
covMcd() – Considerations about Generalizing the FastMCD

Martin Mächler

September 3, 2024

1 Introduction

The context is robust multivariate “location and scatter” estimation, which corresponds to
estimating the first two moments in cases they exist. We assume data and a model

xi ∈ Rp, i = 1, 2, . . . , n (1)

xi ∼ F(µ,Σ), i.i.d.; µ ∈ Rp, Σ ∈ Rp×p, positive definite, (2)

where a conceptual null model is the p-dimensional normal distribution. One typical assumption
is that F is a mixture with the majority component (“good data”) being Np(µ,Σ) and other
components modeling “the outliers”.

In other words, we want estimates
(
µ̂, Σ̂

)
which should be close to the true “good data”

(µ,Σ) — and do not say more here.

2 MCD and “the Fast” MCD (= fastmcd) Algorithm

The robustbase R package has featured a function covMcd() since early on (Feb. 2006) and
that has been an interface to the Fortran routine provided by the original authors and (partly)
described in Rousseeuw and van Driessen (1999). We describe shortly how the algorithm works,
partly building on the documentation provided in the source (R, S, and Fortran) codes:

The minimum covariance determinant estimator of location and scatter (MCD) implemented
in covMcd() is similar to R function cov.mcd() in MASS. The (“theoretical”) MCD looks for the
h = hα(> 1/2) out of n observations whose classical covariance matrix has the lowest possible
determinant. In more detail, we will use h = hα = h(α, n, p) ≈ α·(n+p+1), where as Rousseeuw

and van Driessen (1999) mainly use (the default) α = 1
2 , where h = h(1/2, n, p) =

⌊
n+p+1

2

⌋
. For

general α ≥ 1
2 , the R implementation (derived from their original S code) uses h = h(α, n, p) =

h.alpha.n(alpha,n,p) (function in robustbase), which is

h = hα = h(α, n, p) := ⌊2n2 − n+ 2α(n− n2)⌋, where n2 :=
⌊n+ p+ 1

2

⌋
. (3)

The fraction α ≥ 1
2 can be chosen by the user, where α = 1

2 is the most robust, and indeed,

h1/2 = n2 =
⌊
n+p+1

2

⌋
. Even in general, as long as n ≫ p, α is approximately the proportion of

the subsample size h in the full sample (size n):

h ≈ α · n ⇐⇒ α ≈ h

n
, (4)

> require(robustbase)

> n <- c(5, 10, 20, 30, 50, 100, 200, 500)

> hmat <- function(alpha, p) cbind(n, h.alpha = h.alpha.n (alpha, n,p),

+ h. = floor(alpha * (n + p + 1)), alpha.n = round(alpha * n))

> hmat(alpha = 1/2, p = 3)

1

https://CRAN.R-project.org/package=robustbase
https://CRAN.R-project.org/package=MASS


n h.alpha h. alpha.n

[1,] 5 4 4 2

[2,] 10 7 7 5

[3,] 20 12 12 10

[4,] 30 17 17 15

[5,] 50 27 27 25

[6,] 100 52 52 50

[7,] 200 102 102 100

[8,] 500 252 252 250

> hmat(alpha = 3/4, p = 4)

n h.alpha h. alpha.n

[1,] 5 5 7 4

[2,] 10 8 11 8

[3,] 20 16 18 15

[4,] 30 23 26 22

[5,] 50 38 41 38

[6,] 100 76 78 75

[7,] 200 151 153 150

[8,] 500 376 378 375

The breakdown point (for h > n
2 ) then is

ϵ∗ =
n− h+ 1

n
, (5)

which is less than but close to 1
2 for α = 1

2 , and in general, h/n ≈ α, the breakdown point is
approximately,

ϵ∗ =
n− h+ 1

n
≈ n− h

n
= 1− h

n
≈ 1− α. (6)

The raw MCD estimate of location, say µ̂0, is then the average of these h points, whereas
the raw MCD estimate of scatter, Σ̂0, is their covariance matrix, multiplied by a consistency
factor .MCDcons(p, h/n)) and (by default) a finite sample correction factor .MCDcnp2(p, n,

alpha), to make it consistent at the normal model and unbiased at small samples.
In practice, for reasonably sized n, p and hence h, it is not feasible to search the full space

of all
(
n
h

)
h-subsets of n observations. Rather, the implementation of covMcd uses the Fast

MCD algorithm of Rousseeuw and van Driessen (1999) to approximate the minimum covariance
determinant estimator, see Section 3.

Based on these raw MCD estimates,
(
µ̂0, Σ̂0

)
, a reweighting step is performed, i.e., V <-

cov.wt(x,w), where w are weights determined by “outlyingness” with respect to the scaled raw
MCD, using the “Mahalanobis”-like, robust distances di

(
µ̂0, Σ̂0

)
, see (7). Again, a consistency

factor and a finite sample correction factor are applied. The reweighted covariance is typically
considerably more efficient than the raw one, see Pison et al. (2002).

