
Package: zipfR (via r-universe)
August 28, 2024

Type Package

Title Statistical Models for Word Frequency Distributions

Version 0.6-71

Depends R (>= 3.0.0)

Imports methods, utils, stats, graphics, grDevices, parallel

Date 2020-11-11

Author Stefan Evert <stefan.evert@fau.de>, Marco Baroni

<marco.baroni@unitn.it>

Maintainer Stefan Evert <stefan.evert@fau.de>

Description Statistical models and utilities for the analysis of word
frequency distributions. The utilities include functions for
loading, manipulating and visualizing word frequency data and
vocabulary growth curves. The package also implements several
statistical models for the distribution of word frequencies in
a population. (The name of this package derives from the most
famous word frequency distribution, Zipf's law.)

License GPL-3

URL http://zipfR.R-Forge.R-project.org/

LazyData yes

Repository https://r-forge.r-universe.dev

RemoteUrl https://github.com/r-forge/zipfr

RemoteRef HEAD

RemoteSha 39fc8867f780e6438c6573293217aa34b391781f

Contents
zipfR-package . 3
Baayen2001 . 5
beta_gamma . 6
bootstrap.confint . 9

1

http://zipfR.R-Forge.R-project.org/

2 Contents

Brown . 11
BrownSubsets . 12
confint.lnre . 13
Dickens . 14
estimate.model . 15
EV-EVm . 17
EV-EVm.spc . 18
EvertLuedeling2001 . 19
ItaPref . 20
LNRE . 21
lnre . 23
lnre.bootstrap . 29
lnre.details . 33
lnre.fzm . 36
lnre.gigp . 38
lnre.goodness.of.fit . 40
lnre.productivity.measures . 42
lnre.spc . 44
lnre.vgc . 46
lnre.zm . 48
LNRE_posterior . 49
merge.tfl . 51
N-V-Vm . 51
N-V-Vm.spc . 53
N-V-Vm.tfl . 55
N-V-Vm.vgc . 56
plot.lnre . 57
plot.spc . 59
plot.tfl . 62
plot.vgc . 64
print.lnre . 68
print.spc . 69
print.tfl . 70
print.vgc . 72
productivity.measures . 73
read.multiple.objects . 76
read.spc . 78
read.tfl . 80
read.vgc . 82
sample.spc . 83
sample.tfl . 84
spc . 85
spc.interp . 88
spc.vector . 89
spc2tfl . 91
tfl . 92
Tiger . 94
vec2xxx . 95

zipfR-package 3

vgc . 97
vgc.interp . 100
VV-Vm . 101
zipfR.par . 103
zipfR.plotutils . 105

Index 108

zipfR-package zipfR: lexical statistics in R

Description

The zipfR package performs Large-Number-of-Rare-Events (LNRE) modeling of (linguistic) type
frequency distributions (Baayen 2001) and provides utilities to run various forms of lexical statistics
analysis in R.

Details

The best way to get started with zipfR is to read the tutorial, which you can find as a package
vignettte via the HTML documentation; you can also download it from https://zipfr.r-forge.
r-project.org/#start

zipfR is released under the GNU General Public License (http://www.gnu.org/copyleft/gpl.
html)

Author(s)

Stefan Evert <<stefan.evert@fau.de>> and Marco Baroni <<marco.baroni@unitn.it>>

Maintainer: Stefan Evert <<stefan.evert@fau.de>>

References

zipfR Website: https://zipfR.r-forge.r-project.org/

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Baroni, Marco (2008). Distributions in text. In: A. Lüdeling and M. Kytö (eds.), Corpus Linguis-
tics. An International Handbook, article 37. Mouton de Gruyter, Berlin.

Evert, Stefan (2004). A simple LNRE model for random character sequences. Proceedings of JADT
2004, 411-422.

Evert, Stefan (2004b). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, IMS, University of Stuttgart. URN urn:nbn:de:bsz:93-opus-23714 http://dx.doi.org/
10.18419/opus-2556

Evert, Stefan and Baroni, Marco (2006). Testing the extrapolation quality of word frequency mod-
els. Proceedings of Corpus Linguistics 2005.

Evert, Stefan and Baroni, Marco (2006). The zipfR library: Words and other rare events in R. useR!
2006: The second R user conference.

https://zipfr.r-forge.r-project.org/#start
https://zipfr.r-forge.r-project.org/#start
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
https://zipfR.r-forge.r-project.org/
http://dx.doi.org/10.18419/opus-2556
http://dx.doi.org/10.18419/opus-2556

4 zipfR-package

See Also

The zipfR tutorial: available as a package vignette and online from https://zipfr.r-forge.
r-project.org/#start.

Some good entry points into the zipfR documentation are be spc, vgc, tfl, read.spc, read.tfl,
read.vgc, lnre, lnre.vgc, plot.spc, plot.vgc

Harald Baayen’s LEXSTATS tools, which implement a wider range of LNRE models: https:
//www.springer.com/de/book/9780792370178

Stefan Evert’s UCS tools for collocation analysis, which include functions that have been integrated
into zipfR: http://www.collocations.de/software.html

Examples

load Oliver Twist and Great Expectations frequency spectra
data(DickensOliverTwist.spc)
data(DickensGreatExpectations.spc)

check sample size and vocabulary and hapax counts
N(DickensOliverTwist.spc)
V(DickensOliverTwist.spc)
Vm(DickensOliverTwist.spc,1)
N(DickensGreatExpectations.spc)
V(DickensGreatExpectations.spc)
Vm(DickensGreatExpectations.spc,1)

compute binomially interpolated growth curves
ot.vgc <- vgc.interp(DickensOliverTwist.spc,(1:100)*1570)
ge.vgc <- vgc.interp(DickensGreatExpectations.spc,(1:100)*1865)

plot them
plot(ot.vgc,ge.vgc,legend=c("Oliver Twist","Great Expectations"))

load Dickens' works frequency spectrum
data(Dickens.spc)

compute Zipf-Mandelbrot model from Dickens data
and look at model summary
zm <- lnre("zm",Dickens.spc)
zm

plot observed and expected spectrum
zm.spc <- lnre.spc(zm,N(Dickens.spc))
plot(Dickens.spc,zm.spc)

obtain expected V and V1 values at arbitrary sample sizes
EV(zm,1e+8)
EVm(zm,1,1e+8)

generate expected V and V1 growth curves up to a sample size
of 10 million tokens and plot them, with vertical line at
estimation size

https://zipfr.r-forge.r-project.org/#start
https://zipfr.r-forge.r-project.org/#start
https://www.springer.com/de/book/9780792370178
https://www.springer.com/de/book/9780792370178
http://www.collocations.de/software.html

Baayen2001 5

ext.vgc <- lnre.vgc(zm,(1:100)*1e+5,m.max=1)
plot(ext.vgc,N0=N(zm),add.m=1)

Baayen2001 Frequency Spectra from Baayen (2001) (zipfR)

Description

Frequency spectra included as examples in Baayen (2001).

Usage

Baayen2001

Format

A list of 23 frequency spectra, i.e. objects of class spc. List elements are named according to the
original files, but without the extension .spc. See Baayen (2001, pp. 249-277) for details.

In particular, the following spectra are included:

alice: Lewis Carroll, Alice’s Adventures in Wonderland

through: Lewis Carroll, Through the Looking-Glass and What Alice Found There

war: H. G. Wells, War of the Worlds

hound: Arthur Conan-Doyle, Hound of the Baskervilles

havelaar: E. Douwes Dekker, Max Havelaar

turkish: An archeology text (Turkish)

estonian: A. H. Tammsaare, Truth and Justice (Estonian)

bnc: The context-governed subcorpus of the British National Corpus (BNC)

in1: Sample of 1 million tokens from The Independent

in8: Sample of 8 million tokens from The Independent

heid: Nouns in -heid in the CELEX database (Dutch)

iteit: Nouns in -iteit in the CELEX database (Dutch)

ster: Nouns in -ster in the CELEX database (Dutch)

in: Nouns in -in in the CELEX database (Dutch)

nouns: Simplex nouns in the CELEX database (Dutch)

sing: Singular nouns in M. Innes, The Bloody Wood

plur: Plural nouns in M. Innes, The Bloody Wood

nessw: Nouns in -ness in the written subcorpus of the BNC

nesscg: Nouns in -ness in the context-governed subcorpus of the BNC

6 beta_gamma

nessd: Nouns in -ness in the demographic subcorpus of the BNC

filarial: Counts of filarial worms in mites on rats

cv: Context-vowel patterns in the TIMIT speech database

pairs: Word pairs in E. Douwes Dekker, Max Havelaar

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Examples

Baayen2001$alice

beta_gamma Incomplete Beta and Gamma Functions (zipfR)

Description

The functions documented here compute incomplete and regularized Beta and Gamma functions as
well as their logarithms and the corresponding inverse functions. These functions will be of interest
to developers, not users of the toolkit.

Usage

Cgamma(a, log=!missing(base), base=exp(1))
Igamma(a, x, lower=TRUE, log=!missing(base), base=exp(1))
Igamma.inv(a, y, lower=TRUE, log=!missing(base), base=exp(1))
Rgamma(a, x, lower=TRUE, log=!missing(base), base=exp(1))
Rgamma.inv(a, y, lower=TRUE, log=!missing(base), base=exp(1))

Cbeta(a, b, log=!missing(base), base=exp(1))
Ibeta(x, a, b, lower=TRUE, log=!missing(base), base=exp(1))
Ibeta.inv(y, a, b, lower=TRUE, log=!missing(base), base=exp(1))
Rbeta(x, a, b, lower=TRUE, log=!missing(base), base=exp(1))
Rbeta.inv(y, a, b, lower=TRUE, log=!missing(base), base=exp(1))

Arguments

a, b non-negative numeric vectors, the parameters of the Gamma and Beta functions
(b applies only to Beta functions)

x a non-negative numeric vector, the point at which the incomplete or regularized
Gamma or Beta function is evaluated (for the Beta functions, x must be in the
range [0, 1]

y a non-negative numeric vector, the values of the Gamma or Beta function on
linear or logarithmic scale

beta_gamma 7

lower whether to compute the lower (TRUE) or upper (FALSE) incomplete or regularized
Gamma or Beta function

log if TRUE, return values of the Gamma and Beta functions – as well as the y argu-
ment of the inverse functions – are on logarithmic scale

base a positive number, specifying the base of the logarithmic scale for values of
the Gamma and Beta functions (default: natural logarithm). Setting the base
parameter implies log=TRUE.

Value

Cgamma returns the (complete) Gamma function evaluated at a, Γ(a). Igamma returns the (lower or
upper) incomplete Gamma function with parameter a evaluated at point x, γ(a, x) (lower=TRUE)
or Γ(a, x) (lower=FALSE). Rgamma returns the corresponding regularized Gamma function, P (a, x)
(lower=TRUE) or Q(a, x) (lower=FALSE). If log=TRUE, the returned values are on logarithmic scale
as specified by the base parameter.

Igamma.inv and Rgamma.inv compute the inverse of the incomplete and regularized Gamma func-
tions with respect to the parameter x. I.e., Igamma.inv(a,y) returns the point x at which the (lower
or upper) incomplete Gamma function with parameter a evaluates to y, and mutatis mutandis for
Rgamma.inv(a,y). If log=TRUE, the parameter y is taken to be on a logarithmic scale as specified
by base.

Cbeta returns the (complete) Beta function with arguments a and b, B(a, b). Ibeta returns the
(lower or upper) incomplete Beta function with parameters a and b, evaluated at point x, B(x; a, b)
(lower=TRUE) and B∗(x; a, b) (lower=FALSE). Note that in contrast to the Gamma functions, capital
B refers to the lower incomplete Beta function, and there is no standardized notation for the upper
incomplete Beta function, so B∗ is used here as an ad-hoc symbol. Rbeta returns the corresponding
regularized Beta function, I(x; a, b) (lower=TRUE) or I∗(x; a, b) (lower=FALSE). If log=TRUE, the
returned values are on logarithmic scale as specified by the base parameter.

Ibeta.inv and Rbeta.inv compute the inverse of the incomplete and regularized Beta functions
with respect to the parameter x. I.e., Ibeta.inv(y,a,b) returns the point x at which the (lower or
upper) incomplete Beta function with parameters a and b evaluates to y, and mutatis mutandis for
Rbeta.inv(y,a,b). If log=TRUE, the parameter y is taken to be on a logarithmic scale as specified
by base.

All Gamma and Beta functions can be vectorized in the arguments x, y, a and b, with the usual R
value recycling rules in the case of multiple vectorizations.

Mathematical Details

The upper incomplete Gamma function is defined by the Gamma integral

Γ(a, x) =

∫ ∞

x

ta−1e−t dt

The lower incomplete Gamma function is defined by the complementary Gamma integral

γ(a, x) =

∫ x

0

ta−1e−t dt

8 beta_gamma

The complete Gamma function calculates the full Gamma integral, i.e. Γ(a) = γ(a, 0). The
regularized Gamma functions scale the corresponding incomplete Gamma functions to the interval
[0, 1], by dividing through Γ(a). Thus, the lower regularized Gamma function is given by

P (a, x) =
γ(a, x)

Γ(a)

and the upper regularized Gamma function is given by

Q(a, x) =
Γ(a, x)

Γ(a)

The lower incomplete Beta function is defined by the Beta integral

B(x; a, b) =

∫ x

0

ta−1(1− t)b−1 dt

and the upper incomplete Beta function is defined by the complementary integral

B∗(x; a, b) =

∫ 1

x

ta−1(1− t)b−1 dt

The complete Beta function calculates the full Beta integral, i.e. B(a, b) = B(1; a, b) = B∗(0; a, b).
The regularized Beta function scales the incomplete Beta function to the interval [0, 1], by dividing
through B(a, b). The lower regularized Beta function is thus given by

I(x; a, b) =
B(x; a, b)

B(a, b)

and the upper regularized Beta function is given by

I∗(x; a, b) =
B∗(x; a, b)

B(a, b)

See Also

gamma and lgamma, which are fully equivalent to Cgamma. beta and lbeta, which are fully equiva-
lent to Cbeta

The implementations of the incomplete and regularized Gamma functions are based on the Gamma
distribution (see pgamma), and those of the Beta functions are based on the Beta distribution (see
pbeta).

Examples

Cgamma(5 + 1) # = factorial(5)

P(X >= k) for Poisson distribution with mean alpha
alpha <- 5
k <- 10
Rgamma(k, alpha) # == ppois(k-1, alpha, lower=FALSE)

bootstrap.confint 9

n <- 49
k <- 6
1 / ((n+1) * Cbeta(n-k+1, k+1)) # == choose(n, k)

P(X >= k) for binomial distribution with parameters n and p
n <- 100
p <- .1
k <- 15
Rbeta(p, k, n-k+1) # == pbinom(k-1, n, p, lower=FALSE)

bootstrap.confint Estimate Confidence Intervals from Parametric Bootstrap Simulations
(zipfR)

Description

Estimate confidence intervals for empirical distributions obtained by parametric bootstrapping. The
input data must contain a sufficient number of bootstrap replicates for the desired confidence level.

Usage

bootstrap.confint(x, level=0.95,
method=c("normal", "mad", "empirical"),
data.frame=FALSE)

Arguments

x a numeric matrix, with rows corresponding to bootstrap replicates and columns
corresponding to different statistics or coefficients. The matrix should have col-
umn labels, which will be preserved in the result. A data frame with numeric
columns is automatically converted to a matrix.

level desired confidence level (two-sided)

method type of confidence interval to be estimated (see "Details" below)

data.frame if TRUE, the return value is converted to a data frame

Details

This function can compute three different types of confidence intervals, selected by the method
parameter. In addition, corresponding estimates of central tendency (center) and spread (spread)
of the distribution are returned.

normal: Wald-type confidence interval based on normal approximation of the bootstrapped distri-
bution (default). Central tendency is given by the sample mean, spread by standard deviation.
This method is unreliable if the bootstrapping produces outlier results and can report confi-
dence limits outside the feasible range of a parameter or coefficient (e.g. a negative population

10 bootstrap.confint

diversity S). For this reason, it is strongly recommended to use a more robust type of confi-
dence interval.

mad: Robust asymmetric confidence intervals around the median, using separate estimates for left
and right median absolute deviation (MAD) as robust approximations of standard deviation.
Central tendency is given by the median, and spread by the average of left and right standard
deviation (estimated via MAD).
This method is applicable in most situations and requires fewer bootstrap replicates than em-
pirical confidence intervals. Note that the values are different from those returned by mad
because of the separate left and right estimators.

empirical: The empirical inter-quantile range, e.g. 2.5% to 97.5% for default conf.level=.95.
Note that the actual range might be slightly different depending on the number of bootstrap
replicates available. Central tendency is given by the median, and spread by the inter-quartile
range (IQR) re-scaled to be comparable to standard deviation (cf. IQR).
This is the only method guaranteed to stay within feasible range, but requires a large number
of bootstrap replicates for reliable confidence intervals (e.g. at least 120 replicates for the
default 95% confidence level).

Value

A numeric matrix with the same number of columns and column labels as x, and four rows:

1. the lower boundary of the confidence interval (labelled with the corresponding quantile, e.g.
2.5%)

2. the upper boundary of the confidence interval (labelled with the corresponding quantile, e.g.
97.5%)

3. an estimate of central tendency (labelled center)

4. an estimate of spread on a scale comparable to standard deviaton (labelled spread)

If data.frame=TRUE, the matrix is converted to a data frame for convenient printing and access in
interactive sessions.

See Also

bootstrap.confint is usually applied to the output of lnre.bootstrap with simplify=TRUE. In
particual, confint.lnre uses this function to obtain bootstrapped confidence intervals for LNRE
model parameters and other coefficients; lnre.productivity.measures (with bootstrap=TRUE)
uses it to determine approximate sampling distributions of productivity measures for a LNRE pop-
ulation.

Examples

M <- cbind(alpha=rnorm(200, 10, 5), # Gaussian distribution around mean = 10
beta=rlnorm(200, log(10), 1)) # log-normal distribution around median = 10

summary(M) # overview of the distribution

bootstrap.confint(M, method="normal") # normal approximation
bootstrap.confint(M, method="mad") # robust asymmetric MAD estimates

Brown 11

bootstrap.confint(M, method="empirical") # empirical confidence interval

bootstrap.confint(M, method="normal", data.frame=TRUE) # as data frame

Brown Brown Corpus Frequency Data (zipfR)

Description

Brown.tfl, Brown.spc and Brown.emp.vgc are zipfR objects of classes tfl, spc and vgc, respec-
tively.

These data were extracted from the Brown corpus (see Kucera and Francis 1967).

Details

Brown.emp.vgc is the empirical vocabulary growth curve, reflecting the V and V(1) development
in the non-randomized corpus.

We removed numbers and other forms of non-linguistic material before collecting word counts from
the Brown.

References

Kucera, H. and Francis, W.N. (1967). Computational analysis of present-day American English.
Brown University Press, Providence.

See Also

The datasets documented in BrownSubsets pertain to various subsets of the Brown (e.g., informa-
tive prose, adjectives only, etc.)

Examples

data(Brown.tfl)
summary(Brown.tfl)

data(Brown.spc)
summary(Brown.spc)

data(Brown.emp.vgc)
summary(Brown.emp.vgc)

12 BrownSubsets

BrownSubsets Brown Corpus Subset Frequency Data (zipfR)

Description

Objects of classes spc and vgc that contain frequency data for various subsets of words from the
Brown corpus (see Kucera and Francis 1967).

Details

BrownAdj.spc, BrownNoun.spc and BrownVer.spc are frequency spectra of all the Brown corpus
words tagged as adjectives, nouns and verbs, respectively. BrownAdj.emp.vgc, BrownNoun.emp.vgc
and BrownVer.emp.vgc are the corresponding observed vocabulary growth curves (tracking the de-
velopment of V and V(1), like all the files with suffix .emp.vgc below).

BrownImag.spc and BrownInform.spc are frequency spectra of the Brown corpus words subdi-
vided into the two main stylistic partitions of the corpus, i.e., imaginative and informative prose,
respectively. BrownImag.emp.vgc and BrownInform.emp.vgc are the corresponding observed vo-
cabulary growth curves.

Brown100k.spc is the spectrum of the first 100,000 tokens in the Brown (useful, e.g., for extrapo-
lation experiments in which we want to estimate a lnre model on a subset of the data available).
The corresponding observed growth curve can be easily obtained from the one for the whole Brown
(Brown.emp.vgc).

Notice that we removed numbers and other forms of non-linguistic material before collecting any
data from the Brown.

References

Kucera, H. and Francis, W.N. (1967). Computational analysis of present-day American English.
Brown University Press, Providence.

See Also

The data described in Brown pertain to the Brown as a whole.

Examples

data(BrownAdj.spc)
summary(BrownAdj.spc)

data(BrownAdj.emp.vgc)
summary(BrownAdj.emp.vgc)

data(BrownInform.spc)
summary(BrownInform.spc)

data(BrownInform.emp.vgc)
summary(BrownInform.emp.vgc)

confint.lnre 13

data(Brown100k.spc)
summary(Brown100k.spc)

confint.lnre Confidence Intervals for LNRE Model Parameters (zipfR)

Description

Compute bootstrapped confidence intervals for LNRE model parameters. The supplied model must
contain a sufficient number of bootstrapping replicates.

Usage

S3 method for class 'lnre'
confint(object, parm, level=0.95, method=c("mad", "normal", "empirical"),

plot=FALSE, breaks="Sturges", ...)

Arguments

object an LNRE model (i.e. an object belonging to a subclass of lnre) with bootstrap-
ping data

parm model parameter(s) for which confidence intervals are desired. If unspecified,
all parameters as well as population diversity S and goodness-of-fit statistic X2

are shown.

level desired confidence level (two-sided)

method type of confidence interval to be estimated (see bootstrap.confint for de-
tails). Note that this parameter defaults to the asymmetric and more robust mad
method here.

plot if TRUE, plot bootstrapping histogram of the respective model parameter with
density estimate and confidence interval

breaks breakpoints for histogram shown with plot=TRUE (see hist for details)

... all other arguments are ignored

Value

A data frame with one numeric column for each selected model parameter (labelled with the pa-
rameter name) and four rows:

1. the lower boundary of the confidence interval (labelled with the corresponding quantile, e.g.
2.5%)

2. the upper boundary of the confidence interval (labelled with the corresponding quantile, e.g.
97.5%)

3. an estimate of central tendency (labelled center)

4. an estimate of spread on a scale comparable to standard deviaton (labelled spread)

14 Dickens

See Also

lnre for estimating LNRE models with bootstrap replicates, lnre.bootstrap for the underlying
parameteric bootstrapping code, and bootstrap.confint for the different methods of estimating
confidence intervals.

Examples

model <- lnre("fzm", spc=BrownAdj.spc, bootstrap=20)
confint(model, "alpha") # Zipf slope
confint(model, "S") # population diversity
confint(model, "S", method="normal") # Gaussian approx works well in this case

confint(model) # overview
confint(model, "alpha", plot=TRUE) # visualize bootstrap distribution

Dickens Dickens’ Frequency Data (zipfR)

Description

Objects of classes spc and vgc that contain frequency data for a collection of Dickens’s works from
Project Gutenberg, and for 3 novels (Oliver Twist, Great Expectations and Our Mutual Friends).

Details

Dickens.spc has a frequency spectrum derived from a collection of Dickens’ works downloaded
from the Gutenberg archive (A Christmas Carol, David Copperfield, Dombey and Son, Great Ex-
pectations, Hard Times, Master Humphrey’s Clock, Nicholas Nickleby, Oliver Twist, Our Mutual
Friend, Sketches by BOZ, A Tale of Two Cities, The Old Curiosity Shop, The Pickwick Papers,
Three Ghost Stories). Dickens.emp.vgc contains the corresponding observed vocabulary growth
(V and V(1)).

DickensOliverTwist.spc and DickensOliverTwist.emp.vgc contain spectrum and observed
growth curve (V and V(1) of the early novel Oliver Twist (1837-1839).

DickensGreatExpectations.spc and DickensGreatExpectations.emp.vgc contain spectrum
and observed growth curve (V and V(1)) of the late novel Great Expectations (1860-1861).

DickensOurMutualFriend.spc and DickensOurMutualFriend.emp.vgc contain spectrum and
observed growth curve (V and V(1)) of Our Mutual Friend, the last novel completed by Dickens
(1864-1865).

Notice that we removed numbers and other forms of non-linguistic material before collecting the
frequency data.

