Title: | Density, Probability, Quantile ('DPQ') Computations |
---|---|
Description: | Computations for approximations and alternatives for the 'DPQ' (Density (pdf), Probability (cdf) and Quantile) functions for probability distributions in R. Primary focus is on (central and non-central) beta, gamma and related distributions such as the chi-squared, F, and t. -- For several distribution functions, provide functions implementing formulas from Johnson, Kotz, and Kemp (1992) <doi:10.1002/bimj.4710360207> and Johnson, Kotz, and Balakrishnan (1995) for discrete or continuous distributions respectively. This is for the use of researchers in these numerical approximation implementations, notably for my own use in order to improve standard R pbeta(), qgamma(), ..., etc: {'"dpq"'-functions}. |
Authors: | Martin Maechler [aut, cre] , Morten Welinder [ctb] (pgamma C code, see PR#7307, Jan. 2005; further pdhyper()), Wolfgang Viechtbauer [ctb] (dtWV(), 2002), Ross Ihaka [ctb] (src/qchisq_appr.c), Marius Hofert [ctb] (lsum(), lssum()), R-core [ctb] (src/{dpq.h, algdiv.c, pnchisq.c, bd0.c}), R Foundation [cph] (src/qchisq-appr.c) |
Maintainer: | Martin Maechler <[email protected]> |
License: | GPL (>= 2) |
Version: | 0.5-9-1 |
Built: | 2024-11-02 19:14:06 UTC |
Source: | https://github.com/r-forge/specfun |
Computations for approximations and alternatives for the 'DPQ' (Density (pdf), Probability (cdf) and Quantile) functions for probability distributions in R. Primary focus is on (central and non-central) beta, gamma and related distributions such as the chi-squared, F, and t. – For several distribution functions, provide functions implementing formulas from Johnson, Kotz, and Kemp (1992) <doi:10.1002/bimj.4710360207> and Johnson, Kotz, and Balakrishnan (1995) for discrete or continuous distributions respectively. This is for the use of researchers in these numerical approximation implementations, notably for my own use in order to improve standard R pbeta(), qgamma(), ..., etc: {'"dpq"'-functions}.
The DESCRIPTION file:
Package: | DPQ |
Title: | Density, Probability, Quantile ('DPQ') Computations |
Version: | 0.5-9-1 |
Date: | 2024-11-02 |
VersionNote: | Last CRAN: 0.5-9 on 2024-08-23; 0.5-8 on 2023-11-30; 0.5-7 on 2023-11-03 |
Authors@R: | c(person("Martin","Maechler", role=c("aut","cre"), email="[email protected]", comment = c(ORCID = "0000-0002-8685-9910")) , person("Morten", "Welinder", role = "ctb", comment = "pgamma C code, see PR#7307, Jan. 2005; further pdhyper()") , person("Wolfgang", "Viechtbauer", role = "ctb", comment = "dtWV(), 2002") , person("Ross", "Ihaka", role = "ctb", comment = "src/qchisq_appr.c") , person("Marius", "Hofert", role = "ctb", comment = "lsum(), lssum()") , person("R-core", email = "[email protected]", role = "ctb", comment = "src/{dpq.h, algdiv.c, pnchisq.c, bd0.c}") , person("R Foundation", role = "cph", comment = "src/qchisq-appr.c") ) |
Description: | Computations for approximations and alternatives for the 'DPQ' (Density (pdf), Probability (cdf) and Quantile) functions for probability distributions in R. Primary focus is on (central and non-central) beta, gamma and related distributions such as the chi-squared, F, and t. -- For several distribution functions, provide functions implementing formulas from Johnson, Kotz, and Kemp (1992) <doi:10.1002/bimj.4710360207> and Johnson, Kotz, and Balakrishnan (1995) for discrete or continuous distributions respectively. This is for the use of researchers in these numerical approximation implementations, notably for my own use in order to improve standard R pbeta(), qgamma(), ..., etc: {'"dpq"'-functions}. |
Depends: | R (>= 4.0.0) |
Imports: | stats, graphics, methods, utils, sfsmisc (>= 1.1-14) |
Suggests: | Rmpfr, DPQmpfr (>= 0.3-1), gmp, MASS, mgcv, scatterplot3d, interp, cobs |
SuggestsNote: | MASS::fractions() in ex | mgcv, scatt.., .., cobs: some tests/ |
License: | GPL (>= 2) |
Encoding: | UTF-8 |
URL: | https://specfun.r-forge.r-project.org/, https://r-forge.r-project.org/R/?group_id=611, https://r-forge.r-project.org/scm/viewvc.php/pkg/DPQ/?root=specfun, svn://svn.r-forge.r-project.org/svnroot/specfun/pkg/DPQ |
BugReports: | https://r-forge.r-project.org/tracker/?atid=2462&group_id=611 |
Repository: | https://r-forge.r-universe.dev |
RemoteUrl: | https://github.com/r-forge/specfun |
RemoteRef: | HEAD |
RemoteSha: | c953b5aa5accf58418aa63e70638b0c0850a9c0d |
Author: | Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>), Morten Welinder [ctb] (pgamma C code, see PR#7307, Jan. 2005; further pdhyper()), Wolfgang Viechtbauer [ctb] (dtWV(), 2002), Ross Ihaka [ctb] (src/qchisq_appr.c), Marius Hofert [ctb] (lsum(), lssum()), R-core [ctb] (src/{dpq.h, algdiv.c, pnchisq.c, bd0.c}), R Foundation [cph] (src/qchisq-appr.c) |
Maintainer: | Martin Maechler <[email protected]> |
Index of help topics:
.D_0 Distribution Utilities "dpq" Bern Bernoulli Numbers DPQ-package Density, Probability, Quantile ('DPQ') Computations Ixpq Normalized Incomplete Beta Function "Like" 'pbeta()' M_LN2 Numerical Utilities - Functions, Constants algdiv Compute log(gamma(b)/gamma(a+b)) when b >= 8 b_chi Compute E[chi_nu]/sqrt(nu) useful for t- and chi-Distributions bd0 Binomial Deviance - Auxiliary Functions for 'dgamma()' Etc bpser 'pbeta()' 'bpser' series computation chebyshevPoly Chebyshev Polynomial Evaluation dbinom_raw R's C Mathlib (Rmath) dbinom_raw() Binomial Probability pure R Function dgamma.R Gamma Density Function Alternatives dhyperBinMolenaar HyperGeometric (Point) Probabilities via Molenaar's Binomial Approximation dnbinomR Pure R Versions of R's C (Mathlib) dnbinom() Negative Binomial Probabilities dnchisqR Approximations of the (Noncentral) Chi-Squared Density dntJKBf1 Non-central t-Distribution Density - Algorithms and Approximations dpsifn Psi Gamma Functions Workhorse from R's API dtWV Asymptotic Noncentral t Distribution Density by Viechtbauer expm1x Accurate exp(x) - 1 - x (for smallish |x|) format01prec Format Numbers in [0,1] with "Precise" Result frexp Base-2 Representation and Multiplication of Numbers gam1d Compute 1/Gamma(x+1) - 1 Accurately gamln1 Compute log( Gamma(x+1) ) Accurately in [-0.2, 1.25] gammaVer Gamma Function Versions hyper2binomP Transform Hypergeometric Distribution Parameters to Binomial Probability lbetaM (Log) Beta and Ratio of Gammas Approximations lfastchoose R versions of Simple Formulas for Logarithmic Binomial Coefficients lgamma1p Accurate 'log(gamma(a+1))' lgammaAsymp Asymptotic Log Gamma Function log1mexp Compute log(1 - exp(-a)) and log(1 + exp(x)) Numerically Optimally log1pmx Accurate 'log(1+x) - x' Computation logcf Continued Fraction Approximation of Log-Related Power Series logspace.add Logspace Arithmetix - Addition and Subtraction lssum Compute Logarithm of a Sum with Signed Large Summands lsum Properly Compute the Logarithm of a Sum (of Exponentials) newton Simple R level Newton Algorithm, Mostly for Didactical Reasons p1l1 Numerically Stable p1l1(t) = (t+1)*log(1+t) - t pbetaRv1 Pure R Implementation of Old pbeta() pchisqV Wienergerm Approximations to (Non-Central) Chi-squared Probabilities phyper1molenaar Molenaar's Normal Approximations to the Hypergeometric Distribution phyperAllBin Compute Hypergeometric Probabilities via Binomial Approximations phyperApprAS152 Normal Approximation to cumulative Hyperbolic Distribution - AS 152 phyperBin.1 HyperGeometric Distribution via Approximate Binomial Distribution phyperBinMolenaar HyperGeometric Distribution via Molenaar's Binomial Approximation phyperIbeta Pearson's incomplete Beta Approximation to the Hyperbolic Distribution phyperPeizer Peizer's Normal Approximation to the Cumulative Hyperbolic phyperR R-only version of R's original phyper() algorithm phyperR2 Pure R version of R's C level phyper() phypers The Four (4) Symmetric 'phyper()' Calls pl2curves Plot 2 Noncentral Distribution Curves for Visual Comparison pnbetaAppr2 Noncentral Beta Probabilities pnchi1sq (Probabilities of Non-Central Chi-squared Distribution for Special Cases pnchisq (Approximate) Probabilities of Non-Central Chi-squared Distribution pnormAsymp Asymptotic Approxmation of (Extreme Tail) 'pnorm()' pnormL_LD10 Bounds for 1-Phi(.) - Mill's Ratio related Bounds for pnorm() pntR Non-central t Probability Distribution - Algorithms and Approximations pow X to Power of Y - R C API 'R_pow()' pow1p Accurate (1+x)^y, notably for small |x| ppoisErr Direct Computation of 'ppois()' Poisson Distribution Probabilities pt_Witkovsky_Tab1 Viktor Witosky's Table_1 pt() Examples qbetaAppr Compute (Approximate) Quantiles of the Beta Distribution qbinomR Pure R Implementation of R's qbinom() with Tuning Parameters qchisqAppr Compute Approximate Quantiles of the Chi-Squared Distribution qgammaAppr Compute (Approximate) Quantiles of the Gamma Distribution qnbinomR Pure R Implementation of R's qnbinom() with Tuning Parameters qnchisqAppr Compute Approximate Quantiles of Noncentral Chi-Squared Distribution qnormAppr Approximations to 'qnorm()', i.e., z_alpha qnormAsymp Asymptotic Approximation to Outer Tail of qnorm() qnormR Pure R version of R's 'qnorm()' with Diagnostics and Tuning Parameters qntR Pure R Implementation of R's qt() / qnt() qpoisR Pure R Implementation of R's qpois() with Tuning Parameters qtAppr Compute Approximate Quantiles of the (Non-Central) t-Distribution qtR Pure R Implementation of R's C-level t-Distribution Quantiles 'qt()' qtU 'uniroot()'-based Computing of t-Distribution Quantiles r_pois Compute Relative Size of i-th term of Poisson Distribution Series rexpm1 TOMS 708 Approximation REXP(x) of expm1(x) = exp(x) - 1 stirlerr Stirling's Error Function - Auxiliary for Gamma, Beta, etc
An important goal is to investigate diverse algorithms and approximations
of R's own density (d*()
), probability (p*()
), and
quantile (q*()
) functions, notably in “border” cases where
the traditional published algorithms have shown to be suboptimal, not
quite accurate, or even useless.
