273.15)
sprintf("%.1f", min.temp) #in Celsius

ti <- which(gfs.array$z[2, 1,,] == min.temp + 273.15, arr.ind = TRUE)

lat <- gfs.array$y[ti[1,2]] #Lat of minimum temp
lon <- gfs.array$x[ti[1,1]] #Lon of minimum temp

#Find maximum temperature at 100 mb atmospheric pressure
max.temp <- max(gfs.array$z[1, 1,,]) - 273.15
sprintf("%.1f", max.temp) #Brrr!

End(Not run)

NOMADSArchiveList Archived models available for download through rNOMADS

Description

A list of abbreviations, names and URLs for the NOMADS models archived on the NCDC web site..
Users can refer to this list to find out more information about the available models, and rNOMADS
uses the abbreviations to determine how to access the archives.

22 NOMADSRealTimeList

Usage

NOMADSArchiveList(url.type, abbrev = NULL)

Arguments

url.type Determine whether to return a URL for extracting GRIB files ("grib") or for
getting ascii format data directly from the server ("dods").

abbrev Return information about the model that this abbreviation refers to. Defaults to
NULL, in which case information about all the models available through rNOMADS.

Value

abbrevs An abbreviation for each model

names A full name for each model

urls The web address of the download page for each model

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

See Also

NOMADSRealTimeList

Examples

#The archived model list in rNOMADS

archived.model.list <- NOMADSArchiveList("grib")

NOMADSRealTimeList Models available for download through rNOMADS

Description

A list of abbreviations, names and URLs for the NOMADS models. Users can refer to this list to
find out more information about the available models, and rNOMADS uses the abbreviations to
determine which URLs to scan and download.

Usage

NOMADSRealTimeList(url.type, abbrev = NULL)

ParseModelPage 23

Arguments

url.type Determine whether to return a URL for extracting GRIB files ("grib") or for
getting ascii format data directly from the server ("dods").

abbrev Return information about the model that this abbreviation refers to. Defaults to
NULL, in which case information about all the models available through rNOMADS.

Value

abbrevs An abbreviation for each model

names A full name for each model

urls The web address of the download page for each model

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

See Also

WebCrawler, ParseModelPage, NOMADSArchiveList, GribGrab, DODSGrab

Examples

#The full model list in rNOMADS

model.list <- NOMADSRealTimeList("dods")

ParseModelPage Extract predictions, levels, and variables

Description

This function parses the model download pages on NOMADS, and extracts information on predic-
tions, levels, and variables available for each.

Usage

ParseModelPage(model.url)

Arguments

model.url The URL of the model to extract information from, probably returned by NOMADSRealTimeList.

24 ReadGrib

Details

This function scrapes the web page for a given model and determines which predictions, levels, and
variables are present for each. Predictions are instances returned by each model (for example, the
GFS model produces 3 hour predictions up to 192 hours from the model run). Levels are regions of
the atmosphere, surface of the Earth, or subsurface that the model produces output for (for example
the GFS model has a “2 m above ground” level that has data for temperature, etc, at that height
across the Earth). Variables are types of data (temperature, for example).

Value

pred Model predictions

levels Locations of data points

variables Data types

Note

Many of the names for predictions, levels, and variables are somewhat cryptic. Future versions of
rNOMADS may have a reference function similar to NOMADSRealTimeList to help users with this
issue.

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

See Also

WebCrawler, ParseModelPage, GribGrab

Examples

#An example for the Global Forecast System 0.5 degree model

#Get the latest model url
Not run: urls.out <- CrawlModels(abbrev = "gfs_hd", depth = 1)

#Get a list of forecasts, variables and levels
Not run: model.parameters <- ParseModelPage(urls.out[1])

ReadGrib Extract data from grib file

ReadGrib 25

Description

This function wraps wgrib2 and wgrib, external grib file readers provided by the National Weather
Service Climate Prediction Center (see http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
and http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html). ReadGrib extracts fore-
cast data into R. It does this by building an argument string, executing a system call to the ap-
propriate external grib file reader, and extracting the result. Note that wgrib2 must be installed
for ReadGrib to work for current grib files, and wgrib may need to be installed when looking at
archived data.

Usage

ReadGrib(file.name, levels, variables, file.type = "grib2")

Arguments

file.name The path and file name of the grib file to read.

levels The levels to extract.

variables The variables to extract.

file.type Whether the file is in GRIB ("grib1") or GRIB2 ("grib2") format. Default is
"grib2".

Details

This function constructs system calls to wgrib and wgrib2. Therefore, you must have installed these
programs and made it available on the system path. Unless you are interested in accessing archive
data that’s more than a few years old, you can install wgrib2 only. A description of wgrib2 and
installation links are available at http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
and http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html. Note that Windows users
will likely have to use a UNIX emulator like Cygwin to install these programs. Also, rNOMADS is
focused towards GRIB2 files; I have included GRIB1 format support as a convenience.