References

Project Gutenberg: https://www.gutenberg.org/

Charles Dickens on Wikipedia: https://en.wikipedia.org/wiki/Charles_Dickens

https://www.gutenberg.org/
https://en.wikipedia.org/wiki/Charles_Dickens

estimate.model 15

Examples

data(Dickens.spc)
summary(Dickens.spc)

data(Dickens.emp.vgc)
summary(Dickens.emp.vgc)

data(DickensOliverTwist.spc)
summary(DickensOliverTwist.spc)

data(DickensOliverTwist.emp.vgc)
summary(DickensOliverTwist.emp.vgc)

estimate.model Estimate LNRE Model Parameters (zipfR)

Description

Internal function: Generic method for estimation of LNRE model parameters. Based on the class
of its first argument, the method dispatches to a suitable implementation of the estimation procedure.

Unless you are a developer working on the zipfR source code, you are probably looking for the
lnre manpage.

Usage

estimate.model(model, spc, param.names,
method, cost.function, m.max=15,
runs=3, debug=FALSE, ...)

Arguments

model LNRE model object of the appropriate class (a subclass of lnre). All parameters
of the LNRE model that are not listed in param.names must have been initialized
to their prespecified values in the model object.

spc an observed frequency spectrum, i.e. an object of class spc. The values of the
missing parameters will be estimated from this frequency spectrum.

param.names a character vector giving the names of parameters for which values have to be
estimated ("missing" parameters)

method name of the minimization algorithm used for parameter estimation (see lnre for
details)

cost.function cost function to be minimized (see lnre for details). NB: this is a direct refer-
ence to the function object rather than just the name of the cost function. Look-
up of the appropriate cost function implementation is performed in the lnre
constructor.

16 estimate.model

m.max number of spectrum elements that will be used to compute the cost function
(passed on to cost.function)

runs number of parameter optimization runs with random initialization. Parameters
from the run that achieves the smallest value of the cost function will be selected.
Some method implementations may not support multiple optimization runs.

debug if TRUE, some debugging and progress information will be printed during the
estimation procedure

... additional arguments are passed on and may be used by some implementations

Details

By default, estimate.model dispatches to a generic implementation of the estimation procedure
that can be used with all types of LNRE models (estimate.model.lnre).

This generic implementation can be overridden for specific LNRE models, e.g. to calculate better
init values or improve the estimation procedure in some other way. To provide a custom imple-
mentation for Zipf-Mandelbrot models (of class lnre.zm), for instance, it is sufficient to define the
corresponding method implementation estimate.model.lnre.zm. If no custom implementation
is provided but the user has selected the Custom method (which is the default), estimate.model
falls back on Nelder-Mead for multi-dimensional minimization and NLM for one-dimensional mini-
mization (where Nelder-Mead is considered to be unreliable).

Parmeter estimation is performed by minimization of the cost function passed in the cost.function
argument (see lnre for details). Depending on the method argument, a range of different minimiza-
tion algorithms can be used (see lnre for a complete listing). The minimization algorithm always
operates on transformed parameter values, making use of the transform utility provided by LNRE
models (see lnre.details for more information about utility functions). All parameters are ini-
tialized to 0 in the transformed scale, which should translate to sensible starting points.

Note that the estimate.model implementations do not perform any error checking. It is the re-
sponsibility of the caller to make sure that the arguments are sensible and complete. In particular,
all model parameters that will not be estimated (i.e. are not listed in param.names) must have been
initialized to their prespecified values in the model passed to the function.

Value

A modified version of model, where the missing parameters listed in param.names have been esti-
mated from the observed frequency spectrum spc. In addition, goodness-of-fit information is added
to the object.

See Also

The user-level function for estimating LNRE models is lnre. Its manpage also lists available cost
functions and minimization algorithms.

The internal structure of lnre objects (representing LNRE models) is described on the lnre.details
manpage, which also outlines the necessary steps for implementing a new LNRE model.

The minimization algorithms used are described in detail on the nlm and optim manpages from R’s
standard library.

EV-EVm 17

EV-EVm Expected Frequency Spectrum (zipfR)

Description

EV and EVm are generic methods for computing the expected vocabulary size E[V] and frequency
spectrum E[Vm] according to a LNRE model (i.e. an object belonging to a subclass of lnre).

When applied to a frequency spectrum (i.e. an object of class spc), these methods perform bino-
mial interpolation (see EV.spc for details), although spc.interp and vgc.interp might be more
convenient binomial interpolation functions for most purposes.

Usage

EV(obj, N, ...)
EVm(obj, m, N, ...)

Arguments

obj an LNRE model (i.e. an object belonging to a subclass of lnre) or frequency
spectrum (i.e. an object of class spc)

m positive integer value determining the frequency class m to be returned (or a
vector of such values)

N sample size N for which the expected vocabulary size and frequency spectrum
are calculated (or a vector of sample sizes)

... additional arguments passed on to the method implementation (see respective
manpages for details)

Value

EV returns the expected vocabulary size E[V (N)] in a sample of N tokens, and EVm returns the
expected spectrum elements E[Vm(N)], according to the LNRE model given by obj (or according
to binomial interpolation).

See Also

See lnre for more information on LNRE models, a listing of available models, and methods for
parameter estimation.

The variances of the random variables V (N) and Vm(N) can be computed with the methods VV
and VVm.

See EV.spc and EVm.spc for more information about the usage of these methods to perform bino-
mial interpolation (but consider using spc.interp and vgc.interp instead).

Examples

see lnre() documentation for examples

18 EV-EVm.spc

EV-EVm.spc Binomial Interpolation (zipfR)

Description

Compute the expected vocabulary size E[V (N)] (with function EV.spc) or expected frequency
spectrum E[Vm(N)] (with function EVm.spc) for a random sample of size N from a given fre-
quency spectrum (i.e., an object of class spc). The expectations are calculated by binomial interpo-
lation (following Baayen 2001, pp. 64-69).

Note that these functions are not user-visible. They can be called implicitly through the generic
methods EV and EVm, applied to an object of type spc.

Usage

S3 method for class 'spc'
EV(obj, N, allow.extrapolation=FALSE, ...)

S3 method for class 'spc'
EVm(obj, m, N, allow.extrapolation=FALSE, ...)

Arguments

obj an object of class spc, representing a frequency spectrum

m positive integer value determining the frequency class m for which E[Vm(N)]
be returned (or a vector of such values)

N sample size N for which the expected vocabulary size or frequency spectrum
are calculated (or a vector of sample sizes)

allow.extrapolation

if TRUE, the requested sample size N may be larger than the sample size of the
frequency spectrum obj, for binomial extrapolation. This obtion should be used
with great caution (see "Details" below).

... additional arguments passed on from generic methods will be ignored

Details

These functions are naive implementations of binomial interpolation, using Equations (2.41) and
(2.43) from Baayen (2001). No guarantees are made concerning their numerical accuracy, espe-
cially for extreme values of m and N .

According to Baayen (2001), pp. 69-73., the same equations can also be used for binomial extrap-
olation of a given frequency spectrum to larger sample sizes. However, they become numerically
unstable in this case and will typically break down when extrapolating to more than twice the size
of the observed sample (Baayen 2001, p. 75). Therefore, extrapolation has to be enabled explicitly
with the option allow.extrapolation=TRUE and should be used with great caution.

EvertLuedeling2001 19

Value

EV returns the expected vocabulary size E[V (N)] for a random sample of N tokens from the fre-
quency spectrum obj, and EVm returns the expected spectrum elements E[Vm(N)] for a random
sample of N tokens from obj, calculated by binomial interpolation.

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

EV and EVm for the generic methods and links to other implementations

spc.interp and vgc.interp are convenience functions that compute an expected frequency spec-
trum or vocabulary growth curve by binomial interpolation

EvertLuedeling2001 Samples of German Word Formation Affixes (zipfR)

Description

Corpus data for measuring the productivity of German word formation affixes -bar, -lich, -sam, -ös,
-tum, Klein-, -chen and -lein (Evert & Lüdeling 2001). Data were extracted from two volumes of
the German daily newspaper Stuttgarter Zeitung, then manually cleaned and normalized.

Usage

EvertLuedeling2001

Format

A list of 8 character vectors for the different affixes, with names klein (Klein-), bar (-bar), chen
(-chen), lein (-lein), lich (-lich), oes (-ös), sam (-sam), tum (-tum).

Each vector contains all relevant tokens from the corpus in their original (chronological) ordering,
so vocabulary growth curves can be determined from the vectors in addition to type frequency lists
and frequency spectra.

References

Evert, Stefan and Lüdeling, Anke (2001). Measuring morphological productivity: Is automatic
preprocessing sufficient? In Proceedings of the Corpus Linguistics 2001 Conference, pages 167–
175, Lancaster, UK.

20 ItaPref

Examples

str(EvertLuedeling2001)

tokens and type counts for the different affixes
sapply(EvertLuedeling2001, function (x) {

y <- vec2tfl(x)
c(N=N(y), V=V(y))

})

ItaPref Italian Ri- and Ultra- Prefix Frequency Data (zipfR)

Description

ItaRi.spc and ItaRi.emp.vgc are zipfR objects of classes tfl, spc and vgc, respectively. They
contain frequency data for all verbal lemmas with the prefix ri- (similar to English re-) in the Italian
la Repubblica corpus.

ItaUltra.spc and ItaUltra.emp.vgc contain the same kinds of data for the adjectival prefix
ultra-.

Details

ItaRi.emp.vgc and ItaUltra.emp.vgc are empirical vocabulary growth curves, reflecting the V
and V(1) development in the non-randomized corpus.

The data were manually checked, as described for ri- in Baroni (to appear).

References

Baroni, M. (to appear) I sensi di ri-: Un’indagine preliminare. In Maschi, R., Penello, N. and
Rizzolatti, P. (eds.), Miscellanea di studi linguistici offerti a Laura Vanelli. Udine, Forum.

la Repubblica corpus: http://sslmit.unibo.it/repubblica/

Examples

data(ItaRi.spc)
summary(ItaRi.spc)

data(ItaRi.emp.vgc)
summary(ItaRi.emp.vgc)

data(ItaUltra.spc)
summary(ItaUltra.spc)

data(ItaUltra.emp.vgc)
summary(ItaUltra.emp.vgc)

http://sslmit.unibo.it/repubblica/

LNRE 21

LNRE Type and Probability Distributions of LNRE Models (zipfR)

Description

Type density g (tdlnre), type distribution G (tplnre), type quantiles G−1 (tqlnre), probability
density f (dlnre), distribution function F (plnre), quantile function F−1 (qlnre), logarithmic
type and probability densities (ltdlnre and ldlnre), and random sample generation (rlnre) for
LNRE models.

Usage

tdlnre(model, x, ...)
tplnre(model, q, lower.tail=FALSE, ...)
tqlnre(model, p, lower.tail=FALSE, ...)

dlnre(model, x, ...)
plnre(model, q, lower.tail=TRUE, ...)
qlnre(model, p, lower.tail=TRUE, ...)

ltdlnre(model, x, base=10, log.x=FALSE, ...)
ldlnre(model, x, base=10, log.x=FALSE, ...)

rlnre(model, n, what=c("tokens", "tfl"), ...)

Arguments

model an object belonging to a subclass of lnre, representing a LNRE model
x vector of type probabilities pi for which the density function is evaluated
q vector of type probability quantiles, i.e. threshold values ρ on the type probabil-

ity axis
p vector of tail probabilities
lower.tail if TRUE, lower tail probabilities or type counts are returned / expected in the p

argument. Note that the defaults differ for distribution function and type distri-
bution, and see "Details" below.

base positive number, the base with respect to which the log-transformation is pe-
formed (see "Details" below)

log.x if TRUE, the values passed in the argument x are assumed to be logarithmic, i.e.
loga π

n size of random sample to generate. If length(n) > 1, the length is taken to be
the number required.

what whether to return the sample as a vector of tokens or as a type-frequency list
(usually more efficient)

... further arguments are passed through to the method implementations (currently
unused)

22 LNRE

Details

Note that the order in which arguments are specified differs from the analogous functions for com-
mon statistical distributions in the R standard library. In particular, the LNRE model model always
has to be given as the first parameter so that R can dispatch the function call to an appropriate
method implementation for the chosen LNRE model.

Some of the functions may not be available for certain types of LNRE models. In particular, no
analytical solutions are known for the distribution and quantiles of GIGP models, so the functions
tplnre, tqlnre, plnre, qlnre and rlnre (which depends on qlnre and tplnre) are not imple-
mented for objects of class lnre.gigp.

The default tails differ for the distribution function (plnre, qlnre) and the type distribution (tplnre,
tqlnre), in order to match the definitions of F (ρ) and G(ρ). While the distribution function de-
faults to lower tails (lower.tail=TRUE, corresponding to F and F−1), the type distribution defaults
to upper tails (lower.tail=FALSE, corresponding to G and G−1).

Unlike for standard distriutions, logarithmic tail probabilities (log.p=TRUE) are not provided for
the LNRE models, since here the focus is usually on the bulk of the distribution rather than on the
extreme tails.

The log-transformed density functions f∗ and g∗ returned by ldlnre and ltdlnre, respectively,
can be understood as probability and type densities for loga π instead of π, and are useful for
visualization of LNRE populations (with a logarithmic scale for the parameter π on the x-axis). For
example,

G(loga ρ) =

∫ 0

loga ρ

g∗(t) dt

Value

For rnlre, either a factor of length n (what="tokens", the default) or a tfl object (what="tfl"),
representing a random sample from the population described by the specified LNRE model. Note
that the type-frequency list is a sufficient statistic, i.e. it provides all relevant information from
the sample. For large n, type-frequency lists are generated more efficiently and with less memory
overhead.

For all other functions, a vector of non-negative numbers of the same length as the second argument
(x, p or q).

tdlnre returns the type density g(π) for the values of π specified in the vector x. tplnre returns the
type distribution G(ρ) (default) or its complement 1 −G(ρ) (if lower.tail=TRUE), for the values
of ρ specified in the vector q. tqlnre returns type quantiles, i.e. the inverse G−1(x) (default) or
G−1(S − x) (if lower.tail=TRUE) of the type distribution, for the type counts x specified in the
vector p.

dlnre returns the probability density f(π) for the values of π specified in the vector x. plnre returns
the distribution function F (ρ) (default) or its complement 1 − F (ρ) (if lower.tail=FALSE), for
the values of ρ specified in the vector q. qlnre returns quantiles, i.e. the inverse F−1(p) (default)
or F−1(1− p) (if lower.tail=FALSE) of the distribution function, for the probabilities p specified
in the vector p.

ldlnre and ltdlnre compute logarithmically transformed versions of the probability and type
density functions, respectively, taking logarithms with respect to the base a specified in the base
argument (default: a = 10). See "Details" above for more information.

lnre 23

See Also

lnre for more information about LNRE models and how to initialize them.

Random samples generated with rnlre can be further processed with the functions vec2tfl, vec2spc
and vec2vgc (for token vectors) and tfl2spc (for type-frequency lists).

Examples

define ZM and fZM LNRE models
ZM <- lnre("zm", alpha=.8, B=1e-3)
FZM <- lnre("fzm", alpha=.8, A=1e-5, B=.05)

random samples from the two models
vec2tfl(rlnre(ZM, 10000))
vec2tfl(rlnre(FZM, 10000))
rlnre(FZM, 10000, what="tfl") # more efficient

plot logarithmic type density functions
x <- 10^seq(-6, 1, by=.01) # pi = 10^(-6) .. 10^(-1)
y.zm <- ltdlnre(ZM, x)
y.fzm <- ltdlnre(FZM, x)

plot(x, y.zm, type="l", lwd=2, col="red", log="x", ylim=c(0,14000))
lines(x, y.fzm, lwd=2, col="blue")
legend("topright", legend=c("ZM", "fZM"), lwd=3, col=c("red", "blue"))

probability pi_k of k-th type according to FZM model
k <- 10
plnre(FZM, tqlnre(FZM, k-1)) - plnre(FZM, tqlnre(FZM, k))

number of types with pi >= 1e-6
tplnre(ZM, 1e-6)

lower tail fails for infinite population size
Not run:
tplnre(ZM, 1e-3, lower=TRUE)
End(Not run)

total probability mass assigned to types with pi <= 1e-6
plnre(ZM, 1e-6)

lnre LNRE Models (zipfR)

Description

LNRE model constructor, returns an object representing a LNRE model with the specified parame-
ters, or allows parameters to be estimated automatically from an observed frequency spectrum.

24 lnre

Usage

lnre(type=c("zm", "fzm", "gigp"),
spc=NULL, debug=FALSE,
cost=c("gof", "chisq", "linear", "smooth.linear", "mse", "exact"),
m.max=15, runs=5,
method=c("Nelder-Mead", "NLM", "BFGS", "SANN", "Custom"),
exact=TRUE, sampling=c("Poisson", "multinomial"),
bootstrap=0, verbose=TRUE, parallel=1L,
...)

Arguments

type class of LNRE model to use (see "LNRE Models" below)

spc observed frequency spectrum used to estimate model parameters. After param-
eter optimisation, goodness-of-fit of the final model is tested again spc. Can
be omitted if all model parameters are set explicitly or if not needed by a user-
defined cost function (see ‘Cost Functions’ for details).

debug if TRUE, detailed debugging information will be printed during parameter esti-
mation

cost cost function for measuring the "distance" between observed and expected vo-
cabulary size and frequency spectrum. Parameters are estimated by minimizing
this cost function (see ‘Cost Functions’ below for a list of built-in cost functions
and details on user-defined cost functions).

m.max number of spectrum elements considered by the cost function (see "Cost Func-
tions" below for more information). If unspecified, the default is automatically
adjusted to avoid small spectrum elements that may be mathematically unreli-
able.

runs number of parameter optimization runs with random initialization. Parameters
from the run that achieves the smallest value of the cost function will be selected.
Currently not supported for method="Custom", please use runs=1 in this case.

method algorithm used for parameter estimation, by minimizing the value of the cost
function (see "Parameter Estimation" below for details, and "Minimization Al-
gorithms" for descriptions of the available algorithms)

exact if FALSE, certain LNRE models will be allowed to use approximations when
calculating expected values and variances, in order to improve performance and
numerical stability. However, the computed values might be inaccurate or in-
consistent in "extreme" situations: in particular, E[V] might be larger than N
when N is very small;

∑
m E[Vm] can be larger than E[V] at the same N ;∑

m m · E[Vm] can be larger than N

sampling type of random sampling model to use. Poisson sampling is mathematically
simpler and allows fast and robust calculations, while multinomial sampling
is more accurate especially for very small samples. Poisson sampling is the
default and should be unproblematic for sample sizes N ≥ 10000. NB: The
multinomial sampling option has not been implemented yet.

lnre 25

bootstrap number of bootstrap samples used to estimate confidence intervals for estimated
model parameters. Recommended values are bootstrap=100 or bootstrap=200.
Bootstrapping can be very time-consuming and should not be used if the un-
derlying sample size is very large (roughly, more than 1 million tokens). See
lnre.bootstrap for further information and warnings.

parallel whether to use parallelisation for the bootstrapping procedure (highly recom-
mended). See lnre.bootstrap for details.

verbose if TRUE, a progress bar will be shown in the R console during the bootstrapping
procedure

... all further named arguments are interpreted as parameter values for the chosen
LNRE model (see the respective manpages for names and descriptions of the
model parameters)

Details

Currently, the following LNRE models are supported by the zipfR package:

The Zipf-Mandelbrot (ZM) LNRE model (see lnre.zm for details).

The finite Zipf-Mandelbrot (fZM) LNRE model (see lnre.fzm for details).

The Generalized Inverse Gauss-Poisson (GIGP) LNRE model (see lnre.gigp for details).

If explicit model parameters are specified in addition to an observed frequency spectrum spc, these
parameters are fixed to the given values and are excluded from the estimation procedure. This
feature can be useful if fully automatic parameter estimation leads to a poor or counterintuitive fit.

Value

An object of a suitable subclass of lnre, depending on the type argument (e.g. lnre.fzm for
type="fzm"). This object represents a LNRE model of the selected type with the specified param-
eter values, or with parameter values estimated from the observed frequency spectrum spc.

The internal structure of lnre objects is described on the lnre.details manpage (intended for
developers).

Parameter Estimation

Automatic parameter estimation for LNRE models is performed by matching the expected vocabu-
lary size and frequency spectrum of the model against the observed data passed in the spc argument.

For this purpose, a cost function has to be defined as a measure of the "distance" between observed
and expected frequency spectrum. Parameters are then estimated by applying a minimization algo-
rithm in order to find those parameter values that lead to the smallest possible cost.

Parameter estimation is a crucial and often also quite critical step in the application of LNRE mod-
els. Depending on the shape of the observed frequency spectrum, the automatic estimation proce-
dure may result in a poor and counter-intuitive fit, or may fail altogether.

Usually, multiple runs of the minimization are performed with different random start values. An
error will only be reported if all the estimation runs fail. Such multiple runs have not been imple-
mented for the Custom minimization method yet; please specify runs=1 in this case.

26 lnre

Users can influence parameter estimation by choosing from a range of predefined cost functions and
from several minimization algorithms, as described in the following sections. Some experimenta-
tion with the cost, m.max and method arguments will often help to resolve estimation failures and
may result in a considerably better goodness-of-fit.

Cost Functions

The following cost functions are available and can be selected with the cost argument. All functions
are based on the differences between observed and expected values for vocabulary size and the first
elements of the frequency spectrum (V1, . . . , Vm, where m is given by the m.max argument):

gof: the multivariate chi-squared statistic used for goodness-of-fit testing (lnre.goodness.of.fit).
This cost function corresponds (almost) to maximum-likelihood parameter estimation and is
used by default.

chisq: cost function based on a simplified version of the multivariate chi-squared test for goodness-
of-fit (assuming independence between the random variables Vm).

linear: linear cost function, which sums over the absolute differences between observed and ex-
pected values. This cost function puts more weight on fitting the vocabulary size and the first
few elements of the frequency spectrum (where absolute differences are much larger than for
higher spectrum elements).

smooth.linear: modified version of the linear cost function, which smoothes the kink of the ab-
solute value function for a difference of 0 (since non-differentiable cost functions might be
problematic for gradient-base minimization algorithms)

mse: mean squared error cost function, averaging over the squares of differences between observed
and expected values. This cost function penalizes large absolute differences more heavily
than linear cost (and therefore puts even greater weight on fitting vocabulary size and the first
spectrum elements).

exact: this "virtual" cost function attempts to match the observed vocabulary size and first spec-
trum elements exactly, ignoring differences for all higher spectrum elements. This is achieved
by adjusting the value of m.max automatically, depending on the number of free parameters
that are estimated (in general, the number of constraints that can be satisfied by estimating
parameters is the same as the number of free parameters). Having adjusted m.max, the mse
cost function is used to determined parameter values, so that the estimation procedure will not
fail even if the constraints cannot be matched exactly.

Alternatively a user-defined cost function can be passed as a function object with signature ‘cost(model,
spc, m.max)‘, which compares the LNRE model ‘model‘ against the observed frequency spectrum
‘spc‘ and returns a cost value (i.e. lower cost indicates a better fit). User-defined cost functions
are also convenient for setting model parameters based on implicit constraints (such as a desired
population diversity S). In this case, pass spc=NULL explicitly as a dummy frequency spectrum,
skipping the final goodness-of-fit test.

Minimization Algorithms

Several different minimization algorithms can be used for parmeter estimation and are selected with
the method argument:

lnre 27

Nelder-Mead: the Nelder-Mead algorithm, implemented by the optim function, performs mini-
mization without using derivatives. Parameter estimation is therefore very robust, while al-
most as fast and accurate as the NLM method. Nelder-Mead is the default algorithm and is also
used internally by most custom minimization procedures (see below).

NLM: a standard Newton-type algorithm for nonlinear minimization, implemented by the nlm func-
tion, which makes use of numerical derivatives of the cost function. NLM minimization con-
verges quickly and obtains very precise parameter estimates (for a local minimum of the cost
function), but it is not very stable and may cause parameter estimation to fail altogether.

SANN: minimization by simulated annealing, also provided by the optim function. Like Nelder-Mead,
this algorithm is very robust because it avoids numerical derivatives, but convergence is ex-
tremely slow. In some cases, SANN might produce a better fit than Nelder-Mead (if the latter
converges to a suboptimal local minimum).

BFGS: a quasi-Newton method developed by Broyden, Fletcher, Goldfarb and Shanno. This mini-
mization algorithm is efficient, but should be applied with care as it will often overshoot the
valid range of parameter values.

Custom: a custom estimation procedure provided for certain types of LNRE model, which may
exploit special mathematical properties of the model in order to calculate one or more of the
parameter values directly. For example, one parameter of the ZM and fZM models can easily
be determined from the constraint E[V] = V (but note that this additional constraint leads to
a different fit than is obtained by plain minimization of the cost function!). Custom estimation
might also apply special configuration settings to improve convergence of the minimization
process, based on knowledge about the valid ranges and "behaviour" of model parameters. If
no custom estimation procedure has been implemented for the selected LNRE model, lnre
falls back on the Nelder-Mead or NLM algorithm.

