Package 'tramnet'

Title: Penalized Transformation Models
Description: Partially penalized versions of specific transformation models implemented in package 'mlt'. Available models include a fully parametric version of the Cox model, other parametric survival models (Weibull, etc.), models for binary and ordered categorical variables, normal and transformed-normal (Box-Cox type) linear models, and continuous outcome logistic regression. Hyperparameter tuning is facilitated through model-based optimization functionalities from package 'mlr3MBO'. The methodology is described in Kook et al. (2021) <doi:10.32614/RJ-2021-054>. Transformation models and model-based optimization are described in Hothorn et al. (2019) <doi:10.1111/sjos.12291> and Bischl et al. (2016) <arxiv:1703.03373>, respectively.
Authors: Lucas Kook [cre, aut] , Balint Tamasi [ctb], Sandra Siegfried [ctb], Samuel Pawel [ctb], Torsten Hothorn [ctb]
Maintainer: Lucas Kook <[email protected]>
License: GPL-2
Version: 0.1-0
Built: 2025-01-10 19:19:45 UTC
Source: https://github.com/r-forge/ctm

Help Index


Cross-validating tramnet models

Description

k-fold cross validation for "tramnet" objects over a grid of the tuning parameters based on out-of-sample log-likelihood.

Usage

cvl_tramnet(
  object,
  fold = 2,
  lambda = 0,
  alpha = 0,
  folds = NULL,
  fit_opt = FALSE
)

Arguments

object

Object of class "tramnet".

fold

Number of folds for cross validation.

lambda

Values for lambda to iterate over.

alpha

Values for alpha to iterate over.

folds

Manually specify folds for comparison with other methods.

fit_opt

If TRUE, returns the full model evaluated at optimal hyper-parameters

Value

Returns out-of-sample logLik and coefficient estimates for corresponding folds and values of the hyper-parameters as an object of class "cvl_tramnet"

Examples

set.seed(241068)
if (require("survival") & require("TH.data")) {
  data("GBSG2", package = "TH.data")
  X <- 1 * matrix(GBSG2$horTh == "yes", ncol = 1)
  colnames(X) <- "horThyes"
  GBSG2$surv <- with(GBSG2, Surv(time, cens))
  m <- Coxph(surv ~ 1, data = GBSG2, log_first = TRUE)
  mt <- tramnet(model = m, x = X, lambda = 0, alpha = 0)
  mc <- Coxph(surv ~ horTh, data = GBSG2)
  cvl_tramnet(mt, fold = 2, lambda = c(0, 1), alpha = c(0, 1))
}

Regularized transformation model classes

Description

Regularized transformation model classes

Usage

LmNET(
  formula,
  data,
  lambda = 0,
  alpha = 1,
  tram_args = NULL,
  constraints = NULL,
  ...
)

BoxCoxNET(
  formula,
  data,
  lambda = 0,
  alpha = 1,
  tram_args = NULL,
  constraints = NULL,
  ...
)

ColrNET(
  formula,
  data,
  lambda = 0,
  alpha = 1,
  tram_args = NULL,
  constraints = NULL,
  ...
)

SurvregNET(
  formula,
  data,
  lambda = 0,
  alpha = 1,
  tram_args = NULL,
  constraints = NULL,
  ...
)

CoxphNET(
  formula,
  data,
  lambda = 0,
  alpha = 1,
  tram_args = NULL,
  constraints = NULL,
  ...
)

LehmannNET(
  formula,
  data,
  lambda = 0,
  alpha = 1,
  tram_args = NULL,
  constraints = NULL,
  ...
)

PolrNET(
  formula,
  data,
  lambda = 0,
  alpha = 1,
  tram_args = NULL,
  constraints = NULL,
  ...
)

Arguments

formula

Formula specifying the regression. See tram.

data

Object of class "data.frame" containing the variables referred to in the formula model.

lambda

A positive penalty parameter for the whole penalty function.

alpha

A mixing parameter (between zero and one) defining the fraction between lasso and ridge penalties, where alpha = 1 corresponds to a pure lasso and alpha = 0 to a pure ridge penalty.

tram_args

Additional arguments (besides model and data) passed to tram_fun.

constraints

An optional list containing a matrix of linear inequality contraints on the regression coefficients and a vector specifying the rhs of the inequality.

...

Additional arguments passed to solve.

Value

Object of class "tramnet".


S3 methods for class "tramnet"

Description

S3 methods for class "tramnet"

Usage

## S3 method for class 'tramnet'
logLik(
  object,
  parm = coef(object, tol = 0, with_baseline = TRUE),
  w = NULL,
  newdata = NULL,
  add_penalty = FALSE,
  ...
)

## S3 method for class 'tramnet'
coef(object, with_baseline = FALSE, tol = 1e-06, ...)

## S3 method for class 'tramnet_Lm'
coef(object, with_baseline = FALSE, tol = 1e-06, as.lm = FALSE, ...)

## S3 method for class 'tramnet'
predict(object, newdata = NULL, ...)

## S3 method for class 'tramnet'
simulate(object, nsim = 1, seed = NULL, newdata = NULL, bysim = TRUE, ...)

## S3 method for class 'tramnet'
estfun(
  x,
  parm = coef(x, with_baseline = TRUE, tol = 0),
  w = NULL,
  newdata = NULL,
  ...
)