The two rescaling factors for the reweighted estimates are returned in cnp2. Details for the
computation of the finite sample correction factors can be found in Pison et al. (2002).

3 Fast MCD Algorithm – General notation

Note: In the following, apart from the mathematical notation, we also use variable names,
e.g., kmini, used in the Fortran and sometimes R function code, in R package robustbase.

2

https://CRAN.R-project.org/package=robustbase


Instead of directly searching for h-subsets (among
(
n
h

)
≈

(
n

n/2

)
) the basic idea is to start with

small subsets of size p+1, their center µ and covariance matrix Σ, and a corresponding h-subset
of the h observations with smallest (squared) (“Mahalanobis”-like) distances

di = di(µ,Σ) := (xi − µ)′Σ−1(xi − µ), i = 1, 2, . . . , n, (7)

and then use concentration steps (“C steps”) to (locally) improve the chosen set by iteratively
computing µ, Σ, new distances di and a new set of size h with smallest distances di(µ,Σ). Each
C step is proven to decrease the determinant det(Σ) if µ and Σ did change at all. Consequently,
convergence to a local minimum is sure, as the number of h-subsets is finite.

To make the algorithm fast for non small sample size n the data set is split into “groups”
or “sub-datasets” as soon as

n ≥ 2n0, where n0 := nmini (= 300, by default). (8)

i.e., the default cutoff for “non small” is at n = 600. The number of such subsets in the original
algorithm is maximally 5, and we now use

kM = kmini (= 5, by default), (9)

as upper limit. As above, we assume from now on that n ≥ 2n0, and let

k :=
⌊ n

n0

⌋
≥ 2 (10)

and now distinguish the two cases,{
A. k < kM ⇐⇒ n < kM · n0

B. k ≥ kM ⇐⇒ n ≥ kM · n0

(11)

In case A k (= ngroup) subsets aka “groups” or “sub datasets” are used, k ∈ {2, 3, . . . , kM−1},
of group sizes nj , j = 1, . . . , k (see below). Note that case A may be empty because of
2 ≤ k < kM , namely if kM = 2. Hence, in case A, we have kM ≥ 3.

in case B kM (= ngroup) groups each of size n0 are built and in the first stage, only a subset
of kM · n0 ≤ n observations is used.

In both cases, the disjoint groups (“sub datasets”) are chosen at random from the n observations.
For the group sizes for case A, nj , j = 1, . . . , k, we have

n1 =
⌊n
k

⌋
=

⌊
n⌊
n
n0

⌋⌋ ( ≥ n0) (12)

nj = n1, j = 2, . . . , j∗ (13)

nj = n1 + 1, j = j∗ + 1, . . . , k, (14)

where j∗ := k − r ∈ {1, . . . , k}, (15)

and r := n− kn1 = n− k
⌊n
k

⌋
∈ {0, 1, . . . , k − 1}, (16)

where the range of j∗, 1, . . . , k in (15) is a consequence of the range of the integer division
remainder r ∈ {0, 1, . . . , k − 1} in (16). Consequently, (14) maybe empty, namely iff r = 0
( ⇐⇒ n = k · n1 is a multiple of k): j∗ = k, and all nj ≡ n1.

Considering the range of nj in case A, the minimum n1 ≥ n0 in (12) is easy to verify. What
is the maximal value of nj , i.e., an upper bound for nmax := n1 + 1 ≥ maxj nj? Consider
n1,max(k) = maxn,given k n1 = maxn,given k⌊nk ⌋. Given k, the maximal n still fulfilling

⌊
n
n0

⌋
= k is

n = (k+1)n0−1 where
⌊

n
n0

⌋
= k+

⌊
1− 1

n0

⌋
= k. Hence, n1,max(k) =

⌊ (k+1)n0−1
k

⌋
= n0+

⌊
n0−1
k

⌋
,

3



and as k ≥ 2, the maximum is at k = 2, maxn1 = maxk n1,max(k) = n0 +
⌊
n0−1
2

⌋
=

⌊
3n0−1

2

⌋
.

Taken together, as nj = n1 + 1 is possible, we have

n0 ≤n1 ≤
⌊3n0 − 1

2

⌋
n0 ≤nj ≤

⌊3n0 + 1

2

⌋
, j ≥ 2. (17)

Note that indeed,
⌊
3n0+1

2

⌋
is the length of the auxiliary vector subndex in the Fortran code.

References

Pison, G., S. Van Aelst, and G. Willems (2002). Small sample corrections for lts and mcd.
Metrika 55 (1-2), 111–123.

Rousseeuw, P. J. and K. van Driessen (1999, August). A fast algorithm for the minimum
covariance determinant estimator. Technometrics 41 (3), 212–223.

4


	Introduction
	MCD and ``the Fast'' MCD (= fastmcd) Algorithm
	Fast MCD Algorithm – General notation