See the nlm and optim manpages for more information about the minimization algorithms used and
key references.

See Also

Detailed descriptions of the different LNRE models provided by zipfR and their parameters can be
found on the manpages lnre.zm, lnre.fzm and lnre.gigp.

Useful methods for trained models are lnre.spc, lnre.vgc, EV, EVm, VV, VVm. Suitable implemen-
tations of the print and summary methods are also provided (see print.lnre for details), as well
as for plotting (see plot.lnre). Note that the methods N, V and Vm can be applied to LNRE models
with estimated parameters and return information about the observed frequency spectrum used for
parameter estimation.

If bootstrapping samples have been generated (bootstrap > 0), confidence intervals for the model
parameters can be determined with confint.lnre. See lnre.bootstrap for more information on
the bootstrapping procedure and implementation.

The lnre.details manpage gives details about the implementation of LNRE models and the in-
ternal structure of lnre objects, while estimate.model has more information on the parameter
estimation procedure (both manpages are intended for developers).

See lnre.goodness.of.fit for a complete description of the goodness-of-fit test that is auto-
matically performed after parameter estimation (and which is reported in the summary of the LNRE
model). This function can also be used to evaluate the predictions of the LNRE model on a different
data set than the one used for parameter estimation.

28 lnre

Examples

load Dickens dataset
data(Dickens.spc)

estimate parameters of GIGP model and show summary
m <- lnre("gigp", Dickens.spc)
m

N, V and V1 of spectrum used to compute model
(should be the same as for Dickens.spc)
N(m)
V(m)
Vm(m,1)

expected V and V_m and their variances for arbitrary N
EV(m,100e6)
VV(m,100e6)
EVm(m,1,100e6)
VVm(m,1,100e6)

use only 10 instead of 15 spectrum elements to estimate model
(note how fit improves for V and V1)
m.10 <- lnre("gigp", Dickens.spc, m.max=10)
m.10

experiment with different cost functions
m.mse <- lnre("gigp", Dickens.spc, cost="mse")
m.mse
m.exact <- lnre("gigp", Dickens.spc, cost="exact")
m.exact

NLM minimization algorithm is faster but less robust
m.nlm <- lnre("gigp", Dickens.spc, method="NLM")
m.nlm

ZM and fZM LNRE models have special estimation algorithms
m.zm <- lnre("zm", Dickens.spc)
m.zm
m.fzm <- lnre("fzm", Dickens.spc)
m.fzm

estimation is much faster if approximations are allowed
m.approx <- lnre("fzm", Dickens.spc, exact=FALSE)
m.approx

specify parameters of LNRE models directly
m <- lnre("zm", alpha=.5, B=.01)

lnre.bootstrap 29

lnre.spc(m, N=1000, m.max=10)

m <- lnre("fzm", alpha=.5, A=1e-6, B=.01)
lnre.spc(m, N=1000, m.max=10)

m <- lnre("gigp", gamma=-.5, B=.01, C=.01)
lnre.spc(m, N=1000, m.max=10)

bootstrapped confidence intervals for model parameters
Not run:
model <- lnre("fzm", spc=BrownAdj.spc, bootstrap=40)
confint(model, "alpha") # Zipf slope
confint(model, "S") # population diversity
confint(model, "S", method="normal") # Gaussian approx works well in this case

speed up with parallelisation (see ?lnre.bootstrap for more information)
model <- lnre("fzm", spc=BrownAdj.spc, bootstrap=40,

parallel=8) # on Linux / MacOS with 8 available cores
End(Not run)

lnre.bootstrap Parametric bootstrapping for LNRE models (zipfR)

Description

This function implements parametric bootstrapping for LNRE models, i.e. it draws a specified num-
ber of random samples from the population described by a given lnre object. For each sample, two
callback functions are applied to perform transformations and/or extract statistics. In an important
application (bootstrapped confidence intervals for model parameters), the first callback estimates a
new LNRE model and the second callback extracts the relevant parameters from this model. See
‘Use Cases’ and ‘Examples’ below for other use cases.

Usage

lnre.bootstrap(model, N, ESTIMATOR, STATISTIC,
replicates=100, sample=c("spc", "tfl", "tokens"),
simplify=TRUE, verbose=TRUE, parallel=1L, seed=NULL, ...)

Arguments

model a trained LNRE model, i.e. an object belonging to a subclass of lnre. The model
must provide a rlnre method to generate random samples from the underlying
frequency distribution.

N a single positive integer, specifying the size N (i.e. token count) of the individual
bootstrap samples

ESTIMATOR a callback function, normally used for estimating LNRE models in the boot-
strap procedure. It is called once for each bootstrap sample with the sample as
first argument (in the form determined by sample). Additional arguments (...)

30 lnre.bootstrap

are passed on to the callback, so it is possible to use ESTIMATOR=lnre with ap-
propriate settings. If this step is not needed, set ESTIMATOR=identity to pass
samples through to the STATISTIC callback.

STATISTIC a callback function, normally used to extract model parameters and other rele-
vant statistics from the bootstrapped LNRE models. It is called once for each
bootstrap sample, with the value returned by ESTIMATOR as its single argument.
The return values are automatically aggregated across all bootstrap samples (see
‘Value’ below). If this step is not needed, set STATISTIC=identity in order to
pass through the results of the ESTIMATOR callback. Note that STATISTIC must
not return NULL, which is used internally to signal errors.

replicates a single positive integer, specifying the number of bootstrap samples to be gen-
erated

sample the form in which each sample is passed to ESTIMATOR: as a frequency spectrum
(spc, the default), as a type-frequency list (tfl) or as a factor vector represent-
ing the token sequence (tokens). Warning: The latter can be computationally
expensive for large N.
Alternatively, a callback function that will be invoked with arguments model
and replicates and must return a random sample in the format expected by
ESTIMATOR. See ‘Use Cases’ below for typical applications.

simplify if TRUE, use rbind() to combine list of results into a single data structure. In
this case, the estimator should return either a vector of fixed length or a single-
row data frame or matrix. No validation is carried out before attempting the
simplification.

verbose if TRUE, show progress bar in R console during the bootstrapping process (which
can take a long time). The progress bar may be updated quite infrequently if
parallel processing is enabled.

parallel whether to enable parallel processing. Either an integer specifying the number
of worker processes to be forked, or a pre-initialised snow cluster created with
makeCluster; see ‘Details’ below.

seed a single integer value used to initialize the RNG in order to generate reproducible
results

... any further arguments are passed through to the ESTIMATOR callback function

Details

The parametric bootstrapping procedure works as follows:

1. replicates random samples of N tokens each are drawn from the population described by the
LNRE model model (possibly using a callback function provided in argument sample)

2. Each sample is passed to the callback function ESTIMATOR in the form determined by sample
(a frequency spectrum, type-frequency list, or factor vector of tokens). If ESTIMATOR fails, it
is re-run with a different sample, otherwise the return value is passed on to STATISTIC. Use
ESTIMATOR=identity to pass the original sample through to STATISTIC.

3. The callback function STATISTIC is used to extract relevant information for each sample. If
STATISTIC fails, the procedure is repeated from step 2 with a different sample. The callback
will typically return a vector of fixed length or a single-row data frame, and the results for all
bootstrap samples are combined into a matrix or data frame if simplify=TRUE.

lnre.bootstrap 31

Warning: Keep in mind that sampling a token vector can be slow and consume large amounts of
memory for very large N (several million tokens). If possible, use sample="spc" or sample="tfl",
which can be generated more efficiently.

Parallelisation
Since bootstrapping is a computationally expensive procedure, it is usually desirable to use parallel
processing. lnre.bootstrap supports two types of parallelisation, based on the parallel package:

• On Unix platforms, you can set parallel to an integer number in order to fork the specified
number of worker processes, utilising multiple cores on the same machine. The detectCores
function shows how many cores are available, but due to hyperthreading and memory con-
tention, it is often better to set parallel to a smaller value. Note that forking may be unstable
especially in a GUI environment, as explained on the mcfork manpage.

• On all platforms, you can pass a pre-initialised snow cluster in the argument, which consists
of worker processes on the same machine or on different machines. A suitable cluster can be
created with makeCluster; see the parallel package documentation for further information.
It is your responsibility to set up the cluster so that all required data sets, packages and custom
functions are available on the worker processes; lnre.bootstrap will only ensure that the
zipfR package itself is loaded.

Note that parallel processing is not enabled by default and will only be used if parallel is set
accordingly.

Value

If simplify=FALSE, a list of length replicates containing the statistics obtained from each indi-
vidual bootstrap sample. In addition, the following attributes are set:

• N = sample size of the bootstrap replicates

• model = the LNRE model from which samples were generated

• errors = number of samples for which either the ESTIMATOR or the STATISTIC callback
produced an error

If simplify=TRUE, the statistics are combined with rbind(). This is performed unconditionally,
so make sure that STATISTIC returns a suitable value for all samples, typically vectors of the same
length or single-row data frames with the same columns. The return value is usually a matrix or
data frame with replicates rows. No additional attributes are set.

Use cases

Bootstrapped confidence intervals for model parameters: The confint method for LNRE mod-
els uses bootstrapping to estimate confidence intervals for the model parameters.
For this application, ESTIMATOR=lnre re-estimates the LNRE model from each bootstrap sam-
ple. Configuration options such as the model type, cost function, etc. are passed as additional
arguments in ..., and the sample must be provided in the form of a frequency spectrum. The
return values are successfully estimated LNRE models.
STATISTIC extracts the model parameters and other coefficients of interest (such as the pop-
ulation diversity S) from each model and returns them as a named vector or single-row data
frame. The results are combined with simplify=TRUE, then empirical confidence intervals
are determined for each column.

32 lnre.bootstrap

Empirical sampling distribution of productivity measures: For some of the more complex mea-
sures of productivity and lexical richness (see productivity.measures), it is difficult to es-
timate the sampling distribution mathematically. In these cases, an empirical approximation
can be obtained by parametric bootstrapping.
The most convenient approach is to set ESTIMATOR=productivity.measures, so the desired
measures can be passed as an additional argument measures= to lnre.bootstrap. The de-
fault sample="spc" is appropriate for most measures and is efficient enough to carry out the
procedure for multiple sample sizes.
Since the estimator already returns the required statistics for each sample in a suitable format,
set STATISTIC=identity and simplify=TRUE.

Empirical prediction intervals for vocabulary growth curves: Vocabulary growth curves can only
be generated from token vectors, so set sample="tokens" and keep N reasonably small.
ESTIMATOR=vec2vgc compiles vgc objects for the samples. Pass steps or stepsize as de-
sired and set m.max if growth curves for V1, V2, . . . are desired.
Either use STATISTIC=identity and simplify=FALSE to return a list of vgc objects, which
can be plotted or processed further with sapply(). This strategy is particulary useful if one
or more Vm are desired in addition to V .
Or use STATISTIC=function (x) x$V to extract y-coordinates for the growth curve and com-
bine them into a matrix with simplify=TRUE, so that prediction intervals can be computed
directly. Note that the corresponding x-coordinates are not returned and have to be inferred
from N and stepsize.

Simulating non-randomness and mixture distributions: More complex populations and non-random
samples can be simulated by providing a user callback function in the sample argument. This
callback is invoked with parameters model and n and has to return a sample of size n in the
format expected by ESTIMATOR.
For simulating non-randomness, the callback will typically use rlnre to generate a random
sample and then apply some transformation.
For simulating mixture distributions, it will typically generate multiple samples from different
populations and merge them; the proportion of tokens from each population should be de-
termined by a multinomial random variable. Individual populations might consist of LNRE
models, or a finite number of “lexicalised” types. Note that only a single LNRE model will be
passed to the callback; any other parameters have to be injected as bound variables in a local
function definition.

See Also

lnre for more information about LNRE models. The high-level estimator function lnre uses
lnre.bootstrap to collect data for approximate confidence intervals; lnre.productivity.measures
uses it to approximate the sampling distributions of productivity measures.

Examples

parametric bootstrapping from realistic LNRE model
model <- lnre("zm", spc=ItaRi.spc) # has quite a good fit

estimate distribution of V, V1, V2 for sample size N=1000
res <- lnre.bootstrap(model, N=1000, replicates=200,

ESTIMATOR=identity,

lnre.details 33

STATISTIC=function (x) c(V=V(x), V1=Vm(x,1), V2=Vm(x,2)))
bootstrap.confint(res, method="normal")
compare with theoretical expectations (EV/EVm = center, VV/VVm = spread^2)
lnre.spc(model, 1000, m.max=2, variances=TRUE)

lnre.bootstrap() also captures and ignores occasional failures
res <- lnre.bootstrap(model, N=1000, replicates=200,

ESTIMATOR=function (x) if (runif(1) < .2) stop() else x,
STATISTIC=function (x) c(V=V(x), V1=Vm(x,1), V2=Vm(x,2)))

empirical confidence intervals for vocabulary growth curve
(this may become expensive because token-level samples have to be generated)
res <- lnre.bootstrap(model, N=1000, replicates=200, sample="tokens",

ESTIMATOR=vec2vgc, stepsize=100, # extra args passed to ESTIMATOR
STATISTIC=V) # extract vocabulary sizes at equidistant N

bootstrap.confint(res, method="normal")

parallel processing is highly recommended for expensive bootstrapping
library(parallel)
adjust number of processes according to available cores on your machine
cl <- makeCluster(2) # PSOCK cluster, should work on all platforms
res <- lnre.bootstrap(model, N=1e4, replicates=200, sample="tokens",

ESTIMATOR=vec2vgc, stepsize=1000, STATISTIC=V,
parallel=cl) # use cluster for parallelisation

bootstrap.confint(res, method="normal")
stopCluster(cl)

on MacOS / Linux, simpler fork-based parallelisation also works well
Not run:
res <- lnre.bootstrap(model, N=1e5, replicates=400, sample="tokens",

ESTIMATOR=vec2vgc, stepsize=1e4, STATISTIC=V,
parallel=8) # if you have enough cores ...

bootstrap.confint(res, method="normal")

End(Not run)

lnre.details Technical Details of LNRE Model Objects (zipfR)

Description

This manpage describes technical details of LNRE models and parameter estimation. It is intended
developers who want to implement new LNRE models, improve the parameter estimation algo-
rithms, or work directly with the internals of lnre objects. All information required for standard
applications of LNRE models can be found on the lnre manpage.

Details

Most operations on LNRE models (in particular, computation of expected values and variances,
distribution function and type distribution, random sampling, etc.) are realized as S3 methods,

34 lnre.details

so they are automatically dispatched to appropriate implementations for the various types of LNRE
models (e.g., EV.lnre.zm, EV.lnre.fzm and EV.lnre.gigp for the EV method). For some methods
(e.g. estimated variances VV and VVm), a single generic implementation can be used for all model
types, provided through the base class (VV.lnre and VVm.lnre for variances).

If you want to implement new LNRE models, have a look at "Implementing LNRE Models" below.

Important note: LNRE model parameters can be passed as named arguments to the lnre construc-
tor function when they are not estimated automatically from an observed frequency spectrum. For
this reason, parameter names must be carefully chosen so that they do not clash with other argu-
ments of the lnre function. Note that because of R’s argument matching rules, any parameter name
that is a prefix of a standard argument name will lead to such a clash. In particular, single-letter
parameters (such as b and c for the GIGP model) should always be written in uppercase (B and C in
lnre.gigp).

Value

A LNRE model with estimated (or manually specified) parameter values is represented by an object
belonging to a suitable subclass of lnre. The specific class depends on the type of LNRE model,
as specified in the type argument to the lnre constructor function (e.g. lnre.fzm for a fZM model
selected with type="fzm").

All subtypes of lnre object share the same data format, viz. a list with the following components:

type a character string specifying the class of LNRE model, e.g. "fzm" for a finite
Zipf-Mandelbrot model

name a character string specifying a human-readable name for the LNRE model, e.g.
"finite Zipf-Mandelbrot"

param list of named model parameters, e.g. (alpha=.8, B=.01) for a ZM model

param2 a list of "secondary" parameters, i.e. constants that can be determined from the
model parameters but are frequently used in the formulae for expected values,
variances, etc.; e.g. (C=.5) for the ZM model above

S population size, i.e. number of types in the population described by the LNRE
model (may be Inf, e.g. for a ZM model)

exact whether approximations are allowed when calculating expectations and vari-
ances (FALSE) or not (TRUE)

multinomial whether to use equations for multionmial sampling (TRUE) or independent Pois-
son sampling (FALSE)

spc an object of class spc, the observed frequency spectrum from which the model
parameters have been estimated (only if the LNRE model is based on empirical
data)

gof an object of class lnre.gof with goodness-of-fit information for the estimated
LNRE model (only if based on empirical data, i.e. if the spc component is also
present)

util a set of utility functions, given as a list with the following components:

update: function with signature (self, param,transformed=FALSE), which
updates the parameters of the LNRE model self with the values in param,

lnre.details 35

checks that their values are in the allowed range, and re-calculates "sec-
ondary" parameters and lexicon size if necessary. If transformed=TRUE,
the specified parameters are translated back to normal scale before the up-
date (see below). Of course, self should be the object from which the
utility function was called. update returns a modified version of the object
self.

transform: function with signature (param,inverse=FALSE), which transform
model parameters (given as a list in the argument param) to an unbounded
range centered at 0, and back (with option inverse=TRUE). The trans-
formed model parameters are used for parameter estimation, so that uncon-
strained minimization algorithms can be applied. The link function for the
transformation depends on the LNRE model and the "distribution" of each
parameter. A felicitous choice can be crucial for robust and quick parame-
ter estimation, especially with Newton-like gradient algorithms. Note that
setting all transformed parameters to 0 should provide a reasonable starting
point for the parameter estimation.

print: partial print method for this subclass of LNRE model, which displays
the name of the model, its parameters, and optionally some additional in-
formation (invoked internally by print.lnre and summary.lnre)

label: returns a string with a short description of the LNRE model, including
its subclass and approximate values for its parameters (e.g. for use in legend
text).

Implementing LNRE Models

In order to implement a new class of LNRE models, the following steps are necessary (illus-
trated on the example of a lognormal type density function, introducing the new LNRE class
lnre.lognormal):

• Provide a constructor function for LNRE models of this type (here, lnre.lognormal), which
must accept the parameters of the LNRE model as named arguments with reasonable default
values (or alternatively as a list passed in the param argument). The constructor must re-
turn a partially initialized object of an appropriate subclass of lnre (lnre.lognormal in our
example), and make sure that this object also inherits from the lnre class.

• Provide the update, transform, print and label utility functions for the LNRE model,
which must be returned in the util field of the LNRE model object (see "Value" above).

• Add the new type of LNRE model to the type argument of the generic lnre constructor, and
insert the new constructor function (lnre.lognormal) in the switch call in the body of lnre.

• As a minimum requirement, implementations of the EV and EVm methods must be provided
for the new LNRE model (in our example, they will be named EV.lnre.lognormal and
EVm.lnre.lognormal).

• If possible, provide equations for the type density, probability density, type distribution, dis-
tribution function and posterior distribution of the new LNRE model, as implementations of
the tdlnre, dlnre, tplnre/tqlnre, plnre/qlnre and postplnre/postqlnre methods for
the new LNRE model class. If all these functions are defined, log-scaled densities and random
number generation are automatically handled by generic implementations.

36 lnre.fzm

• Optionally, provide a custom function for parameter estimation of the new LNRE model, as an
implementation of the estimate.model method (here, estimate.model.lnre.lognormal).
Custom parameter estimation can considerably improve convergence and goodness-of-fit if it
is possible to obtain direct estimates for one or more of the parameters, e.g. from the condition
E[V] = V . However, the default Nelder-Mead algorithm is robust and produces satisfactory
results, as long as the LNRE model defines an appropriate parameter transformation mapping.
It is thus often more profitable to optimize the transform utility than to spend a lot of time
implementing a complicated parameter estimation function.

The best way to get started is to take a look at one of the existing implementations of LNRE models.
The GIGP model represents a "minimum" implementation (without custom parameter estimation
and distribution functions), whereas ZM and fZM provide good examples of custom parameter
estimation functions.

See Also

User-level information about LNRE models and parameter estimation can be found on the lnre
manpage.

Descriptions of the different LNRE models implemented in zipfR and their parameters are given
on separate manpages lnre.zm, lnre.fzm and lnre.gigp. These descriptions are intended for
interested end users, but are not required for standard applications of the models.

The estimate.model manpage explains details of the parameter estimation procedure (intended
for developers).

See lnre.goodness.of.fit for a description of the goodness-of-fit test performed after parameter
estimation of an LNRE model. This function can also be used to evaluate the predictions of the
model on a different data set.

lnre.fzm The finite Zipf-Mandelbrot (fZM) LNRE Model (zipfR)

Description

The finite Zipf-Mandelbrot (fZM) LNRE model of Evert (2004).

The constructor function lnre.fzm is not user-visible. It is invoked implicitly when lnre is called
with LNRE model type "fzm".

Usage

lnre.fzm(alpha=.8, A=1e-9, B=.01, param=list())

user call: lnre("fzm", spc=spc) or lnre("fzm", alpha=.8, A=1e-9, B=.01)

lnre.fzm 37

Arguments

alpha the shape parameter α, a number in the range (0, 1)

A the lower cutoff parameter A, a positive number. Note that a valid set of param-
eters must satisfy 0 < A < B.

B the upper cutoff parameter B, a positive number (B > 1 is allowed although it
is inconsistent with the interpretation of B)

param a list of parameters given as name-value pairs (alternative method of parameter
specification)

Details

The parameters of the fZM model can either be specified as immediate arguments:

lnre.fzm(alpha=.5, A=5e-12, B=.1)

or as a list of name-value pairs:

lnre.fzm(param=list(alpha=.5, A=5e-12, B=.1))

which is usually more convenient when the constructor is invoked by another function (such as
lnre). If both immediate arguments and the param list are given, the immediate arguments override
conflicting values in param. For any parameters that are neither specified as immediate arguments
nor listed in param, the defaults from the function prototype are inserted.

The lnre.fzm constructor also checks the types and ranges of parameter values and aborts with an
error message if an invalid parameter is detected.

NB: parameter estimation is faster and more robust for the inexact fZM model, so you might con-
sider passing the exact=FALSE option to lnre unless you intend to make predictions for small
sample sizes N and/or high spectrum elements E[Vm(N)] (m ≫ 1) with the model.

Value

A partially initialized object of class lnre.fzm, which is completed and passed back to the user by
the lnre function. See lnre for a detailed description of lnre.fzm objects (as a subclass of lnre).

Mathematical Details

Similar to ZM, the fZM model is a LNRE re-formulation of the Zipf-Mandelbrot law for a popu-
lation with a finite vocabulary size S, i.e.

πk =
C

(k + b)a

for k = 1, . . . , S. The parameters of the Zipf-Mandelbrot law are a > 1, b ≥ 0 and S (see also
Baayen 2001, 101ff). The fZM model is given by the type density function

38 lnre.gigp

g(π) := C · π−α−1

for A ≤ π ≤ B (and π = 0 otherwise), and has three parameters 0 < α < 1 and 0 < A < B ≤ 1.
The normalizing constant is

C =
1− α

B1−α −A1−α

and the population vocabulary size is

S =
1− α

α
· A−α −B−α

B1−α −A1−α

See Evert (2004) and the lnre.zm manpage for further details.

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004). A simple LNRE model for random character sequences. Proceedings of JADT
2004, 411-422.

See Also

lnre for pointers to relevant methods and functions for objects of class lnre, as well as a complete
listing of LNRE models implemented in the zipfR library.

lnre.gigp The Generalized Inverse Gauss-Poisson (GIGP) LNRE Model (zipfR)

Description

The Generalized Inverse Gauss-Poisson (GIGP) LNRE model of Sichel (1971).

The constructor function lnre.gigp is not user-visible. It is invoked implicitly when lnre is called
with LNRE model type "gigp".

Usage

lnre.gigp(gamma=-.5, B=.01, C=.01, param=list())

user call: lnre("gigp", spc=spc) or lnre("gigp", gamma=-.5, B=.01, C=.01)

lnre.gigp 39

Arguments

gamma the shape parameter γ, a negative number in the range (−1, 0). γ corresponds
to −α in the Zipf-Mandelbrot notation.

B the low-frequency decay parameter b, a non-negative number. This parameter
determines how quickly the type density function vanishes for π → 0, with
larger values corresponding to faster decay.

C the high-frequency decay parameter c, a non-negative number. This parameter
determines how quickly the type density function vanishes for large values of π,
with smaller values corresponding to faster decay.

param a list of parameters given as name-value pairs (alternative method of parameter
specification)

Details

The parameters of the GIGP model can either be specified as immediate arguments:

lnre.gigp(gamma=-.47, B=.001, C=.001)

or as a list of name-value pairs:

lnre.gigp(param=list(gamma=-.47, B=.001, C=.001))

which is usually more convenient when the constructor is invoked by another function (such as
lnre). If both immediate arguments and the param list are given, the immediate arguments override
conflicting values in param. For any parameters that are neither specified as immediate arguments
nor listed in param, the defaults from the function prototype are inserted.