Examples are border cases of the beta distribution, or non-central distributions such as the non-central chi-squared and t-distributions.
Principal author and maintainer: Martin Maechler <[email protected]>
The package DPQmpfr, which builds on this package and on Rmpfr.
## Show problem in R's non-central t-distrib. density (and approximations): example(dntJKBf)
## Show problem in R's non-central t-distrib. density (and approximations): example(dntJKBf)
Computes
in a numerically stable way.
This is an auxiliary function in R's (TOMS 708) implementation of
pbeta()
, aka the incomplete beta function ratio.
algdiv(a, b)
algdiv(a, b)
a , b
|
numeric vectors which will be recycled to the same length. |
Note that this is also useful to compute the Beta function
Clearly,
In our ‘../tests/qbeta-dist.R’ we look into computing
accurately for
.
We are proposing a nice solution there.
How is this related to algdiv()
?
Additionally, we have defined
such that
fulfills simply
see logQab_asy
.
a numeric vector of length max(length(a), length(b))
(if neither
is of length 0, in which case the result has length 0 as well).
Didonato, A. and Morris, A., Jr, (1992); algdiv()
's C
version from the R sources, authored by the R core team; C and R
interface: Martin Maechler
Didonato, A. and Morris, A., Jr, (1992) Algorithm 708: Significant digit computation of the incomplete beta function ratios, ACM Transactions on Mathematical Software 18, 360–373.
gamma
, beta
;
my own logQab_asy()
.
Qab <- algdiv(2:3, 8:14) cbind(a = 2:3, b = 8:14, Qab) # recycling with a warning ## algdiv() and my logQab_asy() give *very* similar results for largish b: all.equal( - algdiv(3, 100), logQab_asy(3, 100), tolerance=0) # 1.283e-16 !! (lQab <- logQab_asy(3, 1e10)) ## relative error 1 + lQab/ algdiv(3, 1e10) # 0 (64b F 30 Linux; 2019-08-15) ## in-and outside of "certified" argument range {b >= 8}: a. <- c(1:3, 4*(1:8))/32 b. <- seq(1/4, 20, by=1/4) ad <- t(outer(a., b., algdiv)) ## direct computation: f.algdiv <- function(a,b) lgamma(b) - lgamma(a+b) ad.d <- t(outer(a., b., f.algdiv)) matplot (b., ad.d, type = "o", cex=3/4, main = quote(log(Gamma(b)/Gamma(a+b)) ~" vs. algdiv(a,b)")) mtext(paste0("a[1:",length(a.),"] = ", paste0(paste(head(paste0(formatC(a.*32), "/32")), collapse=", "), ", .., 1"))) matlines(b., ad, type = "l", lwd=4, lty=1, col=adjustcolor(1:6, 1/2)) abline(v=1, lty=3, col="midnightblue") # The larger 'b', the more accurate the direct formula wrt algdiv() all.equal(ad[b. >= 1,], ad.d[b. >= 1,] )# 1.5e-5 all.equal(ad[b. >= 2,], ad.d[b. >= 2,], tol=0)# 3.9e-9 all.equal(ad[b. >= 4,], ad.d[b. >= 4,], tol=0)# 4.6e-13 all.equal(ad[b. >= 6,], ad.d[b. >= 6,], tol=0)# 3.0e-15 all.equal(ad[b. >= 8,], ad.d[b. >= 8,], tol=0)# 2.5e-15 (not much better)
Qab <- algdiv(2:3, 8:14) cbind(a = 2:3, b = 8:14, Qab) # recycling with a warning ## algdiv() and my logQab_asy() give *very* similar results for largish b: all.equal( - algdiv(3, 100), logQab_asy(3, 100), tolerance=0) # 1.283e-16 !! (lQab <- logQab_asy(3, 1e10)) ## relative error 1 + lQab/ algdiv(3, 1e10) # 0 (64b F 30 Linux; 2019-08-15) ## in-and outside of "certified" argument range {b >= 8}: a. <- c(1:3, 4*(1:8))/32 b. <- seq(1/4, 20, by=1/4) ad <- t(outer(a., b., algdiv)) ## direct computation: f.algdiv <- function(a,b) lgamma(b) - lgamma(a+b) ad.d <- t(outer(a., b., f.algdiv)) matplot (b., ad.d, type = "o", cex=3/4, main = quote(log(Gamma(b)/Gamma(a+b)) ~" vs. algdiv(a,b)")) mtext(paste0("a[1:",length(a.),"] = ", paste0(paste(head(paste0(formatC(a.*32), "/32")), collapse=", "), ", .., 1"))) matlines(b., ad, type = "l", lwd=4, lty=1, col=adjustcolor(1:6, 1/2)) abline(v=1, lty=3, col="midnightblue") # The larger 'b', the more accurate the direct formula wrt algdiv() all.equal(ad[b. >= 1,], ad.d[b. >= 1,] )# 1.5e-5 all.equal(ad[b. >= 2,], ad.d[b. >= 2,], tol=0)# 3.9e-9 all.equal(ad[b. >= 4,], ad.d[b. >= 4,], tol=0)# 4.6e-13 all.equal(ad[b. >= 6,], ad.d[b. >= 6,], tol=0)# 3.0e-15 all.equal(ad[b. >= 8,], ad.d[b. >= 8,], tol=0)# 2.5e-15 (not much better)
useful for t- and chi-Distributions
where denotes a chi-distributed random variable, i.e.,
the square of a chi-squared variable, and
is
the Gamma function,
gamma()
in R.
This is a relatively important auxiliary function when computing with
non-central t distribution functions and approximations, specifically see
Johnson et al.(1994), p.520, after (31.26a), e.g., our pntJW39()
.
Its logarithm,
is even easier to compute via lgamma
and log
,
and I have used Maple to derive an asymptotic expansion in
as well.
Note that also appears in the formula
for the t-density (
dt
) and distribution (tail) functions.
b_chi (nu, one.minus = FALSE, c1 = 341, c2 = 1000) b_chiAsymp(nu, order = 2, one.minus = FALSE) #lb_chi (nu, ......) # not yet lb_chiAsymp(nu, order) c_dt(nu) # warning("FIXME: current c_dt() is poor -- base it on lb_chi(nu) !") c_dtAsymp(nu) # deprecated in favour of lb_chi(nu) c_pt(nu) # warning("use better c_dt()") %---> FIXME deprecate even stronger ?
b_chi (nu, one.minus = FALSE, c1 = 341, c2 = 1000) b_chiAsymp(nu, order = 2, one.minus = FALSE) #lb_chi (nu, ......) # not yet lb_chiAsymp(nu, order) c_dt(nu) # warning("FIXME: current c_dt() is poor -- base it on lb_chi(nu) !") c_dtAsymp(nu) # deprecated in favour of lb_chi(nu) c_pt(nu) # warning("use better c_dt()") %---> FIXME deprecate even stronger ?
nu |
non-negative numeric vector of degrees of freedom. |
one.minus |
logical indicating if |
c1 , c2
|
boundaries for different approximation intervals used:
FIXME: |
order |
the polynomial order in The default, |
One can see that b_chi()
has the properties of a CDF of a
continuous positive random variable: It grows monotonely from
to (asymptotically) one. Specifically,
for large
nu
, b_chi(nu) = b_chiAsymp(nu)
and
More accurately, derived from Abramowitz and Stegun, 6.1.47 (p.257) for a= 1/2, b=0,
and applied for with
, we get
which has been implemented in b_chiAsymp(*, order=2)
in 1999.
Even more accurately, Martin Maechler, used Maple to derive an
asymptotic expansion up to order 15, here reported up to order 5,
namely with ,
a numeric vector of the same length as nu
.
Martin Maechler
Johnson, Kotz, Balakrishnan (1995) Continuous Univariate Distributions, Vol 2, 2nd Edition; Wiley; Formula on page 520, after (31.26a)
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain.
The t-distribution (base R) page pt
;
our pntJW39()
.