Value

model.data A structure with a series of elements containing data extracted from the grib file.

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

References

Ebisuzaki, W, Bokhorst, R., Hyvatti, J., Jovic, D., Nilssen, K, Pfeiffer, K., Romero, P., Schwarb,
M., da Silva, A., Sondell, N., and Varlamov, S. (2011). wgrib2: read and write GRIB2 files. Na-
tional Weather Service Climate Prediction Center, http://www.cpc.ncep.noaa.gov/products/
wesley/wgrib2/

See Also

GribGrab, ArchiveGribGrab, ModelGrid

http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib.html
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/
http://www.cpc.ncep.noaa.gov/products/wesley/wgrib2/

26 ReadGrib

Examples

#Operational Forecast Data Extraction
#NCEP output is always in GRIB2 format - this makes things easy for us
#An example for the Global Forecast System 0.5 degree model

#Get the latest model url
Not run: urls.out <- CrawlModels(abbrev = "gfs_hd", depth = 1)

#Get a list of forecasts, variables and levels
Not run: model.parameters <- ParseModelPage(urls.out[1])

#Figure out which one is the 6 hour forecast
#provided by the latest model run
#(will be the forecast from 6-12 hours from the current date)

Not run: my.pred <- model.parameters$pred[grep("06$", model.parameters$pred)]

#What region of the atmosphere to get data for
levels <- c("2 m above ground", "800 mb")

#What data to return
variables <- c("TMP", "RH") #Temperature and relative humidity

#Get the data
Not run: model.info <- GribGrab(urls.out[1], my.pred, levels, variables)

#Extract the data
Not run: model.data <- ReadGrib(model.info$file.name, levels, variables)

#Reformat it
Not run: model.grid <- ModelGrid(model.data, c(0.5, 0.5))

#Show an image of world temperature at ground level
Not run: image(model.grid$z[2, 1,,])

#Archived Data Extraction
#This is sometimes in GRIB1 format
#This example is in GRIB1

abbrev <- "gfsanl"
model.date <- 20040302 #March 2, 2004
model.run <- 18 #1800 GMT model run
pred <- 0 #Analysis

Not run: grib.info <- ArchiveGribGrab(abbrev, model.date, model.run,
pred, file.type = "grib1")

End(Not run)

Not run: model.data <- ReadGrib(grib.info$file.name, c("1000 mb"), c("TMP"),
file.type = "grib1")

End(Not run)

RTModelProfile 27

RTModelProfile Get an atmospheric profile for a list of locations.

Description

This routine simplifies the rapid generation of data for specific points on the Earth’s surface.

Usage

RTModelProfile(model.url, pred, levels, variables, lon, lat, resolution,
grid.type, model.domain = NULL, spatial.average = FALSE, verbose = TRUE)

Arguments

model.url The address of a model download page, probably from CrawlModels.

pred The requested model prediction.

levels A list of model levels to get for the profile.

variables A list of model variables to download.

lon Longitudes of points of interest.

lat Latitudes of points of interest.

resolution Resolution of model, in degrees if Lat/Lon, in kilometers if cartesian, as a 2
element vector (ZONAL, MERIDIONAL)

grid.type If the model is gridded in Lat/Lon or cartesian units. Use "latlon" if Lat/Lon,
"cartesian" if cartesian.

model.domain A four element vector of latitudes and longitudes that defines a rectangular area
to get data for. If NULL, the model domain will be 1 degree past the maximum
and minimum defined by lon and lat arguments.

spatial.average

If TRUE, perform nearest neighbor interpolation for 4 grid nodes to get average
profile at a specific point. If FALSE, get data from nearest grid node. Default
FALSE.

verbose If TRUE, provide information on the download process. Default TRUE.

Details

It is much more efficient to download a large chunk of data and extract profile points from that as
opposed to downloading individual small model chunks in the vicinity of each point of interest.
That is why I developed this function.

28 RTModelProfile

Value
profile$profile.data

Table of requested values, with rows corresponding to the requested levels.
profile$spatial.averaging

What kind of spatial interpolation was used, if any, for the profile calculations.

profile$pred The model prediction used for generating the profile.
profile$model.date

When the model was run.
profile$variables

Model variables, in the order presented in profile$profile.data

profile$levels Model levels, in the order presented in profile$profile.data

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

See Also

GetClosestGFSForecasts, BuildProfile

Examples

#Get temperature profiles in Pantego, Chapel Hill, and Asheville, NC

#First, define each location
lon <- c(-76.662819, -79.052094, -82.550011)
lat <- c(35.589446, 35.907562, 35.591994)