The lnre.gigp constructor also checks the types and ranges of parameter values and aborts with
an error message if an invalid parameter is detected.

Notice that the implementation of GIGP leads to numerical problems when estimating the expected
frequency of high spectrum elements (you might start worrying if you need to go above m = 150).

Note that the parameters b and c are normally written in lowercase (e.g. Baayen 2001). For the
technical reasons, it was necessary to use uppercase letters B and C in this implementation.

Value

A partially initialized object of class lnre.gigp, which is completed and passed back to the user by
the lnre function. See lnre for a detailed description of lnre.gigp objects (as a subclass of lnre).

Mathematical Details

Despite its fance name, the Generalized Inverse Gauss-Poisson or GIGP model belongs to the
same class of LNRE models as ZM and fZM. This class of models is characterized by a power-law
in the type density function and derives from the Zipf-Mandelbrot law (see lnre.zm for details on
the relationship between power-law LNRE models and the Zipf-Mandelbrot law).

40 lnre.goodness.of.fit

The GIGP model is given by the type density function

g(π) := C · πγ−1 · e−π
c −

b2c
4π

with parameters −1 < γ < 0 and b, c ≥ 0. The normalizing constant is

C =
(2/bc)γ+1

Kγ+1(b)

and the population vocabulary size is

S =
2

bc
· Kγ(b)

Kγ+1(b)

Note that the "shape" parameter γ corresponds to −α in the ZM and fZM models. The GIGP model
was introduced by Sichel (1971). See Baayen (2001, 89-93) for further details.

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Sichel, H. S. (1971). On a family of discrete distributions particularly suited to represent long-tailed
frequency data. Proceedings of the Third Symposium on Mathematical Statistics, 51-97.

See Also

lnre for pointers to relevant methods and functions for objects of class lnre, as well as a complete
listing of LNRE models implemented in the zipfR library.

lnre.goodness.of.fit Goodness-of-fit Evaluation of LNRE Models (zipfR)

Description

This function measures the goodness-of-fit of a LNRE model compared to an observed frequency
spectrum, using a multivariate chi-squared test (Baayen 2001, p. 119ff).

Usage

lnre.goodness.of.fit(model, spc, n.estimated=0, m.max=15)

lnre.goodness.of.fit 41

Arguments

model an LNRE model object, belonging to a suitable subclass of lnre.

spc an observed frequency spectrum, i.e. an object of class spc. This can either be
the spectrum on which the model parameters have been estimated, or a different,
independent spectrum.

n.estimated number of parameters of the LNRE model that have been estimated on spc. This
number is automatically subtracted from the degrees of freedom of the result-
ing chi-squared statistic. When spc is an independent spectrum, n.estimated
should always be set to the default value of 0.

m.max number of spectrum elements that will be used to compute the chi-squared statis-
tic. The default value of 15 is also used by Baayen (2001). For small samples,
it may be sensible to use fewer spectrum elements, e.g. by setting m.max=10 or
m.max=5. Depending on how many degrees of freedom have to be subtracted,
m.max should not be chosen too low.

Details

By default, the number of spectrum elements included in the calculation of the chi-squared statistic
may be reduced automatically in order to ensure that it is not dominated by the sampling error
of spectrum elements with very small expected frequencies (which are scaled up due to the small
variance of these random variables). As an ad-hoc rule of thumb, spectrum elements Vm with
variance less than 5 are excluded, since the normal approximation to their discrete distribution is
likely to be inaccurate in this case.

Automatic reduction is disabled when the parameter m.max is specified explicitly (use m.max=15 to
disable automatic reduction without changing the default value).

Value

A data frame with one row and the following variables:

X2 value of the multivariate chi-squared statistic X2

df number of degrees of freedom of X2, corrected for the number of parameters
that have been estimated on spc

p p-value corresponding to X2

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

See Also

lnre for more information about LNRE models

42 lnre.productivity.measures

Examples

load spectrum of first 100k Brown tokens
data(Brown100k.spc)

use this spectrum to compute zm and gigp
models
zm <- lnre("zm",Brown100k.spc)
gigp <- lnre("gigp",Brown100k.spc)

lnre.goodness.of.fit with appropriate
n.estimated value produces the same multivariate
chi-squared test that is reported in a model
summary

compare:
zm
lnre.goodness.of.fit(zm,Brown100k.spc,n.estimated=2)

gigp
lnre.goodness.of.fit(gigp,Brown100k.spc,n.estimated=3)

goodness of fit of the 100k models calculated on the
whole Brown spectrum (although this is superset of
100k spectrum, let's pretend it is an independent
spectrum, and set n.estimated to 0)

data(Brown.spc)

lnre.goodness.of.fit(zm,Brown.spc,n.estimated=0)
lnre.goodness.of.fit(gigp,Brown.spc,n.estimated=0)

lnre.productivity.measures

Measures of Productivity and Lexical Richness (zipfR)

Description

Compute expectations of various measures of productivity and lexical richness for a LNRE popula-
tion.

Usage

lnre.productivity.measures(model, N=NULL, measures, data.frame=TRUE,
bootstrap=FALSE, method="normal", conf.level=.95, sample=NULL,

replicates=1000, parallel=1L, verbose=TRUE, seed=NULL)

lnre.productivity.measures 43

Arguments

model an object belonging to a subclass of lnre, representing a LNRE model

measures character vector naming the productivity measures to be computed (see productivity.measures
for details). Names may be abbreviated as long as they remain unique. If un-
specified or NULL, all supported measures are included.

N an integer vector, specifying the sample size(s) N for which the productivity
measures will be calculated. If bootstrap=TRUE, only a single sample size
may be specified. N defaults to the sample size used for estimating model if
unspecified or set to NULL.

data.frame if TRUE, the return value is converted to a data frame for convenience in interac-
tive use (default).

bootstrap if TRUE, use parametric bootstrapping to estimate expectations and confidence
intervals for the productivity measures. Otherwise, approximate expectations
are obtained directly from the LNRE model (see ‘Details’ below for the approx-
imations and simplifications used).

method, conf.level
type of confidence interval to be estimated by parametric bootstrapping and the
requested confidence level; see bootstrap.confint for details.

sample optional callback function to generate bootstrapping samples; see lnre.bootstrap
for details and applications.

replicates, parallel, seed, verbose
if bootstrap=TRUE, these parameters are passed on to lnre.bootstrap to con-
trol the bootstrapping procedure; see lnre.bootstrap for documentation. In
most cases, it is recommended to set parallel in order to speed up the expen-
sive bootstrapping process.

Details

If bootstrap=FALSE, expected values of the productivity measures are computed based on the
following approximations:

• V, TTR, R and P are linear transformations of V or V1, so expectations can be obtained directly
from the EV and EVm methods.

• C, k, U and W are nonlinear transformations of V . In this case, the transformation function is
approximated by a linear function around E[V], which is reasonable under typical circum-
stances.

• Hapax, S, alpha2 and H are based on ratios of two spectrum elements, in some cases with an
additional nonlinear transformation. Expectations are based on normal approximations for V
and Vi together with a generalisation of Díaz-Francés and Rubio’s (2013: 313) result on the
ratio of two independent normal distributions; for a nonlinear transformation the same linear
approximation is made as above.

• K and D are (nearly) unbiased estimators of the population coefficient δ =
∑∞

i=1 π
2
i (Simpson

1949: 688).

Approximations used for expected values are explained in detail in Sec. 2.2 of the technical report
Inside zipfR.

https://zipfr.r-forge.r-project.org/materials/inside-zipfr.pdf

44 lnre.spc

Value

If bootstrap=FALSE, a numeric matrix or data frame listing approximate expectations of the se-
lected productivity measures, with one row for each sample size N and one column for each measure.
Rows and columns are labelled.

If bootstrap=TRUE, a numeric matrix or data frame with one column for each productivity measure
and four rows giving the lower and upper bound of the confidence interval, an estimate of central
tendency, and an estimate of spread. See bootstrap.confint for details.

Productivity Measures

See productivity.measures for a list of supported measures with equations and references. The
measures Entropy and eta are only supported for bootstrap=TRUE.

References

Díaz-Francés, Eloísa and Rubio, Francisco J. (2013). On the existence of a normal approximation to
the distribution of the ratio of two independent normal random variables. Statistical Papers, 54(2),
309–323.

Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.

See Also

productivity.measures computes productivity measures from observed data sets. See lnre for
further information on LNRE models, and lnre.bootstrap and bootstrap.confint for details
on the bootstrapping procedure.

Examples

plausible model for an author's vocabulary
model <- lnre("fzm", alpha=0.4, B=0.06, A=1e-12)

approximate expectation for different sample sizes
lnre.productivity.measures(model, N=c(1000, 10000, 50000))

estimate sampling distribution: 95% interval, mean, s.d.
(using parametric bootstrapping, only one sample size at a time)
lnre.productivity.measures(model, N=1000, bootstrap=TRUE)

lnre.spc Compute Expected Frequency Spectrum of LNRE Model (zipfR)

Description

lnre.spc computes the expected frequency spectrum of a LNRE model at specified sample size N,
returning an object of class spc. Since almost all expected spectrum elements are non-zero, only an
incomplete spectrum can be generated.

lnre.spc 45

Usage

lnre.spc(model, N=NULL, variances=FALSE, m.max=100)

Arguments

model an object belonging to a subclass of lnre, representing a LNRE model

N a single positive integer, specifying the sample size N for which the expected
frequency spectrum is calculated (defaults to same sample size as used for esti-
mating the model)

variances if TRUE, include variances for the spectrum elements in the spc object

m.max number of spectrum elements listed in the frequency spectrum. The default
of 100 is chosen to avoid numerical problems that certain LNRE models (in
particular, GIGP) have for higher m. If variance data is included, the default
value is automatically reduced to 50.

Details

~~ TODO, if any ~~

Value

An object of class spc, representing the incomplete expected frequency spectrum of the LNRE
model lnre at sample size N. If variances=TRUE, the spectrum also includes variance data.

See Also

spc for more information about frequency spectra and links to relevant functions; lnre for more
information about LNRE models and how to initialize them

Examples

load Dickens dataset and compute lnre models
data(Dickens.spc)

zm <- lnre("zm",Dickens.spc)
fzm <- lnre("fzm",Dickens.spc, exact=FALSE)
gigp <- lnre("gigp",Dickens.spc)

calculate the corresponding expected
frequency spectra at the Dickens size
zm.spc <- lnre.spc(zm,N(Dickens.spc))
fzm.spc <- lnre.spc(fzm,N(Dickens.spc))
gigp.spc <- lnre.spc(gigp,N(Dickens.spc))

comparative plot
plot(Dickens.spc,zm.spc,fzm.spc,gigp.spc,m.max=10)

expected spectra at N=100e+8
and comparative plot

46 lnre.vgc

zm.spc <- lnre.spc(zm,1e+8)
fzm.spc <- lnre.spc(fzm,1e+8)
gigp.spc <- lnre.spc(gigp,1e+8)

plot(zm.spc,fzm.spc,gigp.spc,m.max=10)

with variances
zm.spc <- lnre.spc(zm,1e+8,variances=TRUE)
head(zm.spc)

asking for more than 50 spectrum elements
(increasing m.max will eventually lead
to error, at different threshold for
the different models)
zm.spc <- lnre.spc(zm,1e+8,m.max=1000)
fzm.spc <- lnre.spc(fzm,1e+8,m.max=1000)
gigp.spc <- lnre.spc(gigp,1e+8,m.max=100) ## gigp breaks first!

lnre.vgc Expected Vocabulary Growth Curves of LNRE Model (zipfR)

Description

lnre.vgc computes expected vocabulary growth curves E[V (N)] according to a LNRE model,
returning an object of class vgc. Data points are returned for the specified values of N , optionally
including estimated variances and/or growth curves for the spectrum elements E[Vm(N)].

Usage

lnre.vgc(model, N, m.max=0, variances=FALSE)

Arguments

model an object belonging to a subclass of lnre, representing a LNRE model

N an increasing sequence of non-negative integers, specifying the sample sizes N
for which vocabulary growth data should be calculated

m.max if specified, include vocabulary growth curves E[Vm(N)] for spectrum elements
up to m.max. Must be a single integer in the range 1 . . . 9.

variances if TRUE, include variance estimates for the vocabulary size (and the spectrum
elements, if applicable)

Details

~~ TODO, if any ~~

lnre.vgc 47

Value

An object of class vgc, representing the expected vocabulary growth curve E[V (N)] of the LNRE
model lnre, with data points at the sample sizes N.

If m.max is specified, expected growth curves E[Vm(N)] for spectrum elements (hapax legomena,
dis legomena, etc.) up to m.max are also computed.

If variances=TRUE, the vgc object includes variance data for all growth curves.

See Also

vgc for more information about vocabulary growth curves and links to relevant functions; lnre for
more information about LNRE models and how to initialize them

Examples

load Dickens dataset and estimate lnre models
data(Dickens.spc)

zm <- lnre("zm",Dickens.spc)
fzm <- lnre("fzm",Dickens.spc,exact=FALSE)
gigp <- lnre("gigp",Dickens.spc)

compute expected V and V_1 growth up to 100 million tokens
in 100 steps of 1 million tokens
zm.vgc <- lnre.vgc(zm,(1:100)*1e6, m.max=1)
fzm.vgc <- lnre.vgc(fzm,(1:100)*1e6, m.max=1)
gigp.vgc <- lnre.vgc(gigp,(1:100)*1e6, m.max=1)

compare
plot(zm.vgc,fzm.vgc,gigp.vgc,add.m=1,legend=c("ZM","fZM","GIGP"))

load Italian ultra- prefix data
data(ItaUltra.spc)

compute zm model
zm <- lnre("zm",ItaUltra.spc)

compute vgc up to about twice the sample size
with variance of V
zm.vgc <- lnre.vgc(zm,(1:100)*70, variances=TRUE)

plot with confidence intervals derived from variance in
vgc (with larger datasets, ci will typically be almost
invisible)
plot(zm.vgc)

48 lnre.zm

lnre.zm The Zipf-Mandelbrot (ZM) LNRE Model (zipfR)

Description

The Zipf-Mandelbrot (ZM) LNRE model of Evert (2004).

The constructor function lnre.zm is not user-visible. It is invoked implicitly when lnre is called
with LNRE model type "zm".

Usage

lnre.zm(alpha=.8, B=.01, param=list())

user call: lnre("zm", spc=spc) or lnre("zm", alpha=.8, B=.1)

Arguments

alpha the shape parameter α, a number in the range (0, 1)

B the upper cutoff parameter B, a positive number (B > 1 is allowed although it
is inconsistent with the interpretation of B)

param a list of parameters given as name-value pairs (alternative method of parameter
specification)

Details

The parameters of the ZM model can either be specified as immediate arguments:

lnre.zm(alpha=.5, B=.1)

or as a list of name-value pairs:

lnre.zm(param=list(alpha=.5, B=.1))

which is usually more convenient when the constructor is invoked by another function (such as
lnre). If both immediate arguments and the param list are given, the immediate arguments override
conflicting values in param. For any parameters that are neither specified as immediate arguments
nor listed in param, the defaults from the function prototype are inserted.

The lnre.zm constructor also checks the types and ranges of parameter values and aborts with an
error message if an invalid parameter is detected.

Value

A partially initialized object of class lnre.zm, which is completed and passed back to the user by
the lnre function. See lnre for a detailed description of lnre.zm objects (as a subclass of lnre).

LNRE_posterior 49

Mathematical Details

The ZM model is a re-formulation of the Zipf-Mandelbrot law

πk =
C

(k + b)a

with parameters a > 1 and b ≥ 0 (see also Baayen 2001, 101ff) as a LNRE model. It is given by
the type density function

g(π) := C · π−α−1

for 0 ≤ π ≤ B (and π = 0 otherwise), with the parameters 0 < α < 1 and 0 < B ≤ 1. The
normalizing constant is

C =
1− α

B1−α

and the population vocabulary size is S = ∞. The parameters of the ZM model are related to those
of the original Zipf-Mandelbrot law by a = 1/α and b = (1 − α)/(B · α). See Evert (2004) for
further details.

References

Baayen, R. Harald (2001). Word Frequency Distributions. Kluwer, Dordrecht.

Evert, Stefan (2004). A simple LNRE model for random character sequences. Proceedings of JADT
2004, 411-422.

See Also

lnre for pointers to relevant methods and functions for objects of class lnre, as well as a complete
listing of LNRE models implemented in the zipfR library.

LNRE_posterior Posterior Distribution of LNRE Model (zipfR)

Description

Posterior distribution over the type probability space of a LNRE model, given the observed fre-
quency m in a sample. Posterior density (postdlnre) and log-transformed density (postldlnre)
can be computed for all LNRE models. The distribution function (postplnre) and quantiles
(postqlnre) are only available for selected types of models.

Usage

postdlnre(model, x, m, N, ...)
postldlnre(model, x, m, N, base=10, log.x=FALSE, ...)
postplnre(model, q, m, N, lower.tail=FALSE, ...)
postqlnre(model, p, m, N, lower.tail=FALSE, ...)

50 LNRE_posterior

Arguments

model an object belonging to a subclass of lnre, representing an LNRE model

m frequency m of a type in the observed sample

N sample size N

x vector of type probabilities pi for which the posterior density function is evalu-
ated

q vector of type probability quantiles, i.e. threshold values ρ on the type probabil-
ity axis

p vector of tail probabilities

base positive number, the base a with respect to which the log-transformation is pe-
formed (see "Details" below)

log.x if TRUE, the values passed in the argument x are assumed to be logarithmic, i.e.
loga π

lower.tail if TRUE, lower tail probabilities or type counts are returned / expected in the p
argument. Note that the defaults differ for distribution function and type distri-
bution, and see "Details" below.

... further arguments are passed through to the method implementations (currently
unused)

Value

A vector of non-negative numbers of the same length as the second argument (x, p or q).

postdlnre returns the posterior type density P (π|f = m) for the values of π specified in the vector
x. postplnre computes the posterior type distribution function P (π ≥ ρ|f = m) (default) or its
complement P (π ≤ ρ|f = m) (if lower.tail=TRUE). These correspond to E[Vm,>ρ] and E[Vm,ρ],
respectively (Evert 2004, p. 123). postqlnre returns quantiles, i.e. the inverse of the posterior type
distribution function.

postldlnre computes a logarithmically transformed version of the posterior type density, taking
logarithms with respect to the base a specified in the base argument (default: a = 10). Such
log-transformed densities are useful for visualizing distributions, see ldlnre for more information.

See Also

lnre for more information about LNRE models and how to initialize them, LNRE for type density
and distribution functions (which represent the prior distribution).

Examples

TODO

merge.tfl 51

merge.tfl Merging Type Frequency Lists (zipfR)

Description

Merge two or more type frequency lists. Types from the individual lists are pooled and frequencies
of types occurring in multiple lists are aggregated.

Usage

S3 method for class 'tfl'
merge(x, y, ...)

Arguments

x, y type frequency lists (i.e. objects of class tfl)

... optional further type frequency lists to be merged

Details

All type frequency lists to be merged must contain type labels, and none of them may be incomplete.

See Also

tfl for more information about type frequency lists.

N-V-Vm Access Methods for Observed Frequency Data (zipfR)

Description

N, V and Vm are generic methods that can (and should) be used to access observed frequency data
for objects of class tfl, spc, vgc and lnre. The precise behaviour of the functions depends on the
class of the object, but in general N returns the sample size, V the vocabulary size, and Vm one or
more selected elements of the frequency spectrum.

Usage

N(obj, ...)
V(obj, ...)
Vm(obj, m, ...)

52 N-V-Vm

Arguments

obj an object of class tfl (type frequency list), spc (frequency spectrum), vgc (vo-
cabulary growth curve) or lnre (LNRE model)

m positive integer value determining the frequency class m to be returned (or a
vector of such values).

... additional arguments passed on to the method implementation (see respective
manpages for details)

Details

For tfl and vgc objects, the Vm method allows only a single value m to be specified.

Value

For a frequency spectrum (class spc), N returns the sample size, V returns the vocabulary size, and
Vm returns individual spectrum elements.

For a type frequency list (class tfl), N returns the sample size and V returns the vocabulary size
corresponding to the list. Vm returns a single spectrum element from the corresponding frequency
spectrum, and may only be called with a single value m.

For a vocabulary growth curve (class vgc), N returns the vector of sample sizes and V the vector of
vocabulary sizes. Vm may only be called with a single value m and returns the corresponding vector
from the vgc object (if present).

For a LNRE model (class lnre) estimated from an observed frequency spectrum, the methods N, V
and Vm return information about this frequency spectrum.

See Also

For details on the implementations of these methods, see N.tfl, N.spc, N.vgc, etc. When applied
to an LNRE model, the methods return information about the observed frequency spectrum from
which the model was estimated, so the manpages for N.spc are relevant in this case.

Expected vocabulary size and frequency spectrum for a sample of size N according to a LNRE
model can be computed with the analogous methods EV and EVm. The corresponding variances
are obtained with the VV and VVm methods, which can also be applied to expected or interpolated
frequency spectra and vocabulary growth curves.

Examples

load Brown spc and tfl
data(Brown.spc)
data(Brown.tfl)

you can extract N, V and Vm (for a specific m)
from either structure
N(Brown.spc)
N(Brown.tfl)

V(Brown.spc)
V(Brown.tfl)

N-V-Vm.spc 53

Vm(Brown.spc,1)
Vm(Brown.tfl,1)

you can extract the same info also from a lnre model estimated
from these data (NB: these are the observed quantities; for the
expected values predicted by the model use EV and EVm instead!)
model <- lnre("gigp",Brown.spc)
N(model)
V(model)
Vm(model,1)

Baayen's P:
Vm(Brown.spc,1)/N(Brown.spc)

when input is a spectrum (and only then) you can specify a vector
of m's; e.g., to obtain class sizes of first 5 spectrum elements
you can write:
Vm(Brown.spc,1:5)

the Brown vgc
data(Brown.emp.vgc)

with a vgc as input, N, V and Vm return vectors of the respective
values for each sample size listed in the vgc
Ns <- N(Brown.emp.vgc)
Vs <- V(Brown.emp.vgc)
V1s <- Vm(Brown.emp.vgc,1)

head(Ns)
head(Vs)
head(V1s)

since the last sample size in Brown.emp.vgc
corresponds to the full Brown, the last elements
of the Ns, Vs and V1s vectors are the same as
the quantities extracted from the spectrum and
tfl:
Ns[length(Ns)]
Vs[length(Vs)]
V1s[length(V1s)]

N-V-Vm.spc Access Methods for Frequency Spectra (zipfR)

Description

Return the sample size (N.spc), vocabulary size (V.spc) and class sizes (Vm.spc) of the frequency
spectrum represented by a spc object. For an expected spectrum with variance information, VV.spc

54 N-V-Vm.spc

returns the variance of the expected spectrum size and VVm.spc the variances of individual spectrum
elements.

Note that these functions are not user-visible. They can be called implicitly through the generic
methods N, V, Vm, VV and VVm, applied to an object of type spc.

Usage

S3 method for class 'spc'
N(obj, ...)

S3 method for class 'spc'
V(obj, ...)

S3 method for class 'spc'
Vm(obj, m, ...)

S3 method for class 'spc'
VV(obj, N=NA, ...)

S3 method for class 'spc'
VVm(obj, m, N=NA, ...)

Arguments

obj an object of class spc, representing an observed or expected frequency spectrum

m positive integer value determining the frequency class m to be returned (or a
vector of such values).

N not applicable (this argument of the generic method is not used by the imple-
mentation for spc objects and must not be specified)

... additional arguments passed on from generic method will be ignored

Details

VV.spc a VVm.spc will fail if the object obj is not an expected frequency spectrum with variance
data.

For an incomplete frequency spectrum, Vm.spc (and VVm.spc) will return NA for all spectrum ele-
ments that are not listed in the object (i.e. for m > m.max).

Value

N.spc returns the sample size N , V.spc returns the vocabulary size V (or expected vocabulary size
E[V]), and Vm.spc returns a vector of class sizes Vm (ot the expected spectrum elements E[Vm]).

For an expected spectrum with variances, VV.spc returns the variance V ar[V] of the expected
vocabulary size, and VVm.spc returns variances V ar[Vm] of the spectrum elements.

N-V-Vm.tfl 55

See Also

N, V, Vm, VV, VVm for the generic methods and links to other implementations

spc for details on frequency spectrum objects and links to other relevant functions

N-V-Vm.tfl Access Methods for Type Frequency Lists (zipfR)

Description

Return the sample size (N.tfl) and vocabulary size (V.tfl) of the type frequency list represented
by a tfl object, as well as class sizes (Vm.tfl) of the corresponding frequency spectrum.