curve(b_chi, 0, 20); abline(h=0:1, v=0, lty=3) r <- curve(b_chi, 1e-10, 1e5, log="x") with(r, lines(x, b_chi(x, one.minus=TRUE), col = 2)) ## Zoom in to c1-region rc1 <- curve(b_chi, 340.5, 341.5, n=1001)# nothing to see e <- 1e-3; curve(b_chi, 341-e, 341+e, n=1001) # nothing e <- 1e-5; curve(b_chi, 341-e, 341+e, n=1001) # see noise, but no jump e <- 1e-7; curve(b_chi, 341-e, 341+e, n=1001) # see float "granularity"+"jump" ## Zoom in to c2-region rc2 <- curve(b_chi, 999.5, 1001.5, n=1001) # nothing visible e <- 1e-3; curve(b_chi, 1000-e, 1000+e, n=1001) # clear small jump c2 <- 1500 e <- 1e-3; curve(b_chi(x,c2=c2), c2-e, c2+e, n=1001)# still ## - - - - c2 <- 3000 e <- 1e-3; curve(b_chi(x,c2=c2), c2-e, c2+e, n=1001)# ok asymp clearly better!! curve(b_chiAsymp, add=TRUE, col=adjustcolor("red", 1/3), lwd=3) if(requireNamespace("Rmpfr")) { xm <- Rmpfr::seqMpfr(c2-e, c2+e, length.out=1000) } ## - - - - c2 <- 4000 e <- 1e-3; curve(b_chi(x,c2=c2), c2-e, c2+e, n=1001)# ok asymp clearly better!! curve(b_chiAsymp, add=TRUE, col=adjustcolor("red", 1/3), lwd=3) grCol <- adjustcolor("forest green", 1/2) curve(b_chi, 1/2, 1e11, log="x") curve(b_chiAsymp, add = TRUE, col = grCol, lwd = 3) ## 1-b(nu) ~= 1/(4 nu) a power function <==> linear in log-log scale: curve(b_chi(x, one.minus=TRUE), 1/2, 1e11, log="xy") curve(b_chiAsymp(x, one.minus=TRUE), add = TRUE, col = grCol, lwd = 3)
curve(b_chi, 0, 20); abline(h=0:1, v=0, lty=3) r <- curve(b_chi, 1e-10, 1e5, log="x") with(r, lines(x, b_chi(x, one.minus=TRUE), col = 2)) ## Zoom in to c1-region rc1 <- curve(b_chi, 340.5, 341.5, n=1001)# nothing to see e <- 1e-3; curve(b_chi, 341-e, 341+e, n=1001) # nothing e <- 1e-5; curve(b_chi, 341-e, 341+e, n=1001) # see noise, but no jump e <- 1e-7; curve(b_chi, 341-e, 341+e, n=1001) # see float "granularity"+"jump" ## Zoom in to c2-region rc2 <- curve(b_chi, 999.5, 1001.5, n=1001) # nothing visible e <- 1e-3; curve(b_chi, 1000-e, 1000+e, n=1001) # clear small jump c2 <- 1500 e <- 1e-3; curve(b_chi(x,c2=c2), c2-e, c2+e, n=1001)# still ## - - - - c2 <- 3000 e <- 1e-3; curve(b_chi(x,c2=c2), c2-e, c2+e, n=1001)# ok asymp clearly better!! curve(b_chiAsymp, add=TRUE, col=adjustcolor("red", 1/3), lwd=3) if(requireNamespace("Rmpfr")) { xm <- Rmpfr::seqMpfr(c2-e, c2+e, length.out=1000) } ## - - - - c2 <- 4000 e <- 1e-3; curve(b_chi(x,c2=c2), c2-e, c2+e, n=1001)# ok asymp clearly better!! curve(b_chiAsymp, add=TRUE, col=adjustcolor("red", 1/3), lwd=3) grCol <- adjustcolor("forest green", 1/2) curve(b_chi, 1/2, 1e11, log="x") curve(b_chiAsymp, add = TRUE, col = grCol, lwd = 3) ## 1-b(nu) ~= 1/(4 nu) a power function <==> linear in log-log scale: curve(b_chi(x, one.minus=TRUE), 1/2, 1e11, log="xy") curve(b_chiAsymp(x, one.minus=TRUE), add = TRUE, col = grCol, lwd = 3)
Return the -th Bernoulli number
, (or
,
see the reference), where
.
Bern(n, verbose = getOption("verbose", FALSE))
Bern(n, verbose = getOption("verbose", FALSE))
n |
integer, |
verbose |
logical indicating if computation should be traced. |
The number of type
numeric
.
A side effect is the caching of computed Bernoulli numbers in the
hidden environment
.bernoulliEnv
.
Martin Maechler
https://en.wikipedia.org/wiki/Bernoulli_number
Bernoulli
in Rmpfr in arbitrary precision
via Riemann's function.
The next version of package gmp is to contain
BernoulliQ()
, providing exact Bernoulli numbers as
big rationals (class "bigq"
).
(B.0.10 <- vapply(0:10, Bern, 1/2)) ## [1] 1.00000000 +0.50000000 0.16666667 0.00000000 -0.03333333 0.00000000 ## [7] 0.02380952 0.00000000 -0.03333333 0.00000000 0.07575758 if(requireNamespace("MASS")) { print( MASS::fractions(B.0.10) ) ## 1 +1/2 1/6 0 -1/30 0 1/42 0 -1/30 0 5/66 }
(B.0.10 <- vapply(0:10, Bern, 1/2)) ## [1] 1.00000000 +0.50000000 0.16666667 0.00000000 -0.03333333 0.00000000 ## [7] 0.02380952 0.00000000 -0.03333333 0.00000000 0.07575758 if(requireNamespace("MASS")) { print( MASS::fractions(B.0.10) ) ## 1 +1/2 1/6 0 -1/30 0 1/42 0 -1/30 0 5/66 }
pbeta()
'bpser' series computationCompute the bpser
series approximation of pbeta
, the
incomplete beta function.
Note that when b
is integer valued, the series is a sum of
terms.
bpser(a, b, x, log.p = FALSE, eps = 1e-15, verbose = FALSE, warn = TRUE)
bpser(a, b, x, log.p = FALSE, eps = 1e-15, verbose = FALSE, warn = TRUE)
a , b
|
numeric and non-negative, the two shape parameters of the beta distribution. |
x |
numeric vector of abscissa values in |
log.p |
a |
eps |
series convergence (and other) tolerance, a small positive number. |
verbose |
a |
warn |
a |
a list
with components
r |
the resulting |
ier |
an integer vector of the same length as |
Martin Maechler, ported to DPQ; R-Core team for the code in R.
TOMS 708, see pbeta
R's pbeta
;
DPQ's pbetaRv1()
, and Ixpq()
;
Rmpfr's pbetaI
with(bpser(100000, 11, (0:64)/64), # all 0 {last one "wrongly"} stopifnot(r == c(rep(0, 64), 1), err == 0)) bp1e5.11L <- bpser(100000, 11, (0:64)/64, log.p=TRUE)# -> 2 "underflow to -Inf" warnings! pbe <- pbeta((0:64)/64, 100000, 11, log.p=TRUE) ## verbose=TRUE showing info on number of terms / iterations ps11.5 <- bpser(100000, 11.5, (0:64)/64, log.p=TRUE, verbose=TRUE)
with(bpser(100000, 11, (0:64)/64), # all 0 {last one "wrongly"} stopifnot(r == c(rep(0, 64), 1), err == 0)) bp1e5.11L <- bpser(100000, 11, (0:64)/64, log.p=TRUE)# -> 2 "underflow to -Inf" warnings! pbe <- pbeta((0:64)/64, 100000, 11, log.p=TRUE) ## verbose=TRUE showing info on number of terms / iterations ps11.5 <- bpser(100000, 11.5, (0:64)/64, log.p=TRUE, verbose=TRUE)
Provides (evaluation of) Chebyshev polynomials, given their coefficients
vector coef
(using , i.e.,
2*coef[1]
as the base
R mathlib chebyshev*()
functions.
Specifically, the following sum is evaluated:
where coef[1]
and
coef[j+1]
for .
chebyshev_nc(coef, .)
is the maximal degree and hence
one less than the number of terms, and is the
Chebyshev polynomial (of the first kind) of degree
.
chebyshevPoly(coef, nc = chebyshev_nc(coef, eta), eta = .Machine$double.eps/20) chebyshev_nc(coef, eta = .Machine$double.eps/20) chebyshevEval(x, coef, nc = chebyshev_nc(coef, eta), eta = .Machine$double.eps/20)
chebyshevPoly(coef, nc = chebyshev_nc(coef, eta), eta = .Machine$double.eps/20) chebyshev_nc(coef, eta = .Machine$double.eps/20) chebyshevEval(x, coef, nc = chebyshev_nc(coef, eta), eta = .Machine$double.eps/20)
coef |
a numeric vector of coefficients for the Chebyshev polynomial. |
nc |
the maximal degree, i.e., one less than the number of polynomial terms to use; typically use the default. |
eta |
a positive number; typically keep the default. |
x |
for |
chebyshevPoly()
returns function(x)
which computes
the values of the underlying Chebyshev polynomial at x
.
chebyshev_nc()
returns an integer
, and
chebyshevEval(x, coef)
returns a numeric “like” x
with the values of the polynomial at x
.
R Core team, notably Ross Ihaka; Martin Maechler provided the R interface.
https://en.wikipedia.org/wiki/Chebyshev_polynomials
polyn.eval()
from CRAN package sfsmisc; as one
example of many more.
## The first 5 (base) Chebyshev polynomials: T0 <- chebyshevPoly(2) # !! 2, not 1 T1 <- chebyshevPoly(0:1) T2 <- chebyshevPoly(c(0,0,1)) T3 <- chebyshevPoly(c(0,0,0,1)) T4 <- chebyshevPoly(c(0,0,0,0,1)) curve(T0(x), -1,1, col=1, lwd=2, ylim=c(-1,1)) abline(h=0, lty=2) curve(T1(x), col=2, lwd=2, add=TRUE) curve(T2(x), col=3, lwd=2, add=TRUE) curve(T3(x), col=4, lwd=2, add=TRUE) curve(T4(x), col=5, lwd=2, add=TRUE) (Tv <- vapply(c(T0=T0, T1=T1, T2=T2, T3=T3, T4=T4), function(Tp) Tp(-1:1), numeric(3))) x <- seq(-1,1, by = 1/64) stopifnot(exprs = { all.equal(chebyshevPoly(1:5)(x), 0.5*T0(x) + 2*T1(x) + 3*T2(x) + 4*T3(x) + 5*T4(x)) all.equal(unname(Tv), rbind(c(1,-1), c(1:-1,0:1), rep(1,5)))# warning on rbind() })
## The first 5 (base) Chebyshev polynomials: T0 <- chebyshevPoly(2) # !! 2, not 1 T1 <- chebyshevPoly(0:1) T2 <- chebyshevPoly(c(0,0,1)) T3 <- chebyshevPoly(c(0,0,0,1)) T4 <- chebyshevPoly(c(0,0,0,0,1)) curve(T0(x), -1,1, col=1, lwd=2, ylim=c(-1,1)) abline(h=0, lty=2) curve(T1(x), col=2, lwd=2, add=TRUE) curve(T2(x), col=3, lwd=2, add=TRUE) curve(T3(x), col=4, lwd=2, add=TRUE) curve(T4(x), col=5, lwd=2, add=TRUE) (Tv <- vapply(c(T0=T0, T1=T1, T2=T2, T3=T3, T4=T4), function(Tp) Tp(-1:1), numeric(3))) x <- seq(-1,1, by = 1/64) stopifnot(exprs = { all.equal(chebyshevPoly(1:5)(x), 0.5*T0(x) + 2*T1(x) + 3*T2(x) + 4*T3(x) + 5*T4(x)) all.equal(unname(Tv), rbind(c(1,-1), c(1:-1,0:1), rep(1,5)))# warning on rbind() })
A pure R implementation of R's C API (‘Mathlib’ specifically)
dbinom_raw()
function which computes binomial probabilities
and is continuous in x
, i.e., also “works” for
non-integer x
.
dbinom_raw (x, n, p, q = 1-p, log = FALSE, version = c("2008", "R4.4"), verbose = getOption("verbose"))
dbinom_raw (x, n, p, q = 1-p, log = FALSE, version = c("2008", "R4.4"), verbose = getOption("verbose"))
x |
vector with values typically in |
n |
called |
p |
called |
q |
mathemtically the same as |
log |
logical indicating if the |
version |
a |
verbose |
integer indicating the amount of verbosity of
diagnostic output, |
numeric vector of the same length as x
which may have to be
thought of recycled along n
, p
and/or q
.