#Get latest GFS 0.5 model, use analysis forecast
Not run:
model.url <- CrawlModels(abbrev = "gfs_hd", depth = 1)[1]
pred <- ParseModelPage(model.url)$pred[1]

End(Not run)

#Get levels
pressure <- c(1, 2, 3, 5, 7,
10, 20, 30, 50, 70,
seq(100, 1000, by = 25))
levels <- paste(pressure, " mb", sep = "")

#Variables - temperature and height only
variables <- c("TMP", "HGT")

#Resolution of GFS is 0.5 x 0.5 degree
resolution <- c(0.5, 0.5)
grid.type <- "latlon"

#Get data
Not run: profile <- RTModelProfile(model.url, pred, levels, variables,

WebCrawler 29

lon, lat, resolution, grid.type, spatial.average = TRUE)

#Plot it
plot(c(-100, 50), c(0, 50000), type = "n", xlab = "Temperature (C)",

ylab = "Height (m)", main = paste("GFS", profile$model.date,
"GMT Analysis Forecast"))

for(k in seq_len(3)) {
points(profile$profile.data[[k]][,2] - 273.15,

profile$profile.data[[k]][,1], pch = k, col = k)
}
legend("topright", pch = 1:3, col = 1:3, legend = c(

"Pantego, NC", "Chapel Hill, NC", "Asheville, NC"))

End(Not run)

WebCrawler Get web pages

Description

Discover all links on a given web page, follow each one, and recursively scan every link found.
Return a list of web addresses whose pages contain no links.

Usage

WebCrawler(url, depth = NULL, verbose = TRUE)

Arguments

url A URL to scan for links.

depth How many links to return. This avoids having to recursively scan hundreds of
links. Defaults to NULL, which returns everything.

verbose Print out each link as it is discovered. Defaults to TRUE.

Details

CrawlModels uses this function to get all links present on a model page.

Value

urls.out A list of web page addresses, each of which corresponds to a model instance.

Note

While it might be fun to try WebCrawler on a large website such as Google, the results will be
unpredictable and perhaps disastrous if depth is not set. This is because there is no protection
against infinite recursion.

30 WebCrawler

Author(s)

Daniel C. Bowman <daniel.bowman@unc.edu>

See Also

CrawlModels, ParseModelPage

Examples

#Find the first 10 model runs for the
#GFS 0.5x0.5 model

Not run: urls.out <- WebCrawler(
"http://nomads.ncep.noaa.gov/cgi-bin/filter_gfs_hd.pl", depth = 10)
End(Not run)

Index

∗ chron
GetClosestGFSForecasts, 11

∗ connection
ArchiveGribGrab, 4
CrawlModels, 9
DODSGrab, 10
GribGrab, 17
WebCrawler, 29

∗ documentation
NOMADSArchiveList, 21
NOMADSRealTimeList, 22

∗ file
ReadGrib, 24

∗ manip
BuildProfile, 6
MagnitudeAzimuth, 19
ModelGrid, 20
RTModelProfile, 27

∗ package
rNOMADS-package, 2

∗ utilities
CheckNOMADSArchive, 7
GetDODSDates, 13
GetDODSModelRunInfo, 14
GetDODSModelRuns, 16
ParseModelPage, 23

ArchiveGribGrab, 4, 8, 25

BuildProfile, 6, 7, 12, 21, 28

CheckNOMADSArchive, 5, 7
CrawlModels, 9, 17, 18, 27, 29, 30

DODSGrab, 10, 14–16, 23

GetClosestGFSForecasts, 11, 28
GetDODSDates, 10, 11, 13, 14–16
GetDODSModelRunInfo, 11, 14, 16
GetDODSModelRuns, 10, 11, 14–16, 16
GribGrab, 9, 12, 17, 23–25

MagnitudeAzimuth, 19
ModelGrid, 6, 7, 20, 25

NOMADSArchiveList, 4, 5, 8, 10, 13, 16, 21, 23
NOMADSRealTimeList, 9, 10, 13, 17, 22, 22,

23, 24

ParseModelPage, 9, 18, 23, 23, 24, 30

ReadGrib, 4, 5, 17, 18, 20, 21, 24
rNOMADS (rNOMADS-package), 2
rNOMADS-package, 2
RTModelProfile, 12, 21, 27

WebCrawler, 9, 23, 24, 29

31

	rNOMADS-package
	ArchiveGribGrab
	BuildProfile
	CheckNOMADSArchive
	CrawlModels
	DODSGrab
	GetClosestGFSForecasts
	GetDODSDates
	GetDODSModelRunInfo
	GetDODSModelRuns
	GribGrab
	MagnitudeAzimuth
	ModelGrid
	NOMADSArchiveList
	NOMADSRealTimeList
	ParseModelPage
	ReadGrib
	RTModelProfile
	WebCrawler
	Index