Note that these functions are not user-visible. They can be called implicitly through the generic
methods N, V and Vm, applied to an object of type tfl.

Usage

S3 method for class 'tfl'
N(obj, ...)

S3 method for class 'tfl'
V(obj, ...)

S3 method for class 'tfl'
Vm(obj, m, ...)

Arguments

obj an object of class tfl, representing an observed type frequency list

m non-negative integer value determining the frequency class m to be returned

... additional arguments passed on from generic method will be ignored

Details

Only a single value is allowed for m, which may also be 0. In order to obtain multiple class sizes
Vm, convert the type frequency list to a frequency spectrum with tfl2spc first.

For an incomplete type frequency list, Vm.tfl will return NA if m is outside the range of listed
frequencies (i.e. for m < f.min or m > f.max).

Value

N.tfl returns the sample size N , V.tfl returns the vocabulary size V (or expected vocabulary size
E[V]), and Vm.tfl returns the number of types that occur exactly m times in the sample, i.e. the
class size Vm.

56 N-V-Vm.vgc

See Also

N, V, Vm for the generic methods and links to other implementations

tfl for details on type frequency list objects and links to other relevant functions

N-V-Vm.vgc Access Methods for Vocabulary Growth Curves (zipfR)

Description

Return the vector of sample sizes (N.vgc), vocabulary sizes (V.vgc) or class sizes (Vm.vgc) from
the vocabulary growth curve (VGC) represented by a vgc object. For an expected or interpolated
VGC with variance information, VV.vgc returns the vector of variances of the vocabulary size and
VVm.vgc the variance vectors for individual spectrum elements.

Note that these functions are not user-visible. They can be called implicitly through the generic
methods N, V, Vm, VV and VVm, applied to an object of type vgc.

Usage

S3 method for class 'vgc'
N(obj, ...)

S3 method for class 'vgc'
V(obj, ...)

S3 method for class 'vgc'
Vm(obj, m, ...)

S3 method for class 'vgc'
VV(obj, N=NA, ...)

S3 method for class 'vgc'
VVm(obj, m, N=NA, ...)

Arguments

obj an object of class vgc, representing an observed, interpolated or expected VGC

m positive integer value determining the frequency class m for which the vector of
class sizes is returned

N not applicable (this argument of the generic method is not used by the imple-
mentation for vgc objects and must not be specified)

... additional arguments passed on from generic method will be ignored

plot.lnre 57

Details

VV.vgc a VVm.vgc will fail if the object obj does not include variance data. Vm.vgc and VVm.vgc
will fail if the selected frequency class is not included in the VGC data.

Value

N.vgc returns the vector of sample sizes N , V.vgc returns the corresponding vocabulary sizes V (N)
(or expected vocabulary sizes E[V (N)]), and Vm.vgc returns the vector of class sizes Vm(N) (or
the expected spectrum elements E[Vm(N)]) for the selected frequency class m.

For an expected or interpolated VGC with variance information, VV.vgc returns the vector of
variances V ar[V (N)] of the expected vocabulary size, and VVm.vgc returns vector of variances
V ar[Vm(N)] for the selected frequency class m.

Except for N.vgc, the vector returned will be labelled with corresponding sample sizes.

See Also

N, V, Vm, VV, VVm for the generic methods and links to other implementations

vgc for details on vocabulary growth curve objects and links to other relevant functions

plot.lnre Plot LNRE Population Distribution (zipfR)

Description

Visualisation of LNRE population distribution, showing either the (log-transformed) type or proba-
bility density function or the cumulative probability distribution function.

Usage

S3 method for class 'lnre'
plot(x, y, ...,

type=c("types", "probability", "cumulative"),
xlim=c(1e-9, 1), ylim=NULL, steps=200,
xlab=NULL, ylab=NULL, legend=NULL, grid=FALSE,
main="LNRE Population Distribution",
lty=NULL, lwd=NULL, col=NULL, bw=zipfR.par("bw"))

Arguments

x, y, ... one or more objects of class lnre, containing trained LNRE models describing
the population(s) to be plotted. Alternatively, all models can be passed as a list
in the x argument if the method is called explicitly (see ‘Examples’).

type what type of plot should be drawn, "types" for the log-transformed type density
function, "probability" for the log-transformed probability density function,
and "cumulative" for the cumulative probability distribution.

58 plot.lnre

xlim, ylim visible range on x- and y-axis. The default ylim is [0, 1] for type="cumulative"
and automatically chosen to fit the selected density curves for type="density".
Note that the x-axis is always logarithmic and xlim should be chosen accord-
ingly.

steps number of steps for drawing curves (increase for extra smoothness)

xlab, ylab labels for the x-axis and y-axis (with suitable defaults depending on type)

legend optional vector of character strings or expressions specifying labels for a leg-
end box, which will be drawn in the upper right-hand or left-hand corner of the
screen. If legend=TRUE, labels showing model type and parameters are auto-
matically generated.

grid whether to display a suitable grid in the background of the plot

main a character string or expression specifying a main title for the plot

lty, lwd, col style vectors that can be used to override the global styles defined by zipfR.par.
If these vectors are specified, they must contain at least as many elements as
the number of populations shown in the plot: the values are not automatically
recycled.

bw if TRUE, draw plot in B/W style (default is the global zipfR.par setting)

Details

There are two useful ways of visualising a LNRE population distribution, selected with the type
argument:

types A plot of the type density function g(π) over the type probability π on a log-transformed
scale (so that the number of types corresponds to an integral over log10 π, see ltdlnre). The
log transformation is essential so that the density function remains in a reasonable range; a
logarithmic y-axis would be very counter-intuitive. Note that density values correspond to the
number of types per order of magnitude on the x-axis.

probability A plot of the probability density function πg(π) over the type probability π on a
log-transformed scale (so that probability mass corresponds to an integral over log10 π, see
ldlnre). Note that density values correspond to the total probability mass of types across one
order of magnitude on the x-axis.

cumulative A plot of the cumulative probability distribution, i.e. the distribution function F (ρ) =
P (π ≤ ρ) showing the total probability mass of types with type probability π ≤ ρ. The x-axis
shows ρ on a logarithmic scale (but is labelled more intuitively with π by default). No special
transformations are required because 0 ≤ F (ρ) ≤ 1.

Line styles are defined globally through zipfR.par, but can be overridden with the optional param-
eters lty, lwd and col. In most cases, it is more advisable to change the global settings temporarily
for a sequence of plots, though.

The bw parameter is used to switch between B/W and colour modes. It can also be set globally with
zipfR.par.

Other standard graphics parameters (such as cex or mar) cannot be passed to the plot function an
need to be set up with par in advance.

plot.spc 59

See Also

lnre, ltdlnre, plnre zipfR.par, zipfR.plotutils

plot.tfl offers a different visualisation of the LNRE population distribution, in the form of a
Zipf-Mandelbrot law rather than type density.

Examples

visualise three LNRE models trained on same data
m1 <- lnre("zm", Dickens.spc)
m2 <- lnre("fzm", Dickens.spc)
m3 <- lnre("gigp", Dickens.spc)
plot(m1, m2, m3, type="types",

xlim=c(1e-8, 1e-2), ylim=c(0, 7.5e4), legend=TRUE)
plot(m1, m2, m3, type="probability",

xlim=c(1e-8, 1e-2), grid=TRUE, legend=TRUE)

cumulative probability distribution is not available for GIGP
plot(m1, m2, type="cumulative", grid=TRUE,

xlim=c(1e-8, 1e-2), legend=c("ZM", "fZM"))

first argument can also be a list of models with explicit call
models <- lapply(seq(.1, .9, .2),

function (x) lnre("zm", alpha=x, B=.1))
plot.lnre(models, type="cum", grid=TRUE, legend=TRUE)
plot.lnre(models, type="prob", grid=TRUE, legend=TRUE)

plot.spc Plot Word Frequency Spectra (zipfR)

Description

Plot a word frequency spectrum, or a comparison of several word frequency spectra, either as a
side-by-side barplot or as points and lines on various logarithmic scales.

Usage

S3 method for class 'spc'
plot(x, y, ...,

m.max=if (log=="") 15 else 50,
log="", conf.level=.95,
bw=zipfR.par("bw"), points=TRUE,
xlim=NULL, ylim=NULL,
xlab="m", ylab="V_m", legend=NULL,
main="Frequency Spectrum",
barcol=NULL, pch=NULL, lty=NULL, lwd=NULL, col=NULL)

60 plot.spc

Arguments

x, y, ... one or more objects of class spc, representing observed or expected frequency
spectra to be plotted. Alternatively, all spectra can be passed as a list in the x
argument if the method is called explicitly (see ‘Examples’.

m.max number of frequency classes that will be shown in plot. The default is 15 on
linear scale and 50 when using any type of logarithmic scale.

log a character string specifying the axis or axes for which logarithmic scale is to
be used ("x", "y", or "xy"), similar to the log argument of plot.default.
By default, a barplot on linear scale is displayed. Use log="" to show non-
logarithmic points-and-lines plot (also see "Details" below).

conf.level confidence level for confidence intervals in logarithmic plots (see "Details" be-
low). The default value of .95 produces 95%-confidence intervals. Set to NA in
order to suppress confidence interval markers.

bw if TRUE, draw plot in B/W style (default is the global zipfR.par setting)

points if TRUE, spectrum plots on any type of logarithmic scale are drawn as overplotted
lines and points (default). Otherwise, they are drawn as lines with different
styles.

xlim, ylim visible range on x- and y-axis. The default values are automatically determined
to fit the selected data in the plot.

xlab, ylab labels for the x-axis and y-axis. The default values nicely typeset mathematical
expressions. The y-axis label also distinguishes between observed and expected
frequency spectra.

main a character string or expression specifying a main title for the plot

legend optional vector of character strings or expressions, specifying labels for a legend
box, which will be drawn in the upper right-hand corner of the screen. If legend
is given, its length must correspond to the number of frequency spectra in the
plot.

barcol, pch, lty, lwd, col
style vectors that can be used to override the global styles defined by zipfR.par.
If these vectors are specified, they must contain at least as many elements as
there are frequency spectra in the plot: the values are not automatically recycled.

Details

By default, the frequency spectrum or spectra are represented as a barplot, with both axes using
linear scale. If the log parameter is given, the spectra are shown either as lines in different styles
(points=FALSE) or as overplotted points and lines (point=TRUE). The value of log specifies which
axes should use logarithmic scale (specify log="" for a points-and-lines plot on linear scale).

In y-logarithmic plots, frequency classes with Vm = 0 are drawn outside the plot region (below the
bottom margin) rather than skipped.

In all logarithmic plots, confidence intervals are indicated for expected frequency spectra with vari-
ance data (by vertical lines with T-shaped hooks at both ends). The size of the confidence intervals
is controlled by the conf.level parameter (default: 95%). Set conf.level=NA in order to suppress
the confidence interval indicators.

plot.spc 61

Line and point styles, as well as bar colours in the barplot, can be defined globally with zipfR.par.
They can be overridden locally with the optional parameters barcol, pch, lty, lwd and col, but
this should only be used when absolutely necessary. In most cases, it is more advisable to change
the global settings temporarily for a sequence of plots.

The bw parameter is used to switch between B/W and colour modes. It can also be set globally with
zipfR.par.

See Also

spc, lnre, lnre.spc, plot.tfl, plot.vgc, zipfR.par, zipfR.plotutils

Examples

load Italian ultra- prefix data
data(ItaUltra.spc)

plot spectrum
plot(ItaUltra.spc)

logarithmic scale for m (more elements are plotted)
plot(ItaUltra.spc, log="x")

just lines
plot(ItaUltra.spc, log="x", points=FALSE)

just the first five elements, then the first 100
plot(ItaUltra.spc, m.max=5)
plot(ItaUltra.spc, m.max=100, log="x")

compute zm model and expeccted spectrum
zm <- lnre("zm", ItaUltra.spc)
zm.spc <- lnre.spc(zm, N(ItaUltra.spc))

compare observed and expected spectra (also
in black and white to print on papers)
plot(ItaUltra.spc, zm.spc, legend=c("observed", "expected"))
plot(ItaUltra.spc, zm.spc, legend=c("observed", "expected"), bw=TRUE)
plot(ItaUltra.spc, zm.spc, legend=c("observed", "expected"), log="x")
plot(ItaUltra.spc, zm.spc, legend=c("observed", "expected"), log="x", bw=TRUE)

re-generate expected spectrum with variances
zm.spc <- lnre.spc(zm, N(ItaUltra.spc), variances=TRUE)

now 95% ci is shown in log plot
plot(zm.spc, log="x")

different title and labels
plot(zm.spc, log="x", main="Expected Spectrum with Confidence Interval",

xlab="spectrum elements", ylab="expected type counts")

can pass list of spectra in first argument with explicit call
plot.spc(Baayen2001[1:7], m.max=6, legend=names(Baayen2001)[1:7])

62 plot.tfl

plot.tfl Plot Type-Frequency List / Zipf Ranking (zipfR)

Description

Zipf ranking plot of a type-frequency list, or comparison of several Zipf rankings, on linear or
logarithmic scale.

Usage

S3 method for class 'tfl'
plot(x, y, ...,

min.rank=1, max.rank=NULL, log="",
type=c("p", "l", "b", "o", "s"),
xlim=NULL, ylim=NULL, freq=TRUE,
xlab="rank", ylab="frequency", legend=NULL, grid=FALSE,
main="Type-Frequency List (Zipf ranking)",
bw=zipfR.par("bw"), cex=1, steps=200,
pch=NULL, lty=NULL, lwd=NULL, col=NULL)

Arguments

x, y, ... one or more objects of class tfl, containing the type frequency list(s) to be
plotted. LNRE models of class lnre can also be specified to display the cor-
responding population Zipf rankings (see ‘Details’ for more information). It is
also possible to pass all objects as a list in argument x, but the method needs to
be called explicitly in this case (see ‘Examples’).

min.rank, max.rank
range of Zipf ranks to be plotted for each type-frequency list. By default, all
ranks are shown.

log a character string specifying the axis or axes for which logarithmic scale is to be
used ("x", "y", or "xy"), similar to the log argument of plot.default.

type what type of plot should be drawn. Types p (points), l (lines), b (both) and o
(points over lines) are the same as in plot.default. Type s plots a step function
with type frequencies corresponding to right upper corners (i.e. type S in plot);
it is recommended for plotting full type-frequency lists and can be much more
efficient than the other types. See ‘Details’ below.

xlim, ylim visible range on x- and y-axis. The default values are automatically determined
to fit the selected data in the plot.

freq if freq=FALSE, plot relative frequency (per million words) instead of absolute
frequency on the y-axis. This is useful for comparing type-frequency lists with
different sample size and is required for plotting LNRE populations.

xlab, ylab labels for the x-axis and y-axis.

plot.tfl 63

legend optional vector of character strings or expressions, specifying labels for a legend
box, which will be drawn in the upper right-hand corner of the screen. If legend
is given, its length must correspond to the number of type-frequeny lists in the
plot.

grid whether to display a suitable grid in the background of the plot (only for loga-
rithmic axis)

main a character string or expression specifying a main title for the plot

bw if TRUE, draw plot in B/W style (default is the global zipfR.par setting)

cex scaling factor for plot symbols (types "p", "b" and "o"). This scaling factor is
not applied to other text elements in the plot; use par for this purpose.

steps number of steps for drawing population Zipf rankings of LNRE models. These
are always drawn as lines (regardless of type) and are not aligned with integer
type ranks (because the LNRE models are actually continuous approximations).

pch, lty, lwd, col
style vectors that can be used to override the global styles defined by zipfR.par.
If these vectors are specified, they must contain at least as many elements as the
number of type-frequency lists shown in the plot: the values are not automati-
cally recycled.

Details

The type-frequency lists are shown as Zipf plots, i.e. scatterplots of the Zipf-ranked frequencies on
a linear or logarithmic scale. Only a sensible subset of the default plotting styles described in plot
are supported: p (points), l (lines), b (both, with a margin around points), o (both overplotted) and
s (stair steps, but actually of type S).

For plotting complete type-frequency lists from larger samples, type s is strongly recommended.
It aggregates all types with the same frequency and is thus much more efficient than the other plot
types. Note that the points shown by the other plot types coincide with the the right upper corners
of the stair steps.

Trained LNRE models can also be included in the plot, but only with freq=FALSE. In this case,
the corresponding population Zipf rankings are displayed as lines (i.e. always type l, regardless
of the type parameter). The lines are intended to be smooth and are not aligned with integer type
ranks in order to highlight the fact that LNRE models are continuous approximations of the discrete
population.

Line and point styles are defined globally through zipfR.par, but can be overridden with the op-
tional parameters pch, lty, lwd and col. In most cases, it is more advisable to change the global
settings temporarily for a sequence of plots, though.

The bw parameter is used to switch between B/W and colour modes. It can also be set globally with
zipfR.par.

See Also

tfl, vec2tfl, rlnre, spc2tfl, plot.spc, plot.vgc, plot.lnre, zipfR.par, zipfR.plotutils

64 plot.vgc

Examples

plot tiny type-frequency lists (N = 100) for illustration
tfl1 <- vec2tfl(EvertLuedeling2001$bar[1:100])
tfl2 <- vec2tfl(EvertLuedeling2001$lein[1:100])
plot(tfl1, type="b")
plot(tfl1, type="b", log="xy")
plot(tfl1, tfl2, legend=c("bar", "lein"))

realistic type-frequency lists (type="s" recommended for efficiency)
tfl1 <- spc2tfl(BrownImag.spc)
tfl2 <- spc2tfl(BrownInform.spc)
plot(tfl1, tfl2, log="xy", type="s",

legend=c("fiction", "non-fiction"), grid=TRUE)
always use freq=FALSE to compare samples of different size
plot(tfl1, tfl2, log="xy", type="s", freq=FALSE,

legend=c("fiction", "non-fiction"), grid=TRUE)

show Zipf-Mandelbrot law fitted to low end of frequency spectrum
m1 <- lnre("zm", BrownInform.spc)
m2 <- lnre("fzm", BrownInform.spc)
plot(tfl1, tfl2, m1, m2, log="xy", type="s", freq=FALSE, grid=TRUE,

legend=c("fiction", "non-fiction", "ZM", "fZM"))

call plot.tfl explicitly if only LNRE populations are displayed
plot.tfl(m1, m2, max.rank=1e5, freq=FALSE, log="xy")

first argument can then also be a list of TFLs and/or LNRE models
plot.tfl(lapply(EvertLuedeling2001, vec2tfl), log="xy", type="s", freq=FALSE,

legend=names(EvertLuedeling2001))

plot.vgc Plot Vocabulary Growth Curves (zipfR)

Description

Plot a vocabulary growth curve (i.e., V (N) or Vm(N) against N), or a comparison of several
vocabulary growth curves.

Usage

S3 method for class 'vgc'
plot(x, y, ...,

m=NULL, add.m=NULL, N0=NULL,
conf.level=.95, conf.style=c("ticks", "lines"),
log=c("", "x", "y", "xy"),
bw=zipfR.par("bw"),
xlim=NULL, ylim=NULL,
xlab="N", ylab="V(N)", legend=NULL,
main="Vocabulary Growth",

plot.vgc 65

lty=NULL, lwd=NULL, col=NULL)

Arguments

x, y, ... one or more objects of class vgc, representing observed or expected vocabulary
growth curves to be plotted. Alternatively, all VGCs can be passed as a list in
the x argument if the method is called explicitly (see ‘Examples’.

m a single integer m in the range 1 . . . 9. If specified, graphs will be plotted for
Vm(N) instead of V (N) (the default). Note that all vgc objects to be plotted
must contain the necessary data in this case.

add.m a vector of integers in the range 1 . . . 9. If specified, graphs for Vm(N) will be
added as thin lines to the default V (N) curve, for all specified frequency classes
m. This option cannot be combined with the m option above. See "Details"
below.

N0 if specified, draw a dashed vertical line at N = N0, indicating the sample size
where a LNRE model has been estimated (this is never done automatically)

log a character string specifying the axis or axes for which logarithmic scale is to
be used ("x", "y", or "xy"), similar to the log argument of plot.default. By
default, both axes use linear scale (also see "Details" below).

conf.level confidence level for confidence intervals around expected vocabulary growth
curves (see "Details" below). The default value of .95 produces 95%-confidence
intervals. Set to NA in order to suppress confidence interval markers.

conf.style if "ticks", confidence intervals are indicated by vertical lines at each data point
in the vgc object (default). If "lines", confidence intervals are indicated by thin
curves above and below the VGC (which may be difficult to see when plotting
multiple VGCs). Notice that confidence intervals might be so narrow as to be
invisible in plots (one way to visualize them in such case might be to set an
extremely conservative confidence level, such as .9999).

bw if TRUE, draw plot in B/W style (default is the global zipfR.par setting)

xlim, ylim visible range on x- and y-axis. The default values are automatically determined
to fit the selected data in the plot.

xlab, ylab labels for the x-axis and y-axis. The default values nicely typeset mathematical
expressions. The y-axis label also distinguishes between observed and expected
vocabulary growth curves, as well as between V (N) and Vm(N).

main a character string or expression specifying a main title for the plot

legend optional vector of character strings or expressions, specifying labels for a legend
box, which will be drawn in the lower right-hand corner of the screen. If legend
is given, its length must correspond to the number of VGCs in the plot.

lty, lwd, col style vectors that can be used to override the global styles defined by zipfR.par.
If these vectors are specified, they must contain at least as many elements as
there are VGCs in the plot: the values are not automatically recycled.

66 plot.vgc

Details

By default, standard vocabulary growth curves are plotted for all specified vgc objects, i.e. graphs
of V (N) against N . If m is specified, growth curves for hapax legomena or other frequency classes
are shown instead, i.e. graphs of Vm(N) against N . In this case, all vgc objects must contain the
necessary data for Vm(N).

Alternatively, the option add.m can be used to display growth curves for one or more spectrum ele-
ments in addition to the standard VGCs. These growth curves are plotted as thinner lines, otherwise
matching the styles of the main curves. Since such plots can become fairly confusing and there is
no finer control over the styles of the additional curves, it is generally not recommended to make
use of the add.m option.

Confidence intervals are indicated for expected vocabulary growth curves with variance data, either
by short vertical lines (conf.style="ticks", the default) or by thin curves above and below the
main growth curve (conf.style="lines"). The size of the confidence intervals is controlled by
the conf.level parameter (default: 95%). Set conf.level=NA in order to suppress the confidence
interval indicators.

In y-logarithmic plots, data points with V (N) = 0 or Vm(N) = 0 are drawn outside the plot region
(below the bottom margin) rather than skipped.

Line and point styles can be defined globally with zipfR.par. They can be overridden locally with
the optional parameters lty, lwd and col, but this should only be used when absolutely necessary.
In most cases, it is more advisable to change the global settings temporarily for a sequence of plots.

The bw parameter is used to switch between B/W and color modes. It can also be set globally with
zipfR.par.

See Also

vgc, lnre, lnre.vgc, plot.tfl, plot.spc, zipfR.par, zipfR.plotutils

Examples

load Our Mutual Friend spectrum and empirical vgc
data(DickensOurMutualFriend.emp.vgc)
data(DickensOurMutualFriend.spc)

plot empirical V and V1 growth
plot(DickensOurMutualFriend.emp.vgc,add.m=1)

use log scale for y-axis
plot(DickensOurMutualFriend.emp.vgc,add.m=1,log="y")

binomially interpolated vgc at same points as
empirical vgc
omf.bin.vgc <- vgc.interp(DickensOurMutualFriend.spc,N(DickensOurMutualFriend.emp.vgc))

compare empirical and interpolated vgc, also with
thinner lines, and in black and white
plot(DickensOurMutualFriend.emp.vgc,omf.bin.vgc,legend=c("observed","interpolated"))
plot(DickensOurMutualFriend.emp.vgc,omf.bin.vgc,legend=c("observed","interpolated"),lwd=c(1,1))
plot(DickensOurMutualFriend.emp.vgc,omf.bin.vgc,legend=c("observed","interpolated"),bw=TRUE)

plot.vgc 67

load Great Expectations spectrum and use it to
compute ZM model
data(DickensGreatExpectations.spc)
ge.zm <- lnre("zm",DickensGreatExpectations.spc)

expected V of Great Expectations at sample
sizes of OMF's interpolated vgc
ge.zm.vgc <- lnre.vgc(ge.zm,N(omf.bin.vgc))

compare interpolated OMF Vs and inter/extra-polated
GE Vs, with a vertical line at sample size
used to compute GE model
plot(omf.bin.vgc,ge.zm.vgc,N0=N(ge.zm),legend=c("OMF","GE"))

load Italian ultra- prefix data and compute zm model
data(ItaUltra.spc)
ultra.zm <- lnre("zm",ItaUltra.spc)

compute vgc up to about twice the sample size
with variance of V
ultra.zm.vgc <- lnre.vgc(ultra.zm,(1:100)*70, variances=TRUE)

plot with confidence intervals derived from variance in
vgc (with larger datasets, ci will typically be almost
invisible)
plot(ultra.zm.vgc)

use more conservative confidence level, and plot
the intervals as lines
plot(ultra.zm.vgc,conf.level=.99,conf.style="lines")

suppress ci plotting, and insert different title and labels
plot(ultra.zm.vgc,conf.level=NA,main="ultra-",xlab="sample sizes",ylab="types")

load Brown adjective spectrum
(about 80k tokens)
data(BrownAdj.spc)

binomially interpolated curve of V and V_1 to V_5
BrownAdj.bin.vgc <- vgc.interp(BrownAdj.spc,(1:100)*800,m.max=5)

plot with V and 5 spectrum elements
plot(BrownAdj.bin.vgc,add.m=c(1:5))

can pass list of VGCs in first argument with explicit call
plot.vgc(lapply(EvertLuedeling2001, vec2vgc),

xlim=c(0, 30000), ylim=c(0, 1200),
legend=names(EvertLuedeling2001))

68 print.lnre

print.lnre Printing LNRE Models (zipfR)

Description

Implementations of the print and summary methods for LNRE models (subclasses of lnre).