R Core and Martin Maechler
Note that our CRAN package Rmpfr provides
dbinom
, an mpfr-accurate function to be used
used instead of R's or this pure R version relying bd0()
and
stirlerr()
where the latter currently only provides
accurate double precision accuracy.
for(n in c(3, 10, 27, 100, 500, 2000, 5000, 1e4, 1e7, 1e10)) { x <- if(n <= 2000) 0:n else round(seq(0, n, length.out=2000)) p <- 3/4 stopifnot(all.equal(dbinom_raw(x, n, p, q=1-p) -> dbin, dbinom (x, n, p), tolerance = 1e-13))# 1.636e-14 (Apple clang 14.0.3) stopifnot(all.equal(dbin, dbinom_raw(x, n, p, q=1-p, version = "R4.4") -> dbin44, tolerance = 1e-13)) cat("n = ", n, ": ", (aeq <- all.equal(dbin44, dbin, tolerance = 0)), "\n") if(n < 3000) stopifnot(is.character(aeq)) # check that dbin44 is "better" ?! } n <- 1024 ; x <- 0:n plot(x, dbinom_raw(x, n, p, q=1-p) - dbinom(x, n, p), type="l", main = "|db_r(x) - db(x)|") plot(x, dbinom_raw(x, n, p, q=1-p) / dbinom(x, n, p) - 1, type="b", log="y", main = "rel.err. |db_r(x / db(x) - 1)|")
for(n in c(3, 10, 27, 100, 500, 2000, 5000, 1e4, 1e7, 1e10)) { x <- if(n <= 2000) 0:n else round(seq(0, n, length.out=2000)) p <- 3/4 stopifnot(all.equal(dbinom_raw(x, n, p, q=1-p) -> dbin, dbinom (x, n, p), tolerance = 1e-13))# 1.636e-14 (Apple clang 14.0.3) stopifnot(all.equal(dbin, dbinom_raw(x, n, p, q=1-p, version = "R4.4") -> dbin44, tolerance = 1e-13)) cat("n = ", n, ": ", (aeq <- all.equal(dbin44, dbin, tolerance = 0)), "\n") if(n < 3000) stopifnot(is.character(aeq)) # check that dbin44 is "better" ?! } n <- 1024 ; x <- 0:n plot(x, dbinom_raw(x, n, p, q=1-p) - dbinom(x, n, p), type="l", main = "|db_r(x) - db(x)|") plot(x, dbinom_raw(x, n, p, q=1-p) / dbinom(x, n, p) - 1, type="b", log="y", main = "rel.err. |db_r(x / db(x) - 1)|")
Compute the density function of the (noncentral) chi-squared
distribution.
dnchisqR (x, df, ncp, log = FALSE, eps = 5e-15, termSml = 1e-10, ncpLarge = 1000) dnchisqBessel(x, df, ncp, log = FALSE) dchisqAsym (x, df, ncp, log = FALSE) dnoncentchisq(x, df, ncp, kmax = floor(ncp/2 + 5 * (ncp/2)^0.5))
dnchisqR (x, df, ncp, log = FALSE, eps = 5e-15, termSml = 1e-10, ncpLarge = 1000) dnchisqBessel(x, df, ncp, log = FALSE) dchisqAsym (x, df, ncp, log = FALSE) dnoncentchisq(x, df, ncp, kmax = floor(ncp/2 + 5 * (ncp/2)^0.5))
x |
non-negative numeric vector. |
df |
degrees of freedom (parameter), a positive number. |
ncp |
non-centrality parameter |
log |
logical indicating if the result is desired on the log scale. |
eps |
positive convergence tolerance for the series expansion: Terms
are added while |
termSml |
positive tolerance: in the series expansion, terms are
added to the sum as long as they are not smaller than |
ncpLarge |
in the case where |
kmax |
the number of terms in the sum for |
dnchisqR()
is a pure R implementation of R's own C implementation
in the sources, ‘R/src/nmath/dnchisq.c’, additionally exposing the
three “tuning parameters” eps
, termSml
, and ncpLarge
.
dnchisqBessel()
implements Fisher(1928)'s exact closed form formula
based on the Bessel function , i.e., R's
besselI()
function;
specifically formula (29.4) in Johnson et al. (1995).
dchisqAsym()
is the simple asymptotic approximation from
Abramowitz and Stegun's formula 26.4.27
, p. 942.
dnoncentchisq()
uses the (typically defining) infinite series expansion
directly, with truncation at kmax
, and terms which
are products of a Poisson probability and a central chi-square density, i.e.,
terms
t.k := dpois(k, lambda = ncp/2) * dchisq(x, df = 2*k + df)
for k = 0, 1, ..., kmax
.
numeric vector similar to x
, containing the (logged if
log=TRUE
) values of the density .
These functions are mostly of historical interest, notably as R's
dchisq()
was not always very accurate in the noncentral
case, i.e., for ncp > 0
.
R's dchisq()
is typically more uniformly
accurate than the approximations nowadays, apart from dnchisqR()
which should behave the same.
There may occasionally exist small differences between dnchisqR(x, *)
and dchisq(x, *)
for the same parameters.
Martin Maechler, April 2008
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain.
Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions Vol~2, 2nd ed.; Wiley; chapter 29, Section 3 Distribution, (29.4), p. 436.
R's own dchisq()
.
x <- sort(outer(c(1,2,5), 2^(-4:5))) fRR <- dchisq (x, 10, 2) f.R <- dnchisqR(x, 10, 2) all.equal(fRR, f.R, tol = 0) # 64bit Lnx (F 30): 1.723897e-16 stopifnot(all.equal(fRR, f.R, tol = 4e-15))
x <- sort(outer(c(1,2,5), 2^(-4:5))) fRR <- dchisq (x, 10, 2) f.R <- dnchisqR(x, 10, 2) all.equal(fRR, f.R, tol = 0) # 64bit Lnx (F 30): 1.723897e-16 stopifnot(all.equal(fRR, f.R, tol = 4e-15))
dgamma()
EtcThe “binomial deviance” function
bd0(x, M) :=
,
where
.
Mostly, pure R transcriptions of the C code utility functions for
dgamma()
, dbinom()
, dpois()
, dt()
,
and similar “base” density functions by Catherine Loader.
These have extra arguments with defaults that correspond
to R's Mathlib C code hardwired cutoffs and tolerances.
dpois_raw(x, lambda, log=FALSE, version, small.x__lambda = .Machine$double.eps, ## the defaults for version will probably change in the future bd0.delta = 0.1, ## optional arguments of log1pmx() : tol_logcf = 1e-14, eps2 = 0.01, minL1 = -0.79149064, trace.lcf = verbose, logCF = if (is.numeric(x)) logcf else logcfR, verbose = FALSE) dpois_simpl (x, lambda, log=FALSE) dpois_simpl0(x, lambda, log=FALSE) bd0(x, np, delta = 0.1, maxit = as.integer(-1100 / log2(delta)), s0 = .Machine$double.xmin, verbose = getOption("verbose")) bd0C(x, np, delta = 0.1, maxit = 1000L, version = "R4.0", verbose = getOption("verbose")) # "simple" log1pmx() based versions : bd0_p1l1d1(x, M, tol_logcf = 1e-14, ...) bd0_p1l1d (x, M, tol_logcf = 1e-14, ...) bd0_l1pm (x, M, tol_logcf = 1e-14, ...) ebd0 (x, M, verbose = getOption("verbose"), ...) # experimental, may disappear !! ebd0C(x, M, verbose = getOption("verbose"))
dpois_raw(x, lambda, log=FALSE, version, small.x__lambda = .Machine$double.eps, ## the defaults for version will probably change in the future bd0.delta = 0.1, ## optional arguments of log1pmx() : tol_logcf = 1e-14, eps2 = 0.01, minL1 = -0.79149064, trace.lcf = verbose, logCF = if (is.numeric(x)) logcf else logcfR, verbose = FALSE) dpois_simpl (x, lambda, log=FALSE) dpois_simpl0(x, lambda, log=FALSE) bd0(x, np, delta = 0.1, maxit = as.integer(-1100 / log2(delta)), s0 = .Machine$double.xmin, verbose = getOption("verbose")) bd0C(x, np, delta = 0.1, maxit = 1000L, version = "R4.0", verbose = getOption("verbose")) # "simple" log1pmx() based versions : bd0_p1l1d1(x, M, tol_logcf = 1e-14, ...) bd0_p1l1d (x, M, tol_logcf = 1e-14, ...) bd0_l1pm (x, M, tol_logcf = 1e-14, ...) ebd0 (x, M, verbose = getOption("verbose"), ...) # experimental, may disappear !! ebd0C(x, M, verbose = getOption("verbose"))
x |
|
lambda , np , M
|
each |
log |
logical indicating if the log-density should be returned,
otherwise the density at |
verbose |
logical indicating if some information about the computations are to be printed. |
small.x__lambda |
positive number; for |
delta , bd0.delta
|
a non-negative number |
tol_logcf , eps2 , minL1 , trace.lcf , logCF , ...
|
optional tuning arguments passed to |
maxit |
the number of series expansion terms to be used in
|
s0 |
the very small |
version |
a |
bd0()
:Loader's “Binomial Deviance” function; for
(where the limit
is allowed).
In the case of
dbinom
, are integers (and
), but in general
x
is real.
where
. Hence
A different way to rewrite this from Martyn Plummer, notably for important situation when
, is using
(and
for that situation),
equivalently,
.
Using
,
and
where
the Taylor series expansion is useful for small .
Note that bd0(x, M)
now also works when x
and/or
M
are arbitrary-accurate mpfr-numbers (package Rmpfr).
bd0C()
interfaces to C code which corresponds to R's C Mathlib (Rmath) bd0()
.
a numeric vector “like” x
; in some cases may also be an
(high accuracy) "mpfr"-number vector, using CRAN package Rmpfr.
ebd0()
(R code) and ebd0C()
(interface to C
code) are experimental, meant to be precision-extended version of
bd0()
, returning (yh, yl)
(high- and low-part of y
,
the numeric result). In order to work for long vectors x
,
yh, yl
need to be list
components; hence we return a
two-column data.frame
with column names "yh"
and
"yl"
.