## S3 method for class 'tramnet'
residuals(
  object,
  parm = coef(object, tol = 0, with_baseline = TRUE),
  w = NULL,
  newdata = NULL,
  ...
)

## S3 method for class 'tramnet'
print(x, ...)

## S3 method for class 'tramnet'
summary(object, ...)

## S3 method for class 'summary.tramnet'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

Arguments

object

Object of class "tramnet".

parm

Parameters to evaluate the log likelihood at.

w

Optional vector of sample weights.

newdata

Data to evaluate the log likelihood at.

add_penalty

Whethr or not to return the penalized log-likelihood (default add_penalty = FALSE).

...

Ignored.

with_baseline

If TRUE, also prints coefficients for the baseline transformation.

tol

Tolerance when an estimate should be considered 0 and not returned (default tol = 1e-6).

as.lm

See coef.mlt

nsim

Number of simulations, see simulate.mlt.

seed

Random seed, see simulate.mlt.

bysim

Return by simulation, see simulate.mlt.

x

Object of class "tramnet".

digits

Number of digits to print.

Value

Returns (potentially weighted w) log-likelihood based on object evaluated at parameters parm and data newdata

Numeric vector containing the model shift parameter estimates

Numeric vector containing the linear model shift parameter estimates

Vector of predictions based on object evaluated at each row of newdata

Returns a list of data.frames containing parametric bootstrap samples of the response based on the data supplied in newdata

Matrix of score contributions w.r.t. model parameters evaluated at parm

Returns a numeric vector of residuals for each row in newdata

Object of class "summary.tramnet".

Object of class "summary.tramnet".

Invisible x.


Model based optimization for regularized transformation models

Description

Uses model based optimization to find the optimal tuning parameter(s) in a regularized transformation model based on cross-validated log-likelihoods. Here the 'tramnet' package makes use of the 'mlr3mbo' interface for Bayesian Optimization in machine learning problems to maximize the cv-logLik as a black-box function of the tuning parameters alpha and lambda.

Usage

mbo_tramnet(
  object,
  fold = 2,
  n_iter = 5,
  minlambda = 0,
  maxlambda = 16,
  minalpha = 0,
  maxalpha = 1,
  folds = NULL,
  noisy = FALSE,
  obj_type = c("lasso", "ridge", "elnet"),
  verbose = TRUE,
  ...
)

Arguments

object

Object of class "tramnet".

fold

Number of cross validation folds.

n_iter

Maximum number of iterations in model-based optimization routine.

minlambda

Minimum value for lambda (default minlambda = 0).

maxlambda

Maximum value for lambda (default maxlambda = 16).

minalpha

Minimum value for alpha (default minalpha = 0).

maxalpha

Maximum value for alpha (default maxalpha = 1).

folds

Self specified folds for cross validation (mainly for reproducibility and comparability purposes).

noisy

indicates whether folds for k-fold cross-validation should be random for each iteration, leading to a noisy objective function (default noisy = FALSE).

obj_type

Objective type, one of "lasso", "ridge" or "elnet".

verbose

Toggle for a verbose output (default verbose = TRUE)

...

Currently ignored.

Value

See Optimizer's optimize function which returns a data.table::data.table.


Plot regularization paths

Description

Plot regularization paths and optionally log-likelihood trajectories of objects of class "prof_alpha" and "prof_lambda". Coefficient names are automatically added to the plot.

Usage

plot_path(object, plot_logLik = FALSE, ...)

Arguments

object

Object of class "prof_alpha" or "prof_lambda".

plot_logLik

Whether logLik trajectory should be plotted (default plot_logLik = FALSE).

...

Additional arguments to plot

Value

None.

Examples

if (require("survival") & require("penalized")) {
  data("nki70", package = "penalized")
  nki70$resp <- with(nki70, Surv(time, event))
  x <- scale(model.matrix( ~ 0 + DIAPH3 + NUSAP1 + TSPYL5 + C20orf46, data = nki70))
  y <- Coxph(resp ~ 1, data = nki70, order = 10, log_first = TRUE)
  fit1 <- tramnet(y, x, lambda = 0, alpha = 1)
  pfl <- prof_lambda(fit1)
  plot_path(pfl)
  fit2 <- tramnet(y, x, lambda = 1, alpha = 1)
  pfa <- prof_alpha(fit2)
  plot_path(pfa)
}

Plot "tramnet" objects

Description

Plot "tramnet" objects

Usage

## S3 method for class 'tramnet'
plot(
  x,
  newdata = NULL,
  type = c("distribution", "survivor", "density", "logdensity", "hazard", "loghazard",
    "cumhazard", "quantile", "trafo"),
  q = NULL,
  prob = 1:(K - 1)/K,
  K = 50,
  col = rgb(0.1, 0.1, 0.1, 0.1),
  lty = 1,
  add = FALSE,
  ...
)

Arguments

x

Object of class "tramnet".

newdata

See plot.ctm.

type

See plot.ctm.

q

See plot.ctm.

prob

See plot.ctm.