Usage

S3 method for class 'lnre'
print(x, ...)

S3 method for class 'lnre'
summary(object, ...)

Arguments

x, object an object of class lnre or one of its subclasses, representing a LNRE model

... other arguments passed on from generic method will be ignored

Details

NB: implementation details and format of the summary are subject to change in future releases

In the current implementation, print and summary produce the same output for LNRE models.

This summary comprises the type of LNRE model, its parameter values, derived parameters such
as normalization constants, and the population size S.

If the model parameters have been estimated from an observed frequency spectrum, a comparison
of the observed and expected frequency spectrum is shown, including goodness-of-fit statistics.

Value

NULL

Unlike other implementations of the summary method, summary.lnre only prints a summary on
screen and does not return a special "summary" object.

See Also

See the lnre manpage for more information on LNRE models.

print.spc 69

Examples

load Brown verbs dataset and estimate lnre models
data(BrownVer.spc)
zm <- lnre("zm",BrownVer.spc)
fzm <- lnre("fzm",BrownVer.spc,exact=FALSE)
gigp <- lnre("gigp",BrownVer.spc)

look at summaries with either summary or print
summary(zm)
print(zm)

summary(fzm)
print(fzm)

summary(gigp)
print(gigp)

print.spc Printing Frequency Spectra (zipfR)

Description

Implementations of the print and summary methods for frequency spectrum objects (of class spc).

Usage

S3 method for class 'spc'
print(x, all=FALSE, ...)

S3 method for class 'spc'
summary(object, ...)

Arguments

x, object an object of class spc, representing a frequency spectrum

all if FALSE, only the first ten non-empty frequency classes will be shown (default)

... other arguments passed on from generic method will be ignored

Details

NB: implementation details and format of the summary are subject to change in future releases

print.spc works similar to the standard print method for data frames, but provides additional
information about N and V . Unless all is set to TRUE, only the first ten non-zero spectrum elements
will be shown.

70 print.tfl

summary.spc gives a concise summary of the most important information about the frequency
spectrum. In addition to N V , the first spectrum elements are shown. The summary will also
indicate whether the spectrum is incomplete, an expected spectrum, or has variances (but does not
show the variances).

Value

NULL

Unlike other implementations of the summary method, summary.spc only prints a summary on
screen and does not return a special "summary" object.

See Also

See the spc manpage for details on spc objects.

Examples

load Brown verbs dataset
data(BrownVer.spc)

look at summary and print BrownVer.spc
summary(BrownVer.spc)
print(BrownVer.spc)

print all non-zero spectrum elements
print(BrownVer.spc,all=TRUE)

estimate zm model and construct expected spectrum with
variances
zm <- lnre("zm",BrownVer.spc)
zm.spc <- lnre.spc(zm,N(zm),variances=TRUE)

summary and print for the expected spectrum
summary(zm.spc)
print(zm.spc)

print.tfl Printing Type Frequency Lists (zipfR)

Description

Implementations of the print and summary methods for type frequency list objects (of class tfl).

print.tfl 71

Usage

S3 method for class 'tfl'
print(x, all=FALSE, ...)

S3 method for class 'tfl'
summary(object, ...)

Arguments

x, object an object of class tfl, representing a type frequency list

all if FALSE, only the twenty most frequent types will be shown (default)

... other arguments passed on from generic method will be ignored

Details

NB: implementation details and format of the summary are subject to change in future releases

print.tfl works similar to the standard print method for data frames, but provides additional
information about N and V . Unless all is set to TRUE, only the twenty most frequent types will be
shown.

summary.tfl gives a concise summary of the most important information about the type frequency
list. In addition to showing N V , the summary also indicates whether the list is incomplete and
shows examples of type representations (if present).

Value

NULL

Unlike other implementations of the summary method, summary.tfl only prints a summary on
screen and does not return a special "summary" object.

See Also

See the tfl manpage for details on tfl objects.

Examples

load Brown tfl
data(Brown.tfl)

summary and print most frequent types
summary(Brown.tfl)
print(Brown.tfl)

the whole type list (don't try this unless you have some time to spare)
Not run:
print(Brown.tfl,all=TRUE)
End(Not run)

72 print.vgc

print.vgc Printing Vocabulary Growth Curves (zipfR)

Description

Implementations of the print and summary methods for vocabulary growth curve objects (of class
vgc).

Usage

S3 method for class 'vgc'
print(x, all=FALSE, ...)

S3 method for class 'vgc'
summary(object, ...)

Arguments

x, object an object of class vgc, representing a vocabulary growth curve

all if FALSE, vocabulary growth data are shown for at most 25 sample sizes (default)

... other arguments passed on from generic method will be ignored

Details

NB: implementation details and format of the summary are subject to change in future releases

print.vgc calls the standard print method for data frames internally, but reduces the data set
randomly to show at most 25 sample sizes (unless all=TRUE).

summary.vgc gives a concise summary of the available vocabulary growth data in the vgc object,
including the number and range of sample sizes, whether spectrum elements are included, and
whether variances are included.

Value

NULL

Unlike other implementations of the summary method, summary.vgc only prints a summary on
screen and does not return a special "summary" object.

See Also

See the vgc manpage for details on vgc objects.

productivity.measures 73

Examples

load Brown "informative" prose empirical vgc
data(BrownInform.emp.vgc)

summary, print (random subset) and print all
summary(BrownInform.emp.vgc)
print(BrownInform.emp.vgc)
print(BrownInform.emp.vgc,all=TRUE)

load Brown informative prose spectrum
and get estimate a fzm model
data(BrownInform.spc)
fzm <- lnre("fzm",BrownInform.spc,exact=FALSE)

obtain expected vgc up to 2M tokens
with spectrum elements up to V_3
and variances
fzm.vgc <- lnre.vgc(fzm,(1:100)*2e+4,m.max=3,variances=TRUE)

summary and print
summary(fzm.vgc)
print(fzm.vgc)
print(fzm.vgc,all=TRUE)

productivity.measures Measures of Productivity and Lexical Richness (zipfR)

Description

Compute various measures of productivity and lexical richness from an observed frequency spec-
trum or type-frequency list, from an observed vocabulary growth curve, or from a vector of tokens.

Usage

productivity.measures(obj, measures, data.frame=TRUE, ...)

S3 method for class 'tfl'
productivity.measures(obj, measures, data.frame=TRUE, ...)
S3 method for class 'spc'
productivity.measures(obj, measures, data.frame=TRUE, ...)
S3 method for class 'vgc'
productivity.measures(obj, measures, data.frame=TRUE, ...)

Default S3 method:
productivity.measures(obj, measures, data.frame=TRUE, ...)

74 productivity.measures

Arguments

obj a suitable data object from which productivity measures can be computed. Cur-
rently either a frequency spectrum (of class spc), a type-frequency list (of class
tfl), a vocabulary growth curve (of class vgc), or a token vector.

measures character vector naming the productivity measures to be computed (see "Pro-
ductivity Measures" below). Names may be abbreviated as long as they remain
unique. If unspecified, all supported measures are computed.

data.frame if TRUE, the return value is converted to a data frame for convenience in interac-
tive use (default).

... additional arguments passed on to the method implementations (currently, no
further arguments are recognized)

Details

This function computes productivity measures based on an observed frequency spectrum, type-
frequency list or vocabulary growth curve. If an expected spectrum or VGC is passed, the expecta-
tions E[V], E[Vm] will simply be substituted for the sample values V , Vm in the equations. In most
cases, this does not yield the expected value of the productivity measure!

Some measures can only be computed from a complete frequency spectrum. They will return NA if
obj is an incomplete spectrum or type-frequency list, an expected spectrum or a vocabulary growth
curve is passed.

Some other measures can only be computed is a sufficient number of spectrum elements is included
in a vocabulary growth curve (usually at least V1 and V2), and will return NA otherwise.

Such limitations are indicated in the list of measures below (unless spectrum elements V1 and V2

are sufficient).

Value

If obj is a frequency spectrum, type-frequency list or token vector: A numeric vector of the
same length as measures with the corresponding observed values of the productivity measures.
If data.frame=TRUE (the default), a single-row data frame is returned.

If obj is a vocabulary growth curve: A numeric matrix with columns corresponding to the selected
productivity measures and rows corresponding to the sample sizes of the vocabulary growth curve.
If data.frame=TRUE (the default), the matrix is converted to a data frame.

Productivity Measures

The following productivity measures are currently supported:

V: the total number of types V

TTR: the type-token ratio TTR = V/N

R: Guiraud’s (1954) R = V/
√
N . An equivalent measure is Carroll’s (1964) CTTR = R/

√
2.

C: Herdan’s (1964) C = log V
logN

k: Dugast’s (1979) k = log V
log logN

productivity.measures 75

U: Dugast’s (1978, 1979) U = (logN)2

logN−log V . Maas (1972) proposed an equivalent measure a2 =

1/U .

W: Brunet’s (1978) W = NV −a

with a = 0.172.
P: Baayen’s (1991) productivity index P = V1

N , which corresponds to the slope of the vocabulary
growth curve (under random sampling assumptions)

Hapax: the proportion of hapax legomena V1

V is a direct estimate for the parameter α = 1/a of a
population following the Zipf-Mandelbrot law (Evert 2004b: 130).

H: Honoré’s (1979) H = 100 logN
1−V1/V

, a transformation of the proportion of hapax legomena ad-
justed for sample size

S: Sichel’s (1975) S = V2/V , i.e. the proportion of dis legomena. Michéa’s (1969, 1971) M =
1/S is an equivalent measure.

alpha2: Evert’s α2 = 1 − 2V2

V1
is another direct estimate for the parameter α = 1/a of a Zipf-

Mandelbrot population (Evert 2004b: 127).

K: Yule’s (1944) K = 104 ·
∑

m m2Vm−N

N2

(only for complete frequency spectrum or type-frequency list). Herdan (1955) proposes an al-
most equivalent measure vm ≈

√
K based on a different derviation. Both measures converge

for large N and V . Yule’s K is almost identical to Simpson’s D and is an unbiased estima-
tor for the same population coefficient δ under an independent Poisson sampling scheme. A
measure of lexical poverty, i.e. smaller values correpond to higher productivity.

D: Simpson’s (1949) D =
∑

m Vm
m
N · m−1

N−1
(only for complete frequency spectrum or type-frequency list) is a slightly modified version of
Yule’s K. This measure is an unbiased estimator for a population coefficient δ, representing
the probability of picking the same type twice in two consecutive draws from the population.
A measure of lexical poverty, i.e. smaller values correpond to higher productivity.

Entropy: Entropy of the sample frequency distribution −
∑

m Vm
m
N log2

m
N

(only for complete frequency spectrum or type-frequency list). This is not a reliable estimator
of population entropy. It is therefore not recommended as a productivity measure and has
only been included for evaluation studies. A measure of lexical poverty, i.e. smaller values
correpond to higher productivity.

eta: Normalised entropy or evenness η = Entropy/ log2 V
(only for complete frequency spectrum or type-frequency list) where log2 V is the largest
possible value for a sample with the observed vocabulary size (obtained for a uniform distri-
bution). Therefore, 0 ≤ η ≤ 1. Not recommended as a productivity measure because it is
expected to produce erratic and counterintuitive results.

See Sec. 2.1 of the technical report Inside zipfR for further details and references.

References

Evert, Stefan (2004b). The Statistics of Word Cooccurrences: Word Pairs and Collocations. PhD
Thesis, IMS, University of Stuttgart. URN urn:nbn:de:bsz:93-opus-23714 http://dx.doi.org/
10.18419/opus-2556

See Also

lnre.productivity.measures for parametric bootstrapping and approximate expectations of pro-
ductivity measures in random samples from a LNRE population.

https://zipfr.r-forge.r-project.org/materials/inside-zipfr.pdf
http://dx.doi.org/10.18419/opus-2556
http://dx.doi.org/10.18419/opus-2556

76 read.multiple.objects

Examples

rbind(
AllTexts=productivity.measures(Brown.spc),
Fiction=productivity.measures(BrownImag.spc),
NonFiction=productivity.measures(BrownInform.spc))

can be applied to token vector, type-frequency list, or frequency spectrum
bar.vec <- EvertLuedeling2001$bar
bar1 <- productivity.measures(bar.vec) # token vector
bar2 <- productivity.measures(vec2tfl(bar.vec)) # type-frequency list
bar3 <- productivity.measures(vec2spc(bar.vec)) # frequency spectrum
print(rbind(tokens=bar1, tfl=bar2, spc=bar3))

sample-size dependency of productivity measures in Brown corpus
(note that only a subset of the measures can be computed)
n <- c(10e3, 50e3, 100e3, 200e3, 500e3, 1e6)
idx <- N(Brown.emp.vgc) %in% n
my.vgc <- vgc(N=N(Brown.emp.vgc)[idx],

V=V(Brown.emp.vgc)[idx],
Vm=list(Vm(Brown.emp.vgc, 1)[idx]))

print(my.vgc) # since we don't have a subset method for VGCs yet
productivity.measures(my.vgc)

productivity.measures(my.vgc, measures=c("TTR", "P")) # selected measures

parametric bootstrapping to obtain sampling distribution of measures
(much easier with ?lnre.productivity.measures)
model <- lnre("zm", spc=ItaRi.spc) # realistic LNRE model
res <- lnre.bootstrap(model, 1e6, ESTIMATOR=identity,

STATISTIC=productivity.measures)
bootstrap.confint(res, method="normal")

read.multiple.objects Reading Multiple Objects from Files (zipfR)

Description

read.multiple.objects constructs a list of spc, vgc or tfl objects from a set of input text files
in the specified directory

NB: This function is intended for users that want to run advanced experiments (e.g., handling hun-
dreds of spectra generated in multiple randomizations experiments). For the standard one-object-
at-a-time reading functionality, look at the documentation of read.spc, read.vgc and read.tfl

Usage

read.multiple.objects(directory, prefix, class=c("spc", "vgc", "tfl"))

read.multiple.objects 77

Arguments

directory character string specifying the directory where the target input files reside (ab-
solute path, or path relative to current working directory)

prefix character string specifying prefix that must be shared by all target input file
names

class one of spc, vgc or tfl as character string, specifying the class of object we are
importing (see the manpages of spc, vgc and tfl for details)

Format

read.multiple.objects reads in all files matching the pattern prefix.id.class from the speci-
fied directory, where the prefix and class strings are passed as arguments, and id is an arbitrary
string that is used as index of the corresponding object in the output list

read.multiple.objects calls the read function corresponding to the class argument. Thus, the
input files must respect the formatting conventions of the relevant reading functions (see documen-
tation of read.spc, read.vgc and read.tfl)

Value

read.multiple.objects returns a list of objects of the specified class; each object is indexed with
the id extracted from the corresponding file name (see section "Format")

See Also

See the spc, vgc and tfl manpages for details on the corresponding objects; read.spc, read.vgc
and read.tfl for the single-file reading functions and input format details

Examples

Not run:
These are just illustrative examples. Users should fill in their
own files instead of the dummy names used here.

suppose that the current working directory contains
100 spc files named: rand.1.spc, rand.2.spc, ...,
rand.100.spc

read the files in:
spc.list <- read.multiple.objects(".","rand","spc")

you can access each spc using the id extracted from
the file name, e.g.:
summary(spc.list[["1"]])

more usefully, you might want to iterate over the
whole list, e.g., to calculate mean V:
mean(sapply(spc.list,V))

notice that ids are arbitrary strings
e.g., suppose that directory /home/me/animals

78 read.spc

contains sounds.dog.vgc and sounds.elephant.vgc

we read the vgcs in:
vgc.list <- read.multiple.objects("/home/me/animals","sounds","vgc")

accessing the elephant vgc:
V(vgc.list[["elephant"]])

of course, tfl-reading works in the same way (assuming
that the animals directory also contains some tfl files):
tfl.list <- read.multiple.objects("/home/me/animals","sounds","tfl")

End(Not run)

read.spc Loading and Saving Frequency Spectra (zipfR)

Description

read.spc loads frequency spectrum from .spc file

write.spc saves frequency spectrum object in .spc file

Usage

read.spc(file)

write.spc(spc, file)

Arguments

file character string specifying the pathname of a disk file. Files with extension .gz
will automatically be compressed/decompressed. See section "Format" for a
description of the required file format

spc a frequency spectrum, i.e.\ an object of class spc

Format

A TAB-delimited text file with column headers but no row names (suitable for reading with read.delim).
The file must contain at least the following two columns:

m frequency class m

Vm number Vm of types in frequency class m (or expected class size E[Vm])

An optional column labelled VVm can be used to specify variances of expected class sizes (for a
frequency spectrum derived from a LNRE model or by binomial interpolation).

These columns may appear in any order in the text file. All other columns will be silently ignored.

read.spc 79

Details

If the filename file ends in the extension .gz, .bz2 or .xz, the disk file will automatically be
decompressed (read.spc) or compressed (write.spc).

The .spc file format does not store the values of N, V and VV explicitly. Therefore, incomplete
frequency spectra and expected spectra with variances cannot be fully reconstructed from disk files.
Saving such frequency spectra (or loading a spectrum with variance data) will trigger corresponding
warnings.

Value

read.spc returns an object of class spc (see the spc manpage for details)

See Also

See the spc manpage for details on spc objects. See read.tfl and read.vgc for import/export of
other data structures.

Examples

save Italian ultra- frequency spectru to external text file
fname <- tempfile(fileext=".spc")
write.spc(ItaUltra.spc, fname)
now <fname> is a TAB-delimited text file with columns m and Vm

we ready it back in
New.spc <- read.spc(fname)

same spectrum as ItaUltra.spc, compare:
summary(New.spc)
summary(ItaUltra.spc)

stopifnot(isTRUE(all.equal(New.spc, ItaUltra.spc))) # should be identical

Not run:
DON'T do the following, incomplete spectrum will not be restored properly !!!
zm <- lnre("zm", ItaUltra.spc) # estimate model
zm.spc <- lnre.spc(zm,N(zm)) # incomplete spectrum from model
write.spc(zm.spc, fname) # WARNINGS
bad.spc <- read.spc(fname) # but this function cannot know something is wrong

summary(zm.spc)
summary(bad.spc) # note that N and V are completely wrong !!!

End(Not run)

80 read.tfl

read.tfl Loading and Saving Type Frequency Lists (zipfR)

Description

read.tfl loads type frequency list from .tfl file

write.tfl saves type frequency list object in .tfl file

Usage

read.tfl(file, encoding=getOption("encoding"))

write.tfl(tfl, file, encoding=getOption("encoding"))

Arguments

file character string specifying the pathname of a disk file. Files with extension .gz
will automatically be compressed/decompressed. See section "Format" for a
description of the required file format

tfl a type frequency list, i.e.\ an object of class tfl

encoding specifies the character encoding of the disk file to be read or written to. See file
for details.

Format

A TAB-delimited text file with column headers but no row names (suitable for reading with read.delim),
containing the following columns:

f type frequencies fk

k optional: the corresponding type IDs k. If missing, increasing non-negative integers are automat-
ically assigned as IDs.

type optional: type representations (such as word forms or lemmas)

These columns may appear in any order in the text file. Only the f column is mandatory and all
unrecognized columns will be silently ignored.

Details

If the filename file ends in the extension .gz, .bz2 pr .xz, the disk file will automatically be
decompressed (read.tfl) and compressed (write.tfl).

The .tfl file format stores neither the values of N and V nor the range of type frequencies explicitly.
Therefore, incomplete type frequency lists cannot be fully reconstructed from disk files (and will
not even be recognized as such). An attempt to save such a list will trigger a corresponding warning.

read.tfl 81

Value

read.tfl returns an object of class tfl (see the tfl manpage for details)

See Also

See the tfl manpage for details on tfl objects. See read.spc and read.vgc for import/export of
other data structures.

Examples

save type-frequency list for Brown corpus to external file
fname <- tempfile(fileext=".tfl.gz") # automatically compresses file
write.tfl(Brown.tfl, fname)
file <fname> contains a compressed TAB-delimited table with fields
k ... type ID (usually Zipf rank)
f ... frequency of type
type ... the type itself (here a word form)

read it back in
New.tfl <- read.tfl(fname)

same as Brown.tfl
summary(New.tfl)
summary(Brown.tfl)
print(New.tfl)
print(Brown.tfl)
head(New.tfl)
head(Brown.tfl)
stopifnot(isTRUE(all.equal(New.tfl, Brown.tfl))) # should by identical

Not run:
suppose you have a text file with a frequency list, one f per line, e.g.:
f
14
12
31
...

you can import this with read.tfl
MyData.tfl <- read.tfl("mylist.txt")
summary(MyData.tfl)
print(MyData.tfl) # ids in column k added by zipfR

from this you can generate a spectrum with tfl2spc
MyData.spc <- tfl2spc(MyData.tfl)
summary(MyData.spc)

End(Not run)

82 read.vgc

read.vgc Loading and Saving Vocabulary Growth Curves (zipfR)

Description

read.vgc loads vocabulary growth data from .vgc file

write.vgc saves vocabulary growth data in .vgc file

Usage

read.vgc(file)

write.vgc(vgc, file)

Arguments

file character string specifying the pathname of a disk file. Files with extension .gz
will automatically be compressed/decompressed. See section "Format" for a
description of the required file format

vgc a vocabulary growth curve, i.e.\ an object of class vgc

Format

A TAB-delimited text file with column headers but no row names (suitable for reading with read.delim).
The file must contain at least the following two columns:

N increasing integer vector of sample sizes N

V corresponding observed vocabulary sizes V (N) or expected vocabulary sizes E[V (N)]

Optionally, columns V1, . . . , V9 can be added to specify the number of hapaxes (V1(N)), dis legom-
ena (V2(N)), and further spectrum elements up to V9(N).

It is not necessary to include all 9 columns, but for any Vm(N) in the data set, all "lower" spectrum
elements Vm′(N) (for m′ < m) must also be present. For example, it is valid to have columns V1
V2 V3, but not V1 V3 V5 or V2 V3 V4.

Variances for expected vocabulary sizes and spectrum elements can be given in further columns VV
(for V ar[V (N)]), and VV1, . . . , VV9 (for V ar[Vm(N)]). VV is mandatory in this case, and columns
VVm must be specified for exactly the same frequency classes m as the Vm above.

These columns may appear in any order in the text file. All other columns will be silently ignored.

Details

If the filename file ends in the extension .gz, .bz2 or .xz, the disk file will automatically be
decompressed (read.vgc) or compressed (write.vgc).

sample.spc 83

Value

read.vgc returns an object of class vgc (see the vgc manpage for details)

See Also

See the vgc manpage for details on vgc objects. See read.tfl and read.spc for import/export of
other data structures.

Examples

save Italian ultra- prefix VGC to external text file
fname <- tempfile(fileext=".vgc")
write.vgc(ItaUltra.emp.vgc, fname)
now <fname> is a TAB-delimited text file with columns N, V and V1

we ready it back in
New.vgc <- read.vgc(fname)

same vgc as ItaUltra.emp.vgc, compare:
summary(New.vgc)
summary(ItaUltra.emp.vgc)
head(New.vgc)
head(ItaUltra.emp.vgc)

stopifnot(isTRUE(all.equal(New.vgc, ItaUltra.emp.vgc))) # should be identical

sample.spc Incremental Samples from a Frequency Spectrum (zipfR)

Description

Compute incremental random samples from a frequency spectrum (an object of class spc).