Martin Maechler
C. Loader (2000), see dbinom
's documentation.
Our package vignette log1pmx, bd0, stirlerr - Probability Computations in R.
stirlerr
for Stirling's error function,
complementing bd0()
for computation of Gamma, Beta, Binomial and Poisson probabilities.
dgamma
,
dpois
.
x <- 800:1200 bd0x1k <- bd0(x, np = 1000) plot(x, bd0x1k, type="l", ylab = "bd0(x, np=1000)") bd0x1kC <- bd0C(x, np = 1000) lines(x, bd0x1kC, col=2) bd0.1d1 <- bd0_p1l1d1(x, 1000) bd0.1d <- bd0_p1l1d (x, 1000) bd0.1pm <- bd0_l1pm (x, 1000) stopifnot(exprs = { all.equal(bd0x1kC, bd0x1k, tol=1e-14) # even tol=0 currently .. all.equal(bd0x1kC, bd0.1d1, tol=1e-14) all.equal(bd0x1kC, bd0.1d , tol=1e-14) all.equal(bd0x1kC, bd0.1pm, tol=1e-14) }) str(log1pmx) ##--> play with { tol_logcf, eps2, minL1, trace.lcf, logCF } ebd0x1k <- ebd0 (x, 1000) exC <- ebd0C(x, 1000) stopifnot(all.equal(exC, ebd0x1k, tol=4e-16)) lines(x, rowSums(ebd0x1k), col=adjustcolor(4, 1/2), lwd=4) x <- 0:250 dp <- dpois (x, 48, log=TRUE)# R's 'stats' pkg function dp.r <- dpois_raw(x, 48, log=TRUE) all.equal(dp, dp.r, tol = 0) # on Linux 64b, see TRUE stopifnot(all.equal(dp, dp.r, tol = 1e-14)) ## dpois_raw() versions: (vers <- eval(formals(dpois_raw)$version)) mv <- sapply(vers, function(v) dpois_raw(x, 48, version=v)) matplot(x, mv, type="h", log="y", main="dpois_raw(x, 48, version=*)") # "fine" if(all(mv[,"ebd0_C1"] == mv[,"ebd0_v1"])) { cat("versions 'ebd0_C1' and 'ebd0_v1' are identical for lambda=48\n") mv <- mv[, vers != "ebd0_C1"] } ## now look at *relative* errors -- need "Rmpfr" for "truth" if(requireNamespace("Rmpfr")) { dM <- Rmpfr::dpois(Rmpfr::mpfr(x, 256), 48) asN <- Rmpfr::asNumeric relE <- asN(mv / dM - 1) cols <- adjustcolor(1:ncol(mv), 1/2) mtit <- "relative Errors of dpois_raw(x, 48, version = * )" matplot(x, relE, type="l", col=cols, lwd=3, lty=1, main=mtit) legend("topleft", colnames(mv), col=cols, lwd=3, bty="n") matplot(x, abs(relE), ylim=pmax(1e-18, range(abs(relE))), type="l", log="y", main=mtit, col=cols, lwd=2, lty=1, yaxt="n") sfsmisc::eaxis(2) legend("bottomright", colnames(mv), col=cols, lwd=2, bty="n", ncol=3) ee <- c(.5, 1, 2)* 2^-52; eC <- quote(epsilon[C]) abline(h=ee, lty=2, col="gray", lwd=c(1,2,1)) axis(4, at=ee[2:3], expression(epsilon[C], 2 * epsilon[C]), col="gray", las=1) par(new=TRUE) plot(x, asN(dM), type="h", col=adjustcolor("darkgreen", 1/3), axes=FALSE, ann=FALSE) stopifnot(abs(relE) < 8e-13) # seen 2.57e-13 }# Rmpfr
x <- 800:1200 bd0x1k <- bd0(x, np = 1000) plot(x, bd0x1k, type="l", ylab = "bd0(x, np=1000)") bd0x1kC <- bd0C(x, np = 1000) lines(x, bd0x1kC, col=2) bd0.1d1 <- bd0_p1l1d1(x, 1000) bd0.1d <- bd0_p1l1d (x, 1000) bd0.1pm <- bd0_l1pm (x, 1000) stopifnot(exprs = { all.equal(bd0x1kC, bd0x1k, tol=1e-14) # even tol=0 currently .. all.equal(bd0x1kC, bd0.1d1, tol=1e-14) all.equal(bd0x1kC, bd0.1d , tol=1e-14) all.equal(bd0x1kC, bd0.1pm, tol=1e-14) }) str(log1pmx) ##--> play with { tol_logcf, eps2, minL1, trace.lcf, logCF } ebd0x1k <- ebd0 (x, 1000) exC <- ebd0C(x, 1000) stopifnot(all.equal(exC, ebd0x1k, tol=4e-16)) lines(x, rowSums(ebd0x1k), col=adjustcolor(4, 1/2), lwd=4) x <- 0:250 dp <- dpois (x, 48, log=TRUE)# R's 'stats' pkg function dp.r <- dpois_raw(x, 48, log=TRUE) all.equal(dp, dp.r, tol = 0) # on Linux 64b, see TRUE stopifnot(all.equal(dp, dp.r, tol = 1e-14)) ## dpois_raw() versions: (vers <- eval(formals(dpois_raw)$version)) mv <- sapply(vers, function(v) dpois_raw(x, 48, version=v)) matplot(x, mv, type="h", log="y", main="dpois_raw(x, 48, version=*)") # "fine" if(all(mv[,"ebd0_C1"] == mv[,"ebd0_v1"])) { cat("versions 'ebd0_C1' and 'ebd0_v1' are identical for lambda=48\n") mv <- mv[, vers != "ebd0_C1"] } ## now look at *relative* errors -- need "Rmpfr" for "truth" if(requireNamespace("Rmpfr")) { dM <- Rmpfr::dpois(Rmpfr::mpfr(x, 256), 48) asN <- Rmpfr::asNumeric relE <- asN(mv / dM - 1) cols <- adjustcolor(1:ncol(mv), 1/2) mtit <- "relative Errors of dpois_raw(x, 48, version = * )" matplot(x, relE, type="l", col=cols, lwd=3, lty=1, main=mtit) legend("topleft", colnames(mv), col=cols, lwd=3, bty="n") matplot(x, abs(relE), ylim=pmax(1e-18, range(abs(relE))), type="l", log="y", main=mtit, col=cols, lwd=2, lty=1, yaxt="n") sfsmisc::eaxis(2) legend("bottomright", colnames(mv), col=cols, lwd=2, bty="n", ncol=3) ee <- c(.5, 1, 2)* 2^-52; eC <- quote(epsilon[C]) abline(h=ee, lty=2, col="gray", lwd=c(1,2,1)) axis(4, at=ee[2:3], expression(epsilon[C], 2 * epsilon[C]), col="gray", las=1) par(new=TRUE) plot(x, asN(dM), type="h", col=adjustcolor("darkgreen", 1/3), axes=FALSE, ann=FALSE) stopifnot(abs(relE) < 8e-13) # seen 2.57e-13 }# Rmpfr
dgamma.R()
is aimed to be an R level “clone” of R's C
level implementation dgamma
(from package stats).
dgamma.R(x, shape, scale = 1, log, dpois_r_args = list())
dgamma.R(x, shape, scale = 1, log, dpois_r_args = list())
x |
non-negative numeric vector. |
shape |
non-negative shape parameter of the Gamma distribution. |
scale |
positive scale parameter; note we do not see the need to have
a |
log |
logical indicating if the result is desired on the log scale. |
dpois_r_args |
a |
numeric vector of the same length as x
(which may have to be
thought of recycled along shape
and/or scale
.
Martin Maechler
(As R's C code) this depends crucially on the “workhorse”
function dpois_raw()
.
xy <- curve(dgamma (x, 12), 0,30) # R's dgamma() xyR <- curve(dgamma.R(x, 12, dpois_r_args = list(verbose=TRUE)), add=TRUE, col = adjustcolor(2, 1/3), lwd=3) stopifnot(all.equal(xy, xyR, tolerance = 4e-15)) # seen 7.12e-16 ## TODO: check *vectorization* in x --> add tests/*.R ___ TODO ___ ## From R's <R>/tests/d-p-q-r-tst-2.R -- replacing dgamma() w/ dgamma.R() ## PR#17577 - dgamma(x, shape) for shape < 1 (=> +Inf at x=0) and very small x stopifnot(exprs = { all.equal(dgamma.R(2^-1027, shape = .99 , log=TRUE), 7.1127667376, tol=1e-10) all.equal(dgamma.R(2^-1031, shape = 1e-2, log=TRUE), 702.8889158, tol=1e-10) all.equal(dgamma.R(2^-1048, shape = 1e-7, log=TRUE), 710.30007699, tol=1e-10) all.equal(dgamma.R(2^-1048, shape = 1e-7, scale = 1e-315, log=TRUE), 709.96858768, tol=1e-10) }) ## R's dgamma() gave all Inf in R <= 3.6.1 [and still there in 32-bit Windows !]
xy <- curve(dgamma (x, 12), 0,30) # R's dgamma() xyR <- curve(dgamma.R(x, 12, dpois_r_args = list(verbose=TRUE)), add=TRUE, col = adjustcolor(2, 1/3), lwd=3) stopifnot(all.equal(xy, xyR, tolerance = 4e-15)) # seen 7.12e-16 ## TODO: check *vectorization* in x --> add tests/*.R ___ TODO ___ ## From R's <R>/tests/d-p-q-r-tst-2.R -- replacing dgamma() w/ dgamma.R() ## PR#17577 - dgamma(x, shape) for shape < 1 (=> +Inf at x=0) and very small x stopifnot(exprs = { all.equal(dgamma.R(2^-1027, shape = .99 , log=TRUE), 7.1127667376, tol=1e-10) all.equal(dgamma.R(2^-1031, shape = 1e-2, log=TRUE), 702.8889158, tol=1e-10) all.equal(dgamma.R(2^-1048, shape = 1e-7, log=TRUE), 710.30007699, tol=1e-10) all.equal(dgamma.R(2^-1048, shape = 1e-7, scale = 1e-315, log=TRUE), 709.96858768, tol=1e-10) }) ## R's dgamma() gave all Inf in R <= 3.6.1 [and still there in 32-bit Windows !]