K

See plot.ctm.

col

See plot.ctm.

lty

See plot.ctm.

add

See plot.ctm.

...

Additional arguments passed to plot.ctm.


Profiling tuning parameters

Description

Computes the regularization path of all coefficients for a single tuning, alpha, parameter over a sequence of values.

Usage

prof_alpha(model, min_alpha = 0, max_alpha = 1, nprof = 5, as.lm = FALSE)

Arguments

model

Object of class "tramnet".

min_alpha

Minimal value of alpha (default min_alpha = 0).

max_alpha

Maximal value of alpha (default max_alpha = 1).

nprof

Number of profiling steps (default nprof = 5).

as.lm

Return scaled coefficients for class "tramnet_Lm".

Value

Object of class "prof_alpha" which contains the regularization path of all coefficients and the log-likelihood over the mixing parameter alpha

Examples

if (require("survival") & require("penalized")) {
  data("nki70", package = "penalized")
  nki70$resp <- with(nki70, Surv(time, event))
  x <- scale(model.matrix( ~ 0 + DIAPH3 + NUSAP1 + TSPYL5 + C20orf46, data = nki70))
  y <- Coxph(resp ~ 1, data = nki70, order = 10, log_first = TRUE)
  fit <- tramnet(y, x, lambda = 1, alpha = 1)
  pfa <- prof_alpha(fit)
  plot_path(pfa)
}

Profiling tuning parameters

Description

Computes the regularization path of all coefficients for a single tuning parameter, lambda, over a sequence of values.

Usage

prof_lambda(model, min_lambda = 0, max_lambda = 15, nprof = 5, as.lm = FALSE)

Arguments

model

Object of class "tramnet".

min_lambda

Minimal value of lambda (default min_lambda = 0).

max_lambda

Maximal value of lambda (default max_lambda = 15).

nprof

Number of profiling steps (default nprof = 5).

as.lm

Return scaled coefficients for class "tramnet_Lm".

Value

Object of class "prof_lambda" which contains the regularization path of all coefficients and the log-likelihood over the penalty parameter lambda

Examples

if (require("survival") & require("penalized")) {
  data("nki70", package = "penalized")
  nki70$resp <- with(nki70, Surv(time, event))
  x <- scale(model.matrix( ~ 0 + DIAPH3 + NUSAP1 + TSPYL5 + C20orf46, data = nki70))
  y <- Coxph(resp ~ 1, data = nki70, order = 10, log_first = TRUE)
  fit <- tramnet(y, x, lambda = 0, alpha = 1)
  pfl <- prof_lambda(fit)
  plot_path(pfl)
}

Regularized transformation models

Description

Regularized transformation models

Usage

tramnet(model, ...)

## S3 method for class 'formula'
tramnet(
  model,
  data,
  lambda,
  alpha,
  tram_fun,
  tram_args = NULL,
  constraints = NULL,
  groups = NULL,
  ...
)

## S3 method for class 'tram'
tramnet(model, x, lambda, alpha, constraints = NULL, groups = NULL, ...)

Arguments

model

Either a "formula" specifying the regression or an object of class "tram".

...

Additional arguments passed to solve.

data

Object of class "data.frame" containing the variables referred to in the formula model.

lambda

A positive penalty parameter for the whole penalty function.

alpha

A mixing parameter (between zero and one) defining the fraction between lasso and ridge penalties, where alpha = 1 corresponds to a pure lasso and alpha = 0 to a pure ridge penalty.

tram_fun

Character referring to an implementation in package 'tram'. See BoxCoxNET for the implemented models.

tram_args

Additional arguments (besides model and data) passed to tram_fun.

constraints

An optional list containing a matrix of linear inequality contraints on the regression coefficients and a vector specifying the rhs of the inequality.

groups

For group lasso penalties, groups can be supplied as a vector of consecutive integers of the same length as columns in x.

x

A numeric matrix, where each row corresponds to the same row in the data argument used to fit model.

Details

Partially penalized and constrained transformation models, including Cox models and continuous outcome logistic regression. The methodology is described in the tramnet vignette accompanying this package.

Value

An object of class "tramnet" with coef, logLik, summary, simulate, residuals and plot methods

References

Lucas Kook and Torsten Hothorn, The R Journal (2021) 13:1, pages 581-594. doi:10.32614/RJ-2021-054

Examples

if (require("penalized") & require("survival")) {
  ## --- Comparison with penalized
  data("nki70", package = "penalized")
  nki70$resp <- with(nki70, Surv(time, event))
  x <- scale(model.matrix( ~ 0 + DIAPH3 + NUSAP1 + TSPYL5 + C20orf46,
                          data = nki70))
  fit <- penalized(response = resp, penalized = x, lambda1 = 1, lambda2 = 0,
                   standardize = FALSE, data = nki70)
  y <- Coxph(resp ~ 1, data = nki70, order = 10, log_first = TRUE)
  fit2 <- tramnet(y, x, lambda = 1, alpha = 1) ## L1 only
  coef(fit)
  coef(fit2)
}