Usage

sample.spc(obj, N, force.list=FALSE)

Arguments

obj an object of class spc, representing a frequency spectrum

N a vector of non-negative integers in increasing order, the sample sizes for which
incremental samples will be generated

force.list if TRUE, the return value will always be a list of spc objects, even if N is just a
single integer

84 sample.tfl

Details

This function is currently implemented as a wrapper around sample.tfl, using spc2tfl and
tfl2spc to convert between frequency spectra and type frequency lists. A direct implementation
might be slightly more efficient, but would very likely not make a substantial difference.

Value

If N is a single integer (and the force.list flag is not set), a spc object representing the frequency
spectrum of a random sample of size N from obj.

If N is a vector of length greater one, or if force.list=TRUE, a list of spc objects representing the
frequency spectra of incremental random samples of the specified sizes N . Incremental means that
each sample is a superset of the preceding sample.

See Also

spc for more information about frequency spectra

sample.tfl is an analogous function for type frequency lists (objects of class tfl)

sample.spc takes a single concrete random subsample from a spectrum and returns the spectrum
of the subsample, unlike spc.interp, that computes the expected frequency spectrum for random
subsamples of size N by binomial interpolation.

Examples

read Brown spectrum
data(Brown.spc)
summary(Brown.spc)

sample a spectrum of 100k tokens
MiniBrown.spc <- sample.spc(Brown.spc,1e+5)
summary(MiniBrown.spc)

if we repat, we get a different sample
MiniBrown.spc <- sample.spc(Brown.spc,1e+5)
summary(MiniBrown.spc)

sample.tfl Incremental Samples from a Type Frequency List (zipfR)

Description

Compute incremental random samples from a type frequency list (an object of class tfl).

Usage

sample.tfl(obj, N, force.list=FALSE)

spc 85

Arguments

obj an object of class tfl, representing a type frequency list

N a vector of non-negative integers in increasing order, the sample sizes for which
incremental samples will be generated

force.list if TRUE, the return value will always be a list of tfl objects, even if N is just a
single integer

Details

The current implementation is reasonably efficient, but will be rather slow when applied to very
large type frequency lists.

Value

If N is a single integer (and the force.list flag is not set), a tfl object representing a random
sample of size N from the type frequency list obj.

If N is a vector of length greater one, or if force.list=TRUE, a list of tfl objects representing
incremental random samples of the specified sizes N . Incremental means that each sample is a
superset of the preceding sample.

See Also

tfl for more information about type frequency lists

sample.spc is an analogous function for frequency spectra (objects of class spc)

Examples

load Brown tfl
data(Brown.tfl)
summary(Brown.tfl)

sample a tfl of 100k tokens
MiniBrown.tfl <- sample.tfl(Brown.tfl,1e+5)
summary(MiniBrown.tfl)

if we repat, we get a different sample
MiniBrown.tfl <- sample.tfl(Brown.tfl,1e+5)
summary(MiniBrown.tfl)

spc Frequency Spectra (zipfR)

86 spc

Description

In the zipfR library, spc objects are used to represent a word frequency spectrum (either an ob-
served spectrum or the expected spectrum of a LNRE model at a given sample size).

With the spc constructor function, an object can be initialized directly from the specified data
vectors. It is more common to read an observed spectrum from a disk file with read.spc or compute
an expected spectrum with lnre.spc, though.

spc objects should always be treated as read-only.

Usage

spc(Vm, m=1:length(Vm), VVm=NULL, N=NA, V=NA, VV=NA,
m.max=0, expected=!missing(VVm))

Arguments

m integer vector of frequency classes m (if omitted, Vm is assumed to list the first
k frequency classes V1, . . . , Vk)

Vm vector of corresponding class sizes Vm (may be fractional for expected fre-
quency spectrum E[Vm])

VVm optional vector of estimated variances V ar[Vm] (for expected frequency spec-
trum only)

N, V total sample size N and vocabulary size V of frequency spectrum. While these
values are usually determined automatically from m and Vm, they are required
for an incomplete frequency spectrum that does not list all non-empty frequency
classes.

VV variance V ar[V] of expected vocabulary size. If VVm is specified, VV should also
be given.

m.max highest frequency class m listed in incomplete spectrum. If m.max is set, N and
V also have to be specified, and all non-zero frequency classes up to m.max have
to be included in the input vectors. Frequency classes above m.max in the input
will automatically be deleted.

expected set to TRUE if the frequency spectrum represents expected values E[Vm] of the
class sizes according to some LNRE model (this is automatically triggered when
the VVm argument is specified).

Details

A spc object is a data frame with the following variables:

m frequency class m, an integer vector

Vm class size, i.e. number Vm of types in frequency class m (either observed class size from a
sample or expected class size E[Vm] based on a LNRE model)

VVm optional: estimated variance V [Vm] of expected class size (only meaningful for expected spec-
trum derived from LNRE model)

spc 87

The following attributes are used to store additional information about the frequency spectrum:

m.max if non-zero, the frequency spectrum is incomplete and lists only frequency classes up to
m.max

N, V sample size N and vocabulary size V of the frequency spectrum. For a complete frequency
spectrum, these values could easily be determined from m and Vm, but they are essential for an
incomplete spectrum.

VV variance of expected vocabulary size; only present if hasVariances is TRUE. Note that VV may
have the value NA is the user failed to specify it.

expected if TRUE, frequency spectrum lists expected class sizes E[Vm] (rather than observed sizes
Vm). Note that the VVm variable is only allowed for an expected frequency spectrum.

hasVariances indicates whether or not the VVm variable is present

Value

An object of class spc representing the specified frequency spectrum. This object should be treated
as read-only (although such behaviour cannot be enforced in R).

See Also

read.spc, write.spc, spc.vector, sample.spc, spc2tfl, tfl2spc, lnre.spc, plot.spc

Generic methods supported by spc objects are print, summary, N, V, Vm, VV, and VVm.

Implementation details and non-standard arguments for these methods can be found on the man-
pages print.spc, summary.spc, N.spc, V.spc, etc.

Examples

load Brown imaginative prose spectrum and inspect it
data(BrownImag.spc)

summary(BrownImag.spc)
print(BrownImag.spc)

plot(BrownImag.spc)

N(BrownImag.spc)
V(BrownImag.spc)
Vm(BrownImag.spc,1)
Vm(BrownImag.spc,1:5)

compute ZM model, and generate PARTIAL expected spectrum
with variances for a sample of 10 million tokens
zm <- lnre("zm",BrownImag.spc)
zm.spc <- lnre.spc(zm,1e+7,variances=TRUE)

inspect extrapolated spectrum
summary(zm.spc)
print(zm.spc)

88 spc.interp

plot(zm.spc,log="x")

N(zm.spc)
V(zm.spc)
VV(zm.spc)
Vm(zm.spc,1)
VVm(zm.spc,1)

generate an artificial Zipfian-looking spectrum
and take a look at it
zipf.spc <- spc(round(1000/(1:1000)^2))

summary(zipf.spc)
plot(zipf.spc)

see manpages of lnre, and the various *.spc mapages
for more examples of spc usage

spc.interp Expected Frequency Spectrum by Binomial Interpolation (zipfR)

Description

spc.interp computes the expected frequency spectrum for a random sample of specified size N ,
taken from a data set described by the frequency spectrum object obj.

Usage

spc.interp(obj, N, m.max=max(obj$m), allow.extrapolation=FALSE)

Arguments

obj an object of class spc, representing the frequency spectrum of the data set from
which samples are taken

N a single non-negative integer specifying the sample size for which the expected
frequency spectrum is calculated

m.max number of spectrum elements listed in the expected frequency spectrum. By
default, as many spectrum elements are included as the spectrum obj contains,
since the expectations of higher spectrum elements will always be 0 in the bino-
mial interpolation. See note in section "Details" below.

allow.extrapolation

if TRUE, the requested sample size N may be larger than the sample size of the
frequency spectrum obj, for binomial extrapolation. This obtion should be used
with great caution (see EVm.spc for details).

spc.vector 89

Details

See the EVm.spc manpage for more information, especially concerning binomial extrapolation.

For large frequency spectra, the default value of m.max may lead to very long computation times. It
is therefore recommended to specify m.max explicitly and calculate only as many spectrum elements
as are actually required.

Value

An object of class spc, representing the expected frequency spectrum for a random sample of size
N taken from the data set that is described by obj.

See Also

spc for more information about frequency spectra and links to relevant functions

The implementation of spc.interp is based on the functions EV.spc and EVm.spc. See the respec-
tive manpages for technical details.

vgc.interp computes expected vocabulary growth curves by binomial interpolation from a fre-
quency spectrum

sample.spc takes a single concrete random subsample from a spectrum and returns the spectrum
of the subsample, unlike spc.interp, that computes the expected frequency spectrum for random
subsamples of size N by binomial interpolation.

Examples

load the Tiger NP expansion spectrum
(sample size: about 109k tokens)
data(TigerNP.spc)

interpolated expected frequency subspectrum of 50k tokens
TigerNP.sub.spc <- spc.interp(TigerNP.spc,5e+4)
summary(TigerNP.sub.spc)

previous is slow since it calculates all expected spectrum
elements; suppose we only need the first 10 expected
spectrum element frequencies; then we can do:
TigerNP.sub.spc <- spc.interp(TigerNP.spc,5e+4,m.max=10) # much faster!
summary(TigerNP.sub.spc)

spc.vector Create Vector of Spectrum Elements (zipfR)

Description

spc.vector returns a selected range of elements from a frequency spectrum as a plain numeric
vector (which may contain entries with Vm = 0, unlike the spc object itself).

90 spc.vector

Usage

spc.vector(obj, m.min=1, m.max=15, all=FALSE)

Arguments

obj an object of class spc, representing an observed or expected frequency spectrum

m.min, m.max determine the range of frequency classes to be returned (defaulting to 1 . . . 15)

all if TRUE, a vector containing the entire frequency spectrum is returned, i.e. m.max
is set to max(obj$m). Note that the value of m.min can still be overridden man-
ually to return only part of the spectrum.

Details

spc.vector(obj, a, b) is fully equivalent to Vm(obj, a:b) (and is implemented in this way).

Value

A numeric vector with the selected elements of the frequency spectrum. In this vector, empty
frequency classes (Vm = 0) are represented by 0 entries (unlike the spc object, which omits all
empty classes).

See Also

spc for more information about spc objects and links to relevant functions

Vm.spc for an alternative way of extracting spectrum vectors from a .spc object, and N.spc, V.spc,
VV.spc, VVm.spc for extracting related information

Examples

Brown Noun spectrum
data(BrownNoun.spc)

by default, extract first 15 elements
spc.vector(BrownNoun.spc)

first five elements
spc.vector(BrownNoun.spc,1,5)

just frequencies of spc elements 4 and 5
spc.vector(BrownNoun.spc,4,5)
same as
Vm(BrownNoun.spc,4:5)

spc2tfl 91

spc2tfl Convert Between Frequency Spectra and Type Frequency Lists (zipfR)

Description

tfl2spc computes an observed frequency spectrum from a type frequency list, while spc2tfl
reconstructs the type frequency list underlying a frequency spectrum (but without type representa-
tions).

Usage

tfl2spc(tfl)

spc2tfl(spc)

Arguments

tfl an object of class tfl, representing a type frequency list

spc an object of class spc, representing a frequency spectrum

Details

The current implementation of these functions does not support incomplete type frequency lists and
frequency spectra.

spc2tfl can only convert frequency spectra where all class sizes are integers. For this reason,
expected frequency spectra (including all spectra with variance data) are not supported.

Value

For tfl2spc, an object of class spc representing the frequency spectrum corresponding to the type
frequency list tfl.

For spc2tfl, an object of class tfl representing type frequency list underlying the observed fre-
quency spectrum tfl.

See Also

spc for more information about spc objects and links to relevant functions; tfl for more informa-
tion about tfl objects and links to relevant functions

Examples

Brown tfl and spc
data(Brown.tfl)
data(Brown.spc)

92 tfl

a spectrum from a tfl
Brown.spc2 <- tfl2spc(Brown.tfl)

identical to Brown.spc:
summary(Brown.spc)
summary(Brown.spc2)

tail(Brown.spc)
tail(Brown.spc2)

a tfl from a spectrum
Brown.tfl2 <- spc2tfl(Brown.spc)

same frequency information as Brown.tfl
but with different ids and no type labels
summary(Brown.tfl)
summary(Brown.tfl2)

print(Brown.tfl2)
print(Brown.tfl)

tfl Type Frequency Lists (zipfR)

Description

In the zipfR library, tfl objects are used to represent a type frequency list, which specifies the
observed frequency of each type in a corpus. For mathematical reasons, expected type frequencies
are rarely considered.

With the tfl constructor function, an object can be initialized directly from the specified data
vectors. It is more common to read a type frequency list from a disk file with read.tfl or, in some
cases, derive it from an observed frequency spectrum with spc2tfl.

tfl objects should always be treated as read-only.

Usage

tfl(f, k=seq_along(f), type=NULL, f.min=min(f), f.max=max(f),
incomplete=!(missing(f.min) && missing(f.max)), N=NA, V=NA,
delete.zeros=FALSE)

Arguments

k integer vector of type IDs k (if omitted, natural numbers 1, 2, . . . are assigned
automatically)

f vector of corresponding type frequencies fk

tfl 93

type optional character vector of type representations (e.g. word forms or lemmata),
used for informational and printing purposes only

incomplete indicates that the type frequency list is incomplete, i.e. only contains types in a
certain frequency range (typically, the lowest-frequency types may be excluded).
Incomplete type frequency lists are rarely useful.

N, V sample size and vocabulary size corresponding to the type frequency list have to
be specified explicitly for incomplete lists

f.min, f.max frequency range represented in an incomplete type frequency list (see details
below)

delete.zeros if TRUE, delete types with f = 0 from the type frequency list, after assigning
type IDs. This operation does not make the resulting tfl object incomplete.

Details

If f.min and f.max are not specified, but the list is marked as incomplete (with incomplete=TRUE),
they are automatically determined from the frequency vector f (making the assumption that all
types in this frequency range are listed). Explicit specification of either f.min or f.max implies
an incomplete list. In this case, all types outside the specified range will be deleted from the list.
If incomplete=FALSE is explicitly given, N and V will be determined automatically from the input
data (which is assumed to be complete), but the resulting type frequency list will still be incomplete.

If you just want to remove types with f = 0 without marking the type frequency list as incomplete,
use the option delete.zeros=TRUE.

A tfl object is a data frame with the following variables:

k integer type ID k

f corresponding type frequency fk

type optional: character vector with type representations used for printing

The data frame always has to be sorted with respect to the k column (ascending order). If a type
column is present, rownames are set to the types and can be used for character indexing.

The following attributes are used to store additional information about the frequency spectrum:

N, V sample size N and vocabulary size V corresponding to the type frequency list. For a complete
list, these values could easily be determined from the f variable, but they are essential for an
incomplete list.

incomplete if TRUE, the type frequency list is incomplete, i.e. it lists only types in the frequency
range given by f.min and f.max

f.min, f.max range of type frequencies represented in the list (should be ignored unless the incomplete
flag is set)

hasTypes indicates whether or not the type variable is present

Value

An object of class tfl representing the specified type frequency list. This object should be treated
as read-only (although such behaviour cannot be enforced in R).

94 Tiger

See Also

read.tfl, write.tfl, plot.tfl, sample.tfl, spc2tfl, tfl2spc

Generic methods supported by tfl objects are print, summary, N, V and Vm.

Implementation details and non-standard arguments for these methods can be found on the man-
pages print.tfl, summary.tfl, N.tfl, V.tfl, etc.

Examples

typically, you will read a tfl from a file
(see examples in the read.tfl manpage)

or you can load a ready-made tfl
data(Brown.tfl)
summary(Brown.tfl)
print(Brown.tfl)

or create it from a spectrum (with different ids and
no type labels)
data(Brown.spc)

Brown.tfl2 <- spc2tfl(Brown.spc)

same frequency information as Brown.tfl
but with different ids and no type labels
summary(Brown.tfl2)
print(Brown.tfl2)

how to display draw a Zipf's rank/frequency plot
by extracting frequencies from a tfl
plot(sort(Brown.tfl$f,decreasing=TRUE),log="y",xlab="rank",ylab="frequency")

simulating a tfl
Zipfian.tfl <- tfl(1000/(1:1000))
plot(Zipfian.tfl$f,log="y")

Tiger Tiger NP and PP expansions (zipfR)

Description

Objects of classes tfl, spc and vgc that contain frequency data for the syntactic expansions of
Noun Phrases (NP) and Prepositional Phrases (PP) in the Tiger German treebank.

Usage

TigerNP.tfl
TigerNP.spc

vec2xxx 95

TigerNP.emp.vgc

TigerPP.tfl
TigerPP.spc
TigerPP.emp.vgc

Details

In this dataset, types are not words, but syntactic expansions, i.e., sequences of syntactic categories
that form NPs (in TigerNP) or PPs (in TigerPP), according to the Tiger annotation scheme for
German. Thus, for example, among the expansion types in the TigerNP dataset, we find ART_NN and
ART_ADJA_NN, whereas among the PP expansions in TigerPP we find APPR_ART_NN and APPR_NN
(APPR is the tag for prepositions in the Tiger tagset).

The Tiger treebank contains about 900,000 tokens (50,000 sentences) of German newspaper text
from the Frankfurter Rundschau. The token frequencies of the expansion types are taken from this
corpus.

TigerNP.tfl and TigerPP.tfl are the type frequency lists. TigerNP.spc and TigerPP.spc are
frequency spectra. TigerNP.emp.vgc and TigerPP.emp.vgc are the corresponding observed vo-
cabulary growth curves (tracking the development of V and V(1) in the original order of occurrence
of the expansion tokens in the source corpus).

References

Tiger Project: https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger/

Examples

TigerNP.tfl
summary(TigerNP.spc)
summary(TigerNP.emp.vgc)

TigerPP.tfl
summary(TigerPP.spc)
summary(TigerPP.emp.vgc)

vec2xxx Type-Token Statistics for Samples and Empirical Data (zipfR)

Description

Compute type-frequency list, frequency spectrum and vocabulary growth curve from a token vector
representing a random sample or an observed sequence of tokens.

https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/tiger/

96 vec2xxx

Usage

vec2tfl(x)

vec2spc(x)

vec2vgc(x, steps=200, stepsize=NA, m.max=0)

Arguments

x a vector of length N0, representing a random sample or other observed data set
of N0 tokens. For each token, the corresponding element of x specifies the type
that the token belongs to. Usually, x is a character vector, but it might also
specify integer IDs in some cases.

steps number of steps for which vocabulary growth data V (N) is calculated. The
values of N will be evenly spaced (up to rounding differences) from N = 1 to
N = N0.

stepsize alternative way of specifying the steps of the vocabulary growth curve. In this
case, vocabulary growth data will be calculated every stepsize tokens. The first
step is chosen such that the last step corresponds to the full sample (N = N0).
Only one of the parameters steps and stepsize may be specified.

m.max an integer in the range $1 . . . 9$, specifying how many spectrum elements Vm(N)
to include in the vocabulary growth curve. By default only vocabulary size
V (N) is calculated, i.e. m.max=0.

Details

There are two main applications for the vec2xxx functions:

a) They can be used to calculate type-token statistics and vocabulary growth curves for random
samples generated from a LNRE model (with the rlnre function).

b) They provide an easy way to process a user’s own data without having to rely on external scripts
to compute frequency spectra and vocabulary growth curves. All that is needed is a text file in
one-token-per-line formt (i.e. where each token is given on a separate line). See "Examples"
below for further hints.

Both applications work well for samples of up to approx. 1 million tokens. For considerably larger
data sets, specialized external software should be used, such as the Perl scripts provided on the
zipfR homepage.

Value

An object of class tfl, spc or vgc, representing the type frequency list, frequency spectrum or
vocabulary growth curve of the token vector x, respectively.

vgc 97

See Also

tfl, spc and vgc for more information about type frequency lists, frequency spectra and vocabulary
growth curves

rlnre for generating random samples (in the form of the required token vectors) from a LNRE
model

readLines and scan for loading token vectors from disk files

Examples

type-token statistics for random samples from a LNRE distribution

model <- lnre("fzm", alpha=.5, A=1e-6, B=.05)
x <- rlnre(model, 100000)

vec2tfl(x)
vec2spc(x) # same as tfl2spc(vec2tfl(x))
vec2vgc(x)

sample.spc <- vec2spc(x)
exp.spc <- lnre.spc(model, 100000)
plot(exp.spc, sample.spc)

sample.vgc <- vec2vgc(x, m.max=1, steps=500)
exp.vgc <- lnre.vgc(model, N=N(sample.vgc), m.max=1)
plot(exp.vgc, sample.vgc, add.m=1)

Not run:
load token vector from a file in one-token-per-line format
x <- readLines(filename)
x <- readLines(file.choose()) # with file selection dialog

you can also perform whitespace tokenization and filter the data
brown <- scan("brown.pos", what=character(0), quote="")
nouns <- grep("/NNS?$", brown, value=TRUE)
plot(vec2spc(nouns))
plot(vec2vgc(nouns, m.max=1), add.m=1)

End(Not run)

vgc Vocabulary Growth Curves (zipfR)

Description

In the zipfR library, vgc objects are used to represent a vocabulary growth curve (VGC). This can
be an observed VGC from an incremental set of sample (such as a corpus), a randomized VGC
obtained by binomial interpolation, or the expected VGC according to a LNRE model.

98 vgc

With the vgc constructor function, an object can be initialized directly from the specified data
vectors. It is more common to read an observed VGC from a disk file with read.vgc, generate a
randomized VGC with vgc.interp or compute an expected VGC with lnre.vgc, though.

vgc objects should always be treated as read-only.

Usage

vgc(N, V, Vm=NULL, VV=NULL, VVm=NULL, expected=FALSE, check=TRUE)

Arguments

N integer vector of sample sizes N for which vocabulary growth data is available

V vector of corresponding vocabulary sizes V (N), or expected vocabulary sizes
E[V (N)] for an interpolated or expected VGC.

Vm optional list of growth vectors for hapaxes V1(N), dis legomena V2(N), etc. Up
to 9 growth vectors are accepted (i.e.\ Vm(N) for m ≤ 9). For an interpolated
or expected VGC, the vectors represent expected class sizes E[Vm(N)].

VV optional vector of variances V ar[V (N)] for an interpolated or expected VGC

VVm optional list of variance vectors V ar[Vm(N)] for an expected VGC. If present,
these vectors must be defined for exactly the same frequency classes m as the
vectors in Vm.

expected if TRUE, the object represents an interpolated or expected VGC (for informa-
tional purposes only)

check by default, various sanity checks are performed on the data supplied to the spc
constructor. Specify check=FALSE to skip these sanity test, e.g. when automati-
cally processing data from external programs that may be numerically unstable.

Details

If variances (VV or VVm) are specified for an expected VGC, all relevant vectors must be given. In
other words, VV always has to be present in this case, and VVm has to be present whenever Vm is
specified, and must contain vectors for exactly the same frequency classes.

V and VVm are integer vectors for an observed VGC, but will usually be fractional for an interpolated
or expected VGC.

A vgc object is a data frame with the following variables:

N sample size N

V corresponding vocabulary size (either observed vocabulary size V (N) or expected vocabulary
size E[V (N)])

V1 . . .V9 optional: observed or expected spectrum elements (Vm(N) or E[Vm(N)]). Not all of
these variables have to be present, but there must not be any "gaps" in the spectrum.

VV optional: variance of expected vocabulary size, V ar[V (N)]

VV1 . . .VV9 optional: variances of expected spectrum elements, V ar[Vm(N)]. If variances are
present, they must be available for exactly the same frequency classes as the corresponding
expected values.

vgc 99

The following attributes are used to store additional information about the vocabulary growth curve:

m.max if non-zero, the VGC includes spectrum elements Vm(N) for m up to m.max. For m.max=0,
no spectrum elements are present.

expected if TRUE, the object represents an interpolated or expected VGC, with expected vocabulary
size and spectrum elements. Otherwise, the object represents an observed VGC.

hasVariances indicates whether or not the VV variable is present (as well as VV1, VV2, etc., if
appropriate)

Value

An object of class vgc representing the specified vocabulary growth curve. This object should be
treated as read-only (although such behaviour cannot be enforced in R).

See Also

read.vgc, write.vgc, plot.vgc, vgc.interp, lnre.vgc

Generic methods supported by vgc objects are print, summary, N, V, Vm, VV, and VVm.

Implementation details and non-standard arguments for these methods can be found on the man-
pages print.vgc, summary.vgc, N.vgc, V.vgc, etc.