Compute hypergeometric (point) probabilities via Molenaar's binomial
approximation, hyper2binomP()
.
dhyperBinMolenaar(x, m, n, k, log = FALSE)
dhyperBinMolenaar(x, m, n, k, log = FALSE)
x |
(vector of) the number of white balls drawn without replacement from an urn which contains both black and white balls. |
m |
the number of white balls in the urn. |
n |
the number of black balls in the urn. |
k |
the number of balls drawn from the urn, hence in |
log |
|
a numeric
vector, with the length the maximum of the
lengths of x, m, n, k
.
Martin Maechler
See those in phyperBinMolenaar
.
hyper2binomP()
;
R's own dhyper()
which uses more sophisticated
computations.
## The function is simply defined as function (x, m, n, k, log = FALSE) dbinom(x, size = k, prob = hyper2binomP(x, m, n, k), log = log)
## The function is simply defined as function (x, m, n, k, log = FALSE) dbinom(x, size = k, prob = hyper2binomP(x, m, n, k), log = log)
Compute pure R implementations of R's C Mathlib (Rmath)
dnbinom()
binomial probabilities, allowing to see the
effect of the cutoff eps
.
dnbinomR (x, size, prob, log = FALSE, eps = 1e-10) dnbinom.mu(x, size, mu, log = FALSE, eps = 1e-10)
dnbinomR (x, size, prob, log = FALSE, eps = 1e-10) dnbinom.mu(x, size, mu, log = FALSE, eps = 1e-10)
x , size , prob , mu , log
|
see R's |
eps |
non-negative number specifying the cutoff for “small
|
numeric vector of the same length as x
which may have to be
thought of recycled along size
and prob
or mu
.
R Core and Martin Maechler
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain.
dbinom_raw
;
Note that our CRAN package Rmpfr provides
dnbinom
,
dbinom
and more, where mpfr-accurate functions are
used instead of R's (and our pure R version of) bd0()
and
stirlerr()
.
stopifnot( dnbinomR(0, 1, 1) == 1 ) size <- 1000 ; x <- 0:size dnb <- dnbinomR(x, size, prob = 5/8, log = FALSE, eps = 1e-10) plot(x, dnb, type="b") all.equal(dnb, dnbinom(x, size, prob = 5/8)) ## mean rel. diff: 0.00017... dnbm <- dnbinom.mu(x, size, mu = 123, eps = 1e-10) all.equal(dnbm, dnbinom(x, size, mu = 123)) # Mean relative diff: 0.00069...
stopifnot( dnbinomR(0, 1, 1) == 1 ) size <- 1000 ; x <- 0:size dnb <- dnbinomR(x, size, prob = 5/8, log = FALSE, eps = 1e-10) plot(x, dnb, type="b") all.equal(dnb, dnbinom(x, size, prob = 5/8)) ## mean rel. diff: 0.00017... dnbm <- dnbinom.mu(x, size, mu = 123, eps = 1e-10) all.equal(dnbm, dnbinom(x, size, mu = 123)) # Mean relative diff: 0.00069...
dntJKBf1
implements the summation formulas
of Johnson, Kotz and Balakrishnan (1995),
(31.15) on page 516 and (31.15') on p.519, the latter being typo-corrected
for a missing factor .
dntJKBf()
is Vectorize(dntJKBf1,
c("x","df","ncp"))
, i.e., works vectorized in all three main
arguments x
, df
and ncp
.
The functions .dntJKBch1()
and .dntJKBch()
are only there
for didactical reasons allowing to check that indeed formula (31.15')
in the reference is missing a factor in the denominator.
The dntJKBf*()
functions are written to also work with
arbitrary precise numbers of class
"mpfr"
(from package Rmpfr)
as arguments.
dntJKBf1(x, df, ncp, log = FALSE, M = 1000) dntJKBf (x, df, ncp, log = FALSE, M = 1000) ## The "checking" versions, only for proving correctness of formula: .dntJKBch1(x, df, ncp, log = FALSE, M = 1000, check=FALSE, tol.check = 1e-7) .dntJKBch (x, df, ncp, log = FALSE, M = 1000, check=FALSE, tol.check = 1e-7)
dntJKBf1(x, df, ncp, log = FALSE, M = 1000) dntJKBf (x, df, ncp, log = FALSE, M = 1000) ## The "checking" versions, only for proving correctness of formula: .dntJKBch1(x, df, ncp, log = FALSE, M = 1000, check=FALSE, tol.check = 1e-7) .dntJKBch (x, df, ncp, log = FALSE, M = 1000, check=FALSE, tol.check = 1e-7)
x , df , ncp
|
|
log |
as in |
M |
the number of terms to be used, a positive integer. |
check |
logical indicating if checks of the formula equalities should be done. |
tol.check |
tolerance to be used for |
How to choose M
optimally has not been investigated yet and
is probably also a function of the precision of the first three arguments (see
getPrec
from Rmpfr).
Note that relatedly,
R's source code ‘R/src/nmath/dnt.c’ has claimed from 2003 till 2014
but wrongly that the noncentral t density was
f(x, df, ncp) = df^(df/2) * exp(-.5*ncp^2) / (sqrt(pi)*gamma(df/2)*(df+x^2)^((df+1)/2)) * sum_{k=0}^Inf gamma((df + k + df)/2)*ncp^k / prod(1:k)*(2*x^2/(df+x^2))^(k/2) .
These functions (and this help page) prove that it was wrong.
a number for dntJKBf1()
and .dntJKBch1()
.
a numeric vector of the same length as the maximum of the lengths of
x, df, ncp
for dntJKBf()
and .dntJKBch()
.
Martin Maechler
Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions Vol~2, 2nd ed.; Wiley; chapter 31, Section 5 Distribution Function, p.514 ff
R's dt
;
(an improved version of) Viechtbauer's proposal: dtWV
.
tt <- seq(0, 10, length.out = 21) ncp <- seq(0, 6, length.out = 31) dt3R <- outer(tt, ncp, dt, df = 3) dt3JKB <- outer(tt, ncp, dntJKBf, df = 3) all.equal(dt3R, dt3JKB) # Lnx(64-b): 51 NA's in dt3R x <- seq(-1,12, by=1/16) fx <- dt(x, df=3, ncp=5) re1 <- 1 - .dntJKBch(x, df=3, ncp=5) / fx ; summary(warnings()) # slow, with warnings op <- options(warn = 2) # (=> warning == error, for now) re2 <- 1 - dntJKBf (x, df=3, ncp=5) / fx # faster, no warnings stopifnot(all.equal(re1[!is.na(re1)], re2[!is.na(re1)], tol=1e-6)) head( cbind(x, fx, re1, re2) , 20) matplot(x, log10(abs(cbind(re1, re2))), type = "o", cex = 1/4) ## One of the numerical problems in "base R"'s non-central t-density: options(warn = 0) # (factory def.) x <- 2^seq(-12, 32, by=1/8) ; df <- 1/10 dtm <- cbind(dt(x, df=df, log=TRUE), dt(x, df=df, ncp=df/2, log=TRUE), dt(x, df=df, ncp=df, log=TRUE), dt(x, df=df, ncp=df*2, log=TRUE)) #.. quite a few warnings: summary(warnings()) matplot(x, dtm, type="l", log = "x", xaxt="n", main = "dt(x, df=1/10, log=TRUE) central and noncentral") sfsmisc::eaxis(1) legend("right", legend=c("", paste0("ncp = df",c("/2","","*2"))), lty=1:4, col=1:4, bty="n") (doExtras <- DPQ:::doExtras()) # TRUE e.g. if interactive() (ncp <- seq(0, 12, by = if(doExtras) 3/4 else 2)) names(ncp) <- nnMs <- paste0("ncp=", ncp) tt <- seq(0, 5, by = 1) dt3R <- outer(tt, ncp, dt, df = 3) if(requireNamespace("Rmpfr")) withAutoprint({ mt <- Rmpfr::mpfr(tt , 128) mcp <- Rmpfr::mpfr(ncp, 128) system.time( dt3M <- outer(mt, mcp, dntJKBf, df = 3, M = if(doExtras) 1024 else 256)) # M=1024: 7 sec [10 sec on Winb] relE <- Rmpfr::asNumeric(sfsmisc::relErrV(dt3M, dt3R)) relE[tt != 0, ncp != 0] }) ## all.equal(dt3R, dt3V, tol=0) # 1.2e-12 # ---- using MPFR high accuracy arithmetic (too slow for routine testing) --- ## no such kink here: x. <- if(requireNamespace("Rmpfr")) Rmpfr::mpfr(x, 256) else x system.time(dtJKB <- dntJKBf(x., df=df, ncp=df, log=TRUE)) # 43s, was 21s and only 7s ??? lines(x, dtJKB, col=adjustcolor(3, 1/2), lwd=3) options(op) # reset to prev. ## Relative Difference / Approximation errors : plot(x, 1 - dtJKB / dtm[,3], type="l", log="x") plot(x, 1 - dtJKB / dtm[,3], type="l", log="x", xaxt="n", ylim=c(-1,1)*1e-3); sfsmisc::eaxis(1) plot(x, 1 - dtJKB / dtm[,3], type="l", log="x", xaxt="n", ylim=c(-1,1)*1e-7); sfsmisc::eaxis(1) plot(x, abs(1 - dtJKB / dtm[,3]), type="l", log="xy", axes=FALSE, main = "dt(*, 1/10, 1/10, log=TRUE) relative approx. error", sub= paste("Copyright (C) 2019 Martin Maechler --- ", R.version.string)) for(j in 1:2) sfsmisc::eaxis(j)