Examples

load Dickens' work empirical vgc and take a look at it

data(Dickens.emp.vgc)
summary(Dickens.emp.vgc)
print(Dickens.emp.vgc)

plot(Dickens.emp.vgc,add.m=1)

vectors of sample sizes in the vgc, and the
corresponding V and V_1 vectors
Ns <- N(Dickens.emp.vgc)
Vs <- V(Dickens.emp.vgc)
Vm <- V(Dickens.emp.vgc,1)

binomially interpolated V and V_1 at the same sample sizes
as the empirical curve
data(Dickens.spc)
Dickens.bin.vgc <- vgc.interp(Dickens.spc,N(Dickens.emp.vgc),m.max=1)

compare observed and interpolated
plot(Dickens.emp.vgc,Dickens.bin.vgc,add.m=1,legend=c("observed","interpolated"))

load Italian ultra- prefix data
data(ItaUltra.spc)

compute zm model

100 vgc.interp

zm <- lnre("zm",ItaUltra.spc)

compute vgc up to about twice the sample size
with variance of V
zm.vgc <- lnre.vgc(zm,(1:100)*70, variances=TRUE)

summary(zm.vgc)
print(zm.vgc)

plot with confidence intervals derived from variance in
vgc (with larger datasets, ci will typically be almost
invisible)
plot(zm.vgc)

for more examples of vgc usages, see manpages of lnre.vgc,
plot.vgc, print.vgc and vgc.interp

vgc.interp Expected Vocabulary Growth by Binomial Interpolation (zipfR)

Description

vgc.interp computes the expected vocabulary growth curve for random sample taken from a data
set described by the frequency spectrum object obj.

Usage

vgc.interp(obj, N, m.max=0, allow.extrapolation=FALSE)

Arguments

obj an object of class spc, representing the frequency spectrum of the data set from
which samples are taken

N a vector of increasing non-negative integers specifying the sample sizes for the
expected vocabulary size is calculated (as well as expected spectrum elements if
requested)

m.max an integer in the range 1 . . . 9, specifying the number of spectrum elements to be
included in the vocabulary growth curve (default: none)

allow.extrapolation

if TRUE, the requested sample sizes N may be larger than the sample size of
the frequency spectrum obj, so that binomial extrapolation is performed. This
obtion should be used with great caution (see EV.spc for details).

VV-Vm 101

Details

See the EV.spc manpage for more information, especially concerning binomial extrapolation.

Note that the result of vgc.interp is an object of class vgc (a vocabulary growth curve), but its
input is an object of class spc (a frequency spectrum).

Value

An object of class vgc, representing the expected vocabulary growth curves for random samples
taken from the data set described by obj. Data points will be generated for the specified sample
sizes N.

See Also

vgc for more information about vocabulary growth curves and links to relevant functions; spc for
more information about frequency spectra

The implementation of vgc.interp is based on the functions EV.spc and EVm.spc. See the respec-
tive manpages for technical details.

spc.interp computes the expected frequency spectrum for a random sample by binomial interpo-
lation.

Examples

load the Tiger PP expansion spectrum
(sample size: about 91k tokens)
data(TigerPP.spc)

binomially interpolated curve
TigerPP.bin.vgc <- vgc.interp(TigerPP.spc,(1:100)*910)
summary(TigerPP.bin.vgc)

let's also add growth of V_1 to V_5 and plot
TigerPP.bin.vgc <- vgc.interp(TigerPP.spc,(1:100)*910,m.max=5)
plot(TigerPP.bin.vgc,add.m=c(1:5))

VV-Vm Variances of the Expected Frequency Spectrum (zipfR)

Description

VV and VVm are generic methods that can (and should) be used to compute the variance of the
vocabulary size and the variances of spectrum elements according to an LNRE model (i.e. an
object of class lnre). These methods are also used to access variance information stored in some
objects of class spc and vgc.

102 VV-Vm

Usage

VV(obj, N=NA, ...)
VVm(obj, m, N=NA, ...)

Arguments

obj an object of class lnre (LNRE model), spc (frequency spectrum) or vgc (vo-
cabulary growth curve).

m positive integer value determining the frequency class m for which variances are
returned (or a vector of such values).

N sample size N for which variances are calculated (lnre objects only)

... additional arguments passed on to the method implementation (see respective
manpages for details)

Details

spc and vgc objects must represent an expected or interpolated frequency spectrum or VGC, and
must include variance data.

For vgc objects, the VVm method allows only a single value m to be specified.

The argument N is only allowed for LNRE models and will trigger an error message otherwise.

Value

For a LNRE model (class lnre), VV computes the variance of the random variable V (N) (vocabu-
lary size), and VVm computes the variance of the random variables Vm(N) (spectrum elements), for
a sample of specified size N .

For an observed or interpolated frequency spectrum (class spc), VV returns the variance of the
expected vocabulary size, and VVm returns variances of the spectrum elements. These methods are
only applicable if the spc object includes variance information.

For an expected or interpolated vocabulary growth curve (class vgc), VV returns the variance vector
of the expected vocabulary sizes V , and VVm the corresponding vector for Vm. These methods are
only applicable if the vgc object includes variance information.

See Also

For details on the implementations of these methods, see VV.spc, VV.vgc, etc.

Expected vocabulary size and frequency spectrum for a sample of size N according to a LNRE
model can be computed with the analogous methods EV and EVm. For spc and vgc objects, V and
Vm are always accessed with the methods V and Vm, even if they represent expected or interpolated
values.

Examples

see lnre documentation for examples

zipfR.par 103

zipfR.par Set or Query Graphics Parameters (zipfR)

Description

Set default graphics parameters for zipfR high-level plots and plot utilities, similar to par for
general graphics parameters. The current parameter values are queried by giving their names as
character strings. The values can be set by specifying them as arguments in name=value form, or
by passing a single list of named values.

NB: This is an advanced function to fine-tune zipfR plots. For basic plotting options (that are likely
to be sufficient for most purposes) see plot.spc and plot.vgc instead.

Usage

zipfR.par(..., bw.mode=FALSE)

Arguments

... either character strings (or vectors) specifying the names of parameters to be
queried, or parameters to be set in name=value form, or a single list of named
values. A listing of valid parameter names is given below.

bw.mode if TRUE and parameter values are queried, then return the corresponding parame-
ters for B/W mode if possible (e.g., zipfR.par("col",bw.mode=TRUE) returns
the value of the col.bw parameter). Note that bw.mode cannot be abbreviated in
the function call!

Details

Parameters are set by specifying their names and the new values as name=value pairs. Such a list
can also be passed as a single argument to zipfR.par, which is typically used to restore previous
parameter values (that have been saved in a list variable).

Most of the default values can be manually overridden in the high-level plots.

zipfR.par() shows all parameters with their current values, and names(zipfR.par()) produces
a listing of valid parameter names.

Value

When parameters are set, their former values are returned in an invisible named list. Such a list can
be passed as a single argument to zipfR.par to restore the parameter values.

When a single parameter is queried, its value is returned directly. When two or more parameters are
queried, the result is a named list.

Note the inconsistency, which is the same as for par: setting one parameter returns a list, but
querying one parameter returns a vector (or a scalar, i.e. a vector of length 1).

104 zipfR.par

zipfR Graphics Parameters

col a character or integer vector specifying up to 10 line colours (see the par manpage for details).
Values of shorter vectors are recycled as necessary.

lty a character or integer vector specifying up to 10 line styles (see the par manpage for details).
Values of shorter vectors are recycled as necessary.

lwd a numeric vector specifying up to 10 line widths (see the par manpage for details). Values of
shorter vectors are recycled as necessary.

pch a character or integer vector specifying up to 10 plot symbols. Values of shorter vectors are
recycled as necessary.

barcol a character or integer vector specifying up to 10 colours for the bars in non-logarithmic
spectrum plots. Values of shorter vectors are recycled as necessary.

col.bw the line colours used in B/W mode (bw=TRUE)

lty.bw the line styles used in B/W mode (bw=TRUE)

lwd.bw the line widths used in B/W mode (bw=TRUE)

pch.bw the plot symbols used in B/W mode (bw=TRUE)

barcol.bw the bar colours used in B/W mode (bw=TRUE)

bw if TRUE, plots are drawn in B/W mode unless specified otherwise (default: FALSE, i.e. colour
mode

device plot device used by the zipfR plotutils (see zipfR.begin.plot for details). Currently
supported devices are x11 (default on most platforms), eps, pdf, as well as png and quartz
where available (default on Mac OS X).

init.par list of named graphics parameters passed to the par function whenever a new viewport
is created with zipfR.begin.plot

width, height default width and height of the plotting window opened by zipfR.begin.plot

See Also

plot.spc, plot.vgc, zipfR.begin.plot, zipfR.end.plot

Examples

print(names(zipfR.par())) # list available parameters

zipfR.par("col", "lty", "lwd") # the default line styles
zipfR.par(c("col", "lty", "lwd")) # works as well

temporary changes to graphics paramters:
par.save <- zipfR.par(bw=TRUE, lwd.bw=2)
plots use the modified parameters here
zipfR.par(par.save) # restore previous values

zipfR.plotutils 105

zipfR.plotutils Plotting Utilities (zipfR)

Description

These functions are deprecated and should not be used in new code.
Conveniently create plots with different layout and in different output formats (both on-screen and
various graphics file formats).

Each plot is wrapped in a pair of zipfR.begin.plot and zipfR.end.plot commands, which
make sure that a suitable plotting window / image file is opened and closed as required. Format
and dimensions of the plots are controlled by global settings made with zipfR.par, but can be
overridden in the zipfR.begin.plot call.

zipfR.pick.device automatically selects a default device by scanning the specified vector for
strings of the form --pdf, --eps, etc.

NB: These are advanced functions intended to make it easier to produce plots in different formats.
Most users will only need the basic plotting functionalities provided by plot.tfl, plot.spc and
plot.vgc.

Usage

zipfR.pick.device(args=commandArgs())

zipfR.begin.plot(device=zipfR.par("device"), filename="",
width=zipfR.par("width"), height=zipfR.par("height"),
bg=zipfR.par("bg"), pointsize=zipfR.par("pointsize"))

plotting commands go here

zipfR.end.plot(shutdown=FALSE)

Arguments

args a character vector, which will be scanned for strings of the form --pdf, --eps,
etc. If args is not specified, the command-line arguments supplied to R will be
examined.

device name of plotting device to be used (see "Devices" below)

filename for graphics file devices, basename of the output file. A suitable extension for
the selected file format will be added automatically to filename. This parameter
is ignored for screen devices.

width, height width and height of the plotting window or image, in inches

bg background colour of the plotting window or image (use "transparent" for
images with transparent background)

pointsize default point size for text in the plot

106 zipfR.plotutils

shutdown if set to FALSE (the default), on-screen plot devices will be kept open for re-
use in the next plot. Specify shutdown=TRUE to ensure that the screen device is
closed after a series of related plots.

Details

zipfR.begin.plot opens a new plotting window or image file of the specified dimensions (width,
height), using the selected graphics device (device). Background colour (bg) and default point
size (pointsize) are set as requested. Then, any global graphics parameter settings (defined with
the init.par option of zipfR.par) are applied. See the zipfR.par manpage for the "factory
default" settings of these options.

zipfR.end.plot finalizes the current plot. For image file devices, the device will be closed, writing
the generated file to disk. For screen devices, the plotting window remains visible until a new plot
is started (which will close and re-open the plotting window).

The main purpose of the zipfR plotting utilities is to make it easier to draw plots that are both
shown on screen (for interactive work) and saved to image files in various formats. If an R script
specifies filenames in all zipfR.begin.plot commands, a single global parameter setting at the
start of the script is sufficient to switch from screen graphics to EPS files, or any other supported
file format.

On-screen plotting devices are platform-dependent, and there may be different devices available
depending on which version of R is used. For this reason, zipfR.begin.plot no longer allows
users to pick an on-screen device explicitly, but rather opens a default device with dev.new. Note
that this default device may write output to a graphics file, but is usually set to a suitable on-
screen device in an interactive R session. In any case, users can change the default by setting
options(device=...). For backwards-compatibility, the device name x11 (and quartz on macOS
is accepted for the default graphics device.

The png bitmap device may not be available on all platforms, and may also require access to an
X server. Since the width and height of a PNG device have to be specified in pixels rather than
inches, zipfR.begin.plot translates the width and height settings, assuming a resolution of 150
dpi. Use of the png device is strongly discouraged. A better way of producing high-quality bitmaps
is to generate EPS image (with the eps device) and convert them to PNG or JPEG format with the
external pstoimg program (part of the latex2html distribution).

zipfR.pick.device will issue a warning if multiple flags matching supported graphics devices are
found. However, it is not an error to find no matching flag, and all unrecognized strings are silently
ignored.

Value

zipfR.begin.plot invisibly returns the ID of the active plot device.

Devices

Currently, the following devices are supported (and can be used in the device argument).

Screen devices:

x11 opens the default graphic device set by getOption("device"). In an interactive R sessions,
this will usually be a suitable on-screen device.

zipfR.plotutils 107

quartz accepted as an alias for x11 on macOS platforms

Graphics file devices:

eps Encapsulated PostScript (EPS) output (using postscript device with appropriate settings)

pdf PDF output

png PNG bitmap file (may not be available on all platforms)

See Also

zipfR.par, par

Devices, dev.new, postscript, pdf and png for more information about the supported graphics
devices

zipfR-specific plotting commands are plot.spc, plot.spc and plot.vgc

Examples

Not run:
these graphics parameters will be set for every new plot
zipfR.par(init.par=list(bg="lightblue", cex=1.3))
zipfR.par(width=12, height=9)

will be shown on screen or saved to specified file, depending on
selected device (eps -> "myplot.eps", pdf -> "myplot.pdf", etc.)

zipfR.begin.plot(filename="myplot")
plot.spc(Brown100k.spc)
zipfR.end.plot()

By starting an R script "myplots.R" with this command, you can
display plots on screen when stepping through the script in an
interactive session, or save them to disk files in various
graphics formats with "R --no-save --args --pdf < myplots.R" etc.
zipfR.pick.device()

End(Not run)

Index

∗ classes
spc, 85
tfl, 92
vgc, 97

∗ datasets
Baayen2001, 5
Brown, 11
BrownSubsets, 12
Dickens, 14
EvertLuedeling2001, 19
ItaPref, 20
Tiger, 94

∗ device
zipfR.plotutils, 105

∗ distribution
EV-EVm, 17
EV-EVm.spc, 18
LNRE, 21
lnre, 23
lnre.bootstrap, 29
lnre.fzm, 36
lnre.gigp, 38
lnre.spc, 44
lnre.vgc, 46
lnre.zm, 48
LNRE_posterior, 49
sample.spc, 83
sample.tfl, 84
spc.interp, 88
vgc.interp, 100
VV-Vm, 101

∗ file
read.multiple.objects, 76
read.spc, 78
read.tfl, 80
read.vgc, 82

∗ hplot
plot.lnre, 57
plot.spc, 59

plot.tfl, 62
plot.vgc, 64

∗ htest
confint.lnre, 13

∗ iplot
zipfR.par, 103

∗ manip
EV-EVm.spc, 18
merge.tfl, 51
N-V-Vm, 51
N-V-Vm.spc, 53
N-V-Vm.tfl, 55
N-V-Vm.vgc, 56
sample.spc, 83
sample.tfl, 84
spc.interp, 88
spc.vector, 89
spc2tfl, 91
vec2xxx, 95
vgc.interp, 100
VV-Vm, 101

∗ math
beta_gamma, 6

∗ methods
EV-EVm, 17
EV-EVm.spc, 18
lnre.productivity.measures, 42
N-V-Vm, 51
productivity.measures, 73
VV-Vm, 101

∗ models
estimate.model, 15
EV-EVm, 17
LNRE, 21
lnre, 23
lnre.bootstrap, 29
lnre.details, 33
lnre.fzm, 36
lnre.gigp, 38

108

INDEX 109

lnre.goodness.of.fit, 40
lnre.spc, 44
lnre.vgc, 46
lnre.zm, 48
LNRE_posterior, 49
VV-Vm, 101

∗ optimize
estimate.model, 15
lnre.goodness.of.fit, 40

∗ package
zipfR-package, 3

∗ print
print.lnre, 68
print.spc, 69
print.tfl, 70
print.vgc, 72

∗ programming
lnre.details, 33

∗ univar
bootstrap.confint, 9
lnre.productivity.measures, 42
productivity.measures, 73

Baayen2001, 5
beta, 8
beta_gamma, 6
bootstrap.confint, 9, 13, 14, 43, 44
Brown, 11, 12
Brown100k (BrownSubsets), 12
BrownAdj (BrownSubsets), 12
BrownImag (BrownSubsets), 12
BrownInform (BrownSubsets), 12
BrownNoun (BrownSubsets), 12
BrownSubsets, 11, 12
BrownVer (BrownSubsets), 12

Cbeta (beta_gamma), 6
Cgamma (beta_gamma), 6
confint, 31
confint.lnre, 10, 13, 27

detectCores, 31
dev.new, 106, 107
Devices, 107
Dickens, 14
DickensGreatExpectations (Dickens), 14
DickensOliverTwist (Dickens), 14
DickensOurMutualFriend (Dickens), 14
dlnre (LNRE), 21

estimate.model, 15, 27, 36
EV, 19, 27, 43, 52, 102
EV (EV-EVm), 17
EV-EVm, 17
EV-EVm.spc, 18
EV.spc, 17, 89, 100, 101
EV.spc (EV-EVm.spc), 18
EvertLuedeling2001, 19
EVm, 19, 27, 43, 52, 102
EVm (EV-EVm), 17
EVm.spc, 17, 88, 89, 101
EVm.spc (EV-EVm.spc), 18

file, 80

gamma, 8
getOption, 106

hist, 13

Ibeta (beta_gamma), 6
Igamma (beta_gamma), 6
IQR, 10
ItaPref, 20
ItaRi (ItaPref), 20
ItaUltra (ItaPref), 20

lbeta, 8
ldlnre, 50, 58
ldlnre (LNRE), 21
lgamma, 8
LNRE, 21, 50
lnre, 4, 14–17, 23, 23, 32, 33, 36–41, 44, 45,

47–50, 59, 61, 66, 68
lnre.bootstrap, 10, 14, 25, 27, 29, 43, 44
lnre.details, 16, 25, 27, 33
lnre.fzm, 25, 27, 36, 36
lnre.gigp, 25, 27, 36, 38
lnre.goodness.of.fit, 26, 27, 36, 40
lnre.productivity.measures, 10, 32, 42,

75
lnre.spc, 27, 44, 61, 86, 87
lnre.technical.details (lnre.details),

33
lnre.vgc, 4, 27, 46, 66, 98, 99
lnre.zm, 25, 27, 36, 38, 39, 48
LNRE_posterior, 49
ltdlnre, 58, 59
ltdlnre (LNRE), 21

110 INDEX

mad, 10
makeCluster, 30, 31
merge.tfl, 51

N, 27, 55–57, 87, 94, 99
N (N-V-Vm), 51
N-V-Vm, 51
N-V-Vm.spc, 53
N-V-Vm.tfl, 55
N-V-Vm.vgc, 56
N.spc, 52, 87, 90
N.spc (N-V-Vm.spc), 53
N.tfl, 52, 94
N.tfl (N-V-Vm.tfl), 55
N.vgc, 52, 99
N.vgc (N-V-Vm.vgc), 56
nlm, 16, 27

optim, 16, 27

par, 58, 63, 104, 107
pbeta, 8
pdf, 107
pgamma, 8
plnre, 59
plnre (LNRE), 21
plot, 62, 63
plot.default, 60, 62, 65
plot.lnre, 27, 57, 63
plot.spc, 4, 59, 63, 66, 87, 103–105, 107
plot.tfl, 59, 61, 62, 66, 94, 105
plot.vgc, 4, 61, 63, 64, 99, 103–105, 107
postdlnre (LNRE_posterior), 49
postldlnre (LNRE_posterior), 49
postplnre (LNRE_posterior), 49
postqlnre (LNRE_posterior), 49
postscript, 107
print, 27, 68–70, 72, 87, 94, 99
print.lnre, 27, 68
print.spc, 69, 87
print.tfl, 70, 94
print.vgc, 72, 99
productivity.measures, 32, 43, 44, 73

qlnre (LNRE), 21

Rbeta (beta_gamma), 6
read.multiple.objects, 76
read.spc, 4, 76, 77, 78, 81, 83, 86, 87

read.tfl, 4, 76, 77, 79, 80, 83, 92, 94
read.vgc, 4, 76, 77, 79, 81, 82, 98, 99
readLines, 97
Rgamma (beta_gamma), 6
rlnre, 29, 63, 96, 97
rlnre (LNRE), 21

sample.spc, 83, 84, 85, 87, 89
sample.tfl, 84, 84, 94
scan, 97
spc, 4, 5, 11, 12, 14, 20, 45, 55, 61, 70, 76, 77,

79, 84, 85, 89–91, 94, 97, 101
spc.interp, 17, 19, 88, 101
spc.vector, 87, 89
spc2tfl, 63, 87, 91, 92, 94
summary, 27, 68–70, 72, 87, 94, 99
summary.lnre (print.lnre), 68
summary.spc, 87
summary.spc (print.spc), 69
summary.tfl, 94
summary.tfl (print.tfl), 70
summary.vgc, 99
summary.vgc (print.vgc), 72

tdlnre (LNRE), 21
tfl, 4, 11, 20, 22, 51, 56, 63, 71, 76, 77, 81,

85, 91, 92, 94, 97
tfl2spc, 23, 87, 94
tfl2spc (spc2tfl), 91
Tiger, 94
TigerNP (Tiger), 94
TigerPP (Tiger), 94
tplnre (LNRE), 21
tqlnre (LNRE), 21

V, 27, 55–57, 87, 94, 99, 102
V (N-V-Vm), 51
V.spc, 87, 90
V.spc (N-V-Vm.spc), 53
V.tfl, 94
V.tfl (N-V-Vm.tfl), 55
V.vgc, 99
V.vgc (N-V-Vm.vgc), 56
vec2spc, 23
vec2spc (vec2xxx), 95
vec2tfl, 23, 63
vec2tfl (vec2xxx), 95
vec2vgc, 23
vec2vgc (vec2xxx), 95

INDEX 111

vec2xxx, 95
vgc, 4, 11, 12, 14, 20, 47, 57, 66, 72, 76, 77,

83, 94, 97, 97, 101
vgc.interp, 17, 19, 89, 98, 99, 100
Vm, 27, 55–57, 87, 94, 99, 102
Vm (N-V-Vm), 51
Vm.spc, 90
Vm.spc (N-V-Vm.spc), 53
Vm.tfl (N-V-Vm.tfl), 55
Vm.vgc (N-V-Vm.vgc), 56
VV, 17, 27, 52, 55, 57, 87, 99
VV (VV-Vm), 101
VV-Vm, 101
VV.spc, 90, 102
VV.spc (N-V-Vm.spc), 53
VV.vgc, 102
VV.vgc (N-V-Vm.vgc), 56
VVm, 17, 27, 52, 55, 57, 87, 99
VVm (VV-Vm), 101
VVm.spc, 90
VVm.spc (N-V-Vm.spc), 53
VVm.vgc (N-V-Vm.vgc), 56

write.spc, 87
write.spc (read.spc), 78
write.tfl, 94
write.tfl (read.tfl), 80
write.vgc, 99
write.vgc (read.vgc), 82

zipfR, 11, 20
zipfR (zipfR-package), 3
zipfR-package, 3
zipfR.begin.plot, 104
zipfR.begin.plot (zipfR.plotutils), 105
zipfR.end.plot, 104
zipfR.end.plot (zipfR.plotutils), 105
zipfR.par, 58–61, 63, 65, 66, 103, 106, 107
zipfR.pick.device (zipfR.plotutils), 105
zipfR.plotutils, 59, 61, 63, 66, 105

	zipfR-package
	Baayen2001
	beta_gamma
	bootstrap.confint
	Brown
	BrownSubsets
	confint.lnre
	Dickens
	estimate.model
	EV-EVm
	EV-EVm.spc
	EvertLuedeling2001
	ItaPref
	LNRE
	lnre
	lnre.bootstrap
	lnre.details
	lnre.fzm
	lnre.gigp
	lnre.goodness.of.fit
	lnre.productivity.measures
	lnre.spc
	lnre.vgc
	lnre.zm
	LNRE_posterior
	merge.tfl
	N-V-Vm
	N-V-Vm.spc
	N-V-Vm.tfl
	N-V-Vm.vgc
	plot.lnre
	plot.spc
	plot.tfl
	plot.vgc
	print.lnre
	print.spc
	print.tfl
	print.vgc
	productivity.measures
	read.multiple.objects
	read.spc
	read.tfl
	read.vgc
	sample.spc
	sample.tfl
	spc
	spc.interp
	spc.vector
	spc2tfl
	tfl
	Tiger
	vec2xxx
	vgc
	vgc.interp
	VV-Vm
	zipfR.par
	zipfR.plotutils
	Index