tt <- seq(0, 10, length.out = 21) ncp <- seq(0, 6, length.out = 31) dt3R <- outer(tt, ncp, dt, df = 3) dt3JKB <- outer(tt, ncp, dntJKBf, df = 3) all.equal(dt3R, dt3JKB) # Lnx(64-b): 51 NA's in dt3R x <- seq(-1,12, by=1/16) fx <- dt(x, df=3, ncp=5) re1 <- 1 - .dntJKBch(x, df=3, ncp=5) / fx ; summary(warnings()) # slow, with warnings op <- options(warn = 2) # (=> warning == error, for now) re2 <- 1 - dntJKBf (x, df=3, ncp=5) / fx # faster, no warnings stopifnot(all.equal(re1[!is.na(re1)], re2[!is.na(re1)], tol=1e-6)) head( cbind(x, fx, re1, re2) , 20) matplot(x, log10(abs(cbind(re1, re2))), type = "o", cex = 1/4) ## One of the numerical problems in "base R"'s non-central t-density: options(warn = 0) # (factory def.) x <- 2^seq(-12, 32, by=1/8) ; df <- 1/10 dtm <- cbind(dt(x, df=df, log=TRUE), dt(x, df=df, ncp=df/2, log=TRUE), dt(x, df=df, ncp=df, log=TRUE), dt(x, df=df, ncp=df*2, log=TRUE)) #.. quite a few warnings: summary(warnings()) matplot(x, dtm, type="l", log = "x", xaxt="n", main = "dt(x, df=1/10, log=TRUE) central and noncentral") sfsmisc::eaxis(1) legend("right", legend=c("", paste0("ncp = df",c("/2","","*2"))), lty=1:4, col=1:4, bty="n") (doExtras <- DPQ:::doExtras()) # TRUE e.g. if interactive() (ncp <- seq(0, 12, by = if(doExtras) 3/4 else 2)) names(ncp) <- nnMs <- paste0("ncp=", ncp) tt <- seq(0, 5, by = 1) dt3R <- outer(tt, ncp, dt, df = 3) if(requireNamespace("Rmpfr")) withAutoprint({ mt <- Rmpfr::mpfr(tt , 128) mcp <- Rmpfr::mpfr(ncp, 128) system.time( dt3M <- outer(mt, mcp, dntJKBf, df = 3, M = if(doExtras) 1024 else 256)) # M=1024: 7 sec [10 sec on Winb] relE <- Rmpfr::asNumeric(sfsmisc::relErrV(dt3M, dt3R)) relE[tt != 0, ncp != 0] }) ## all.equal(dt3R, dt3V, tol=0) # 1.2e-12 # ---- using MPFR high accuracy arithmetic (too slow for routine testing) --- ## no such kink here: x. <- if(requireNamespace("Rmpfr")) Rmpfr::mpfr(x, 256) else x system.time(dtJKB <- dntJKBf(x., df=df, ncp=df, log=TRUE)) # 43s, was 21s and only 7s ??? lines(x, dtJKB, col=adjustcolor(3, 1/2), lwd=3) options(op) # reset to prev. ## Relative Difference / Approximation errors : plot(x, 1 - dtJKB / dtm[,3], type="l", log="x") plot(x, 1 - dtJKB / dtm[,3], type="l", log="x", xaxt="n", ylim=c(-1,1)*1e-3); sfsmisc::eaxis(1) plot(x, 1 - dtJKB / dtm[,3], type="l", log="x", xaxt="n", ylim=c(-1,1)*1e-7); sfsmisc::eaxis(1) plot(x, abs(1 - dtJKB / dtm[,3]), type="l", log="xy", axes=FALSE, main = "dt(*, 1/10, 1/10, log=TRUE) relative approx. error", sub= paste("Copyright (C) 2019 Martin Maechler --- ", R.version.string)) for(j in 1:2) sfsmisc::eaxis(j)
Utility functions for "dpq"-computations, parelling those in R's own C source ‘<Rsource>/src/nmath/dpq.h’, (“dpq” := density–probability–quantile).
.D_0(log.p) # prob/density == 0 (for log.p=FALSE) .D_1(log.p) # prob == 1 " " .DT_0(lower.tail, log.p) # == 0 when (lower.tail=TRUE, log.p=FALSE) .DT_1(lower.tail, log.p) # == 1 when " " .D_Lval(p, lower.tail) # p {L}ower .D_Cval(p, lower.tail) # 1-p {C}omplementary .D_val (x, log.p) # x in pF(x,..) .D_qIv (p, log.p) # p in qF(p,..) .D_exp (x, log.p) # exp(x) unless log.p where it's x .D_log (p, log.p) # p " " " " log(p) .D_Clog(p, log.p) # 1-p " " " " log(1-p) == log1p(-) .D_LExp(x, log.p) ## [log](1 - exp(-x)) == log1p(- .D_qIv(x))) even more stable .DT_val (x, lower.tail, log.p) # := .D_val(.D_Lval(x, lower.tail), log.p) == x in pF .DT_Cval(x, lower.tail, log.p) # := .D_val(.D_Cval(x, lower.tail), log.p) == 1-x in pF .DT_qIv (p, lower.tail, log.p) # := .D_Lval(.D_qIv(p)) == p in qF .DT_CIv (p, lower.tail, log.p) # := .D_Cval(.D_qIv(p)) == 1-p in qF .DT_exp (x, lower.tail, log.p) # exp( x ) .DT_Cexp(x, lower.tail, log.p) # exp(1-x) .DT_log (p, lower.tail, log.p) # log ( p ) in qF .DT_Clog(p, lower.tail, log.p) # log (1-p) in qF .DT_Log (p, lower.tail) # log ( p ) in qF(p,..,log.p=TRUE)
.D_0(log.p) # prob/density == 0 (for log.p=FALSE) .D_1(log.p) # prob == 1 " " .DT_0(lower.tail, log.p) # == 0 when (lower.tail=TRUE, log.p=FALSE) .DT_1(lower.tail, log.p) # == 1 when " " .D_Lval(p, lower.tail) # p {L}ower .D_Cval(p, lower.tail) # 1-p {C}omplementary .D_val (x, log.p) # x in pF(x,..) .D_qIv (p, log.p) # p in qF(p,..) .D_exp (x, log.p) # exp(x) unless log.p where it's x .D_log (p, log.p) # p " " " " log(p) .D_Clog(p, log.p) # 1-p " " " " log(1-p) == log1p(-) .D_LExp(x, log.p) ## [log](1 - exp(-x)) == log1p(- .D_qIv(x))) even more stable .DT_val (x, lower.tail, log.p) # := .D_val(.D_Lval(x, lower.tail), log.p) == x in pF .DT_Cval(x, lower.tail, log.p) # := .D_val(.D_Cval(x, lower.tail), log.p) == 1-x in pF .DT_qIv (p, lower.tail, log.p) # := .D_Lval(.D_qIv(p)) == p in qF .DT_CIv (p, lower.tail, log.p) # := .D_Cval(.D_qIv(p)) == 1-p in qF .DT_exp (x, lower.tail, log.p) # exp( x ) .DT_Cexp(x, lower.tail, log.p) # exp(1-x) .DT_log (p, lower.tail, log.p) # log ( p ) in qF .DT_Clog(p, lower.tail, log.p) # log (1-p) in qF .DT_Log (p, lower.tail) # log ( p ) in qF(p,..,log.p=TRUE)
x |
numeric vector. |
p |
(log) probability–like numeric vector. |
lower.tail |
logical; if true, probabilities are |
log.p |
logical; if true, probabilities |
Typically a numeric vector “as” x
or p
, respectively.
Martin Maechler
log1mexp()
which is called from .D_LExp()
and .DT_Log()
.
FT <- c(FALSE, TRUE) stopifnot(exprs = { .D_0(log.p = FALSE) == (0) .D_0(log.p = TRUE ) == log(0) identical(c(1,0), vapply(FT, .D_1, double(1))) }) ## all such functions in package DPQ: eDPQ <- as.environment("package:DPQ") ls.str(envir=eDPQ, pattern = "^[.]D", all.names=TRUE) (nD <- local({ n <- names(eDPQ); n[startsWith(n, ".D")] })) trimW <- function(ch) sub(" +$","", sub("^ +","", ch)) writeLines(vapply(sort(nD), function(nm) { B <- deparse(eDPQ[[nm]]) sprintf("%31s := %s", trimW(sub("function ", nm, B[[1]])), paste(trimW(B[-1]), collapse=" ")) }, "")) do.lowlog <- function(Fn, ...) { stopifnot(is.function(Fn), all(c("lower.tail", "log.p") %in% names(formals(Fn)))) FT <- c(FALSE, TRUE) ; cFT <- c("F", "T") L <- lapply(FT, function(lo) sapply(FT, function(lg) Fn(..., lower.tail=lo, log.p=lg))) r <- simplify2array(L) `dimnames<-`(r, c(rep(list(NULL), length(dim(r)) - 2L), list(log.p = cFT, lower.tail = cFT))) } do.lowlog(.DT_0) do.lowlog(.DT_1) do.lowlog(.DT_exp, x = 1/4) ; do.lowlog(.DT_exp, x = 3/4) do.lowlog(.DT_val, x = 1/4) ; do.lowlog(.DT_val, x = 3/4) do.lowlog(.DT_Cexp, x = 1/4) ; do.lowlog(.DT_Cexp, x = 3/4) do.lowlog(.DT_Cval, x = 1/4) ; do.lowlog(.DT_Cval, x = 3/4) do.lowlog(.DT_Clog, p = (1:3)/4) # w/ warn do.lowlog(.DT_log, p = (1:3)/4) # w/ warn do.lowlog(.DT_qIv, p = (1:3)/4) ## unfinished: FIXME, the above is *not* really checking stopifnot(exprs = { })
FT <- c(FALSE, TRUE) stopifnot(exprs = { .D_0(log.p = FALSE) == (0) .D_0(log.p = TRUE ) == log(0) identical(c(1,0), vapply(FT, .D_1, double(1))) }) ## all such functions in package DPQ: eDPQ <- as.environment("package:DPQ") ls.str(envir=eDPQ, pattern = "^[.]D", all.names=TRUE) (nD <- local({ n <- names(eDPQ); n[startsWith(n, ".D")] })) trimW <- function(ch) sub(" +$","", sub("^ +","", ch)) writeLines(vapply(sort(nD), function(nm) { B <- deparse(eDPQ[[nm]]) sprintf("%31s := %s", trimW(sub("function ", nm, B[[1]])), paste(trimW(B[-1]), collapse=" ")) }, "")) do.lowlog <- function(Fn, ...) { stopifnot(is.function(Fn), all(c("lower.tail", "log.p") %in% names(formals(Fn)))) FT <- c(FALSE, TRUE) ; cFT <- c("F", "T") L <- lapply(FT, function(lo) sapply(FT, function(lg) Fn(..., lower.tail=lo, log.p=lg))) r <- simplify2array(L) `dimnames<-`(r, c(rep(list(NULL), length(dim(r)) - 2L), list(log.p = cFT, lower.tail = cFT))) } do.lowlog(.DT_0) do.lowlog(.DT_1) do.lowlog(.DT_exp, x = 1/4) ; do.lowlog(.DT_exp, x = 3/4) do.lowlog(.DT_val, x = 1/4) ; do.lowlog(.DT_val, x = 3/4) do.lowlog(.DT_Cexp, x = 1/4) ; do.lowlog(.DT_Cexp, x = 3/4) do.lowlog(.DT_Cval, x = 1/4) ; do.lowlog(.DT_Cval, x = 3/4) do.lowlog(.DT_Clog, p = (1:3)/4) # w/ warn do.lowlog(.DT_log, p = (1:3)/4) # w/ warn do.lowlog(.DT_qIv, p = (1:3)/4) ## unfinished: FIXME, the above is *not* really checking stopifnot(exprs = { })
Log Gamma derivatives, Psi Gamma functions. dpsifn()
is an R
interface to the R API function R_dpsifn()
.
dpsifn(x, m, deriv1 = 0L, k2 = FALSE)
dpsifn(x, m, deriv1 = 0L, k2 = FALSE)
x |
numeric vector. |
m |
number of derivatives to return, an integer >= 0. |
deriv1 |
“start” derivative .... |
k2 |
a |
dpsifn()
is the underlying “workhorse” of R's own
digamma
, trigamma
and (generalized)
psigamma
functions.
It is useful, e.g., when several derivatives of
lgamma
are desired. It
computes and returns length-m sequence
for
, where
deriv1
, and is the k-th
derivative of
, i.e.,
psigamma(x,k)
. For
more details, see the comments in ‘src/nmath/polygamma.c’.
A numeric
matrix
(where
length(x)
) of scaled
values. The matrix has
attributes
underflow |
of |
ierr |
length- |
Martin Maechler (R interface); R Core et al., see
digamma
.
See those in psigamma
x <- seq(-3.5, 6, by=1/4) dpx <- dpsifn(x, m = if(getRversion() >= "4.2") 7 else 5) dpx # in R <= 4.2.1, see that sometimes the 'nz' (under-over-flow count) was uninitialized !! j <- -1L+seq_len(nrow(dpx)); (fj <- (-1)^(j+1)*gamma(j+1)) ## mdpsi <- cbind(di = digamma(x), -dpx[1,], ## tri= trigamma(x), dpx[2,], ## tetra=psigamma(x,2), -2*dpx[3,], ## penta=psigamma(x,3), 6*dpx[4,], ## hexa =psigamma(x,4), -24*dpx[5,], ## hepta=psigamma(x,5), 120*dpx[6,], ## octa =psigamma(x,6),-720*dpx[7,]) ## cbind(x, ie=attr(dpx,"errorCode"), round(mdpsi, 4)) str(psig <- outer(x, j, psigamma)) dpsi <- t(fj * (`attributes<-`(dpx, list(dim=dim(dpx))))) if(getRversion() >= "4.2") { print( all.equal(psig, dpsi, tol=0) )# -> see 1.185e-16 stopifnot( all.equal(psig, dpsi, tol=1e-15) ) } else { # R <= 4.1.x; dpsifn(x, ..) *not* ok for x < 0 i <- x >= 0 print( all.equal(psig[i,], dpsi[i,], tol=0) )# -> see 1.95e-16 stopifnot( all.equal(psig[i,], dpsi[i,], tol=1e-15) ) }
x <- seq(-3.5, 6, by=1/4) dpx <- dpsifn(x, m = if(getRversion() >= "4.2") 7 else 5) dpx # in R <= 4.2.1, see that sometimes the 'nz' (under-over-flow count) was uninitialized !! j <- -1L+seq_len(nrow(dpx)); (fj <- (-1)^(j+1)*gamma(j+1)) ## mdpsi <- cbind(di = digamma(x), -dpx[1,], ## tri= trigamma(x), dpx[2,], ## tetra=psigamma(x,2), -2*dpx[3,], ## penta=psigamma(x,3), 6*dpx[4,], ## hexa =psigamma(x,4), -24*dpx[5,], ## hepta=psigamma(x,5), 120*dpx[6,], ## octa =psigamma(x,6),-720*dpx[7,]) ## cbind(x, ie=attr(dpx,"errorCode"), round(mdpsi, 4)) str(psig <- outer(x, j, psigamma)) dpsi <- t(fj * (`attributes<-`(dpx, list(dim=dim(dpx))))) if(getRversion() >= "4.2") { print( all.equal(psig, dpsi, tol=0) )# -> see 1.185e-16 stopifnot( all.equal(psig, dpsi, tol=1e-15) ) } else { # R <= 4.1.x; dpsifn(x, ..) *not* ok for x < 0 i <- x >= 0 print( all.equal(psig[i,], dpsi[i,], tol=0) )# -> see 1.95e-16 stopifnot( all.equal(psig[i,], dpsi[i,], tol=1e-15) ) }
Compute the density function of the t distribution with
df
degrees of freedom and non-centrality parameter ncp
,
according to Wolfgang Viechtbauer's proposal in 2002.
This is an asymptotic formula for “large” df
,
or mathematically
.
dtWV(x, df, ncp = 0, log = FALSE)
dtWV(x, df, ncp = 0, log = FALSE)
x |
numeric vector. |
df |
degrees of freedom ( |
ncp |
non-centrality parameter |
log |
logical; if TRUE, |
The formula used is “asymptotic”: Resnikoff and Lieberman (1957),
p.1 and p.25ff, proposed to use recursive polynomials for (integer !)
degrees of freedom , and then, for
df
, use the asymptotic approximation which
Wolfgang Viechtbauer proposed as a first version of a non-central t
density for R (when
dt()
did not yet have an ncp
argument).
numeric vector of density values, properly recycled in (x, df, ncp)
.
Wolfgang Viechtbauer (2002) post to R-help
(https://stat.ethz.ch/pipermail/r-help/2002-October/026044.html),
and Martin Maechler (log
argument; tweaks, notably recycling).
Resnikoff, George J. and Lieberman, Gerald J. (1957)
Tables of the non-central t-distribution;
Technical report no. 32 (LIE ONR 32
), April 1, 1957;
Applied Math. and Stat. Lab., Stanford University.
https://statistics.stanford.edu/technical-reports/tables-non-central-t-distribution-density-function-cumulative-distribution
dt
, R's (C level) implementation of the (non-central) t density;
dntJKBf
, for Johnson et al.'s summation formula approximation.
tt <- seq(0, 10, len = 21) ncp <- seq(0, 6, len = 31) dt3R <- outer(tt, ncp, dt , df = 3) dt3WV <- outer(tt, ncp, dtWV, df = 3) all.equal(dt3R, dt3WV) # rel.err 0.00063 dt25R <- outer(tt, ncp, dt , df = 25) dt25WV <- outer(tt, ncp, dtWV, df = 25) all.equal(dt25R, dt25WV) # rel.err 1.1e-5 x <- -10:700 fx <- dt (x, df = 22, ncp =100) lfx <- dt (x, df = 22, ncp =100, log=TRUE) lfV <- dtWV(x, df = 22, ncp =100, log=TRUE) head(lfx, 20) # shows that R's dt(*, log=TRUE) implementation is "quite suboptimal" ## graphics opa <- par(no.readonly=TRUE) par(mar=.1+c(5,4,4,3), mgp = c(2, .8,0)) plot(fx ~ x, type="l") par(new=TRUE) ; cc <- c("red", adjustcolor("orange", 0.4)) plot(lfx ~ x, type = "o", pch=".", col=cc[1], cex=2, ann=FALSE, yaxt="n") sfsmisc::eaxis(4, col=cc[1], col.axis=cc[1], small.args = list(col=cc[1])) lines(x, lfV, col=cc[2], lwd=3) dtt1 <- " dt"; dtt2 <- "(x, df=22, ncp=100"; dttL <- paste0(dtt2,", log=TRUE)") legend("right", c(paste0(dtt1,dtt2,")"), paste0(c(dtt1,"dtWV"), dttL)), lty=1, lwd=c(1,1,3), col=c("black", cc), bty = "n") par(opa) # reset
tt <- seq(0, 10, len = 21) ncp <- seq(0, 6, len = 31) dt3R <- outer(tt, ncp, dt , df = 3) dt3WV <- outer(tt, ncp, dtWV, df = 3) all.equal(dt3R, dt3WV) # rel.err 0.00063 dt25R <- outer(tt, ncp, dt , df = 25) dt25WV <- outer(tt, ncp, dtWV, df = 25) all.equal(dt25R, dt25WV) # rel.err 1.1e-5 x <- -10:700 fx <- dt (x, df = 22, ncp =100) lfx <- dt (x, df = 22, ncp =100, log=TRUE) lfV <- dtWV(x, df = 22, ncp =100, log=TRUE) head(lfx, 20) # shows that R's dt(*, log=TRUE) implementation is "quite suboptimal" ## graphics opa <- par(no.readonly=TRUE) par(mar=.1+c(5,4,4,3), mgp = c(2, .8,0)) plot(fx ~ x, type="l") par(new=TRUE) ; cc <- c("red", adjustcolor("orange", 0.4)) plot(lfx ~ x, type = "o", pch=".", col=cc[1], cex=2, ann=FALSE, yaxt="n") sfsmisc::eaxis(4, col=cc[1], col.axis=cc[1], small.args = list(col=cc[1])) lines(x, lfV, col=cc[2], lwd=3) dtt1 <- " dt"; dtt2 <- "(x, df=22, ncp=100"; dttL <- paste0(dtt2,", log=TRUE)") legend("right", c(paste0(dtt1,dtt2,")"), paste0(c(dtt1,"dtWV"), dttL)), lty=1, lwd=c(1,1,3), col=c("black", cc), bty = "n") par(opa) # reset
Compute
exp(x) - 1 - x
accurately, notably for small .
The last two entries in cutx[]
denote boundaries where
expm1x(x)
uses direct formulas. For nC <- length(cutx)
,
exp(x) - 1 - x
is used for abs(x) >= cutx[nC]
, and when abs(x) < cutx[nC]
expm1(x) - x
is used for abs(x) >= cutx[nC-1]
.
expm1x(x, cutx = c( 4.4e-8, 0.1, 0.385, 1.1, 2), k = c(2, 9, 12, 17)) expm1xTser(x, k)
expm1x(x, cutx = c( 4.4e-8, 0.1, 0.385, 1.1, 2), k = c(2, 9, 12, 17)) expm1xTser(x, k)
x |
numeric-alike vector; goal is to work for
|
cutx |
increasing positive numeric vector of cut points defining intervals in which the computations will differ. |
k |
for
|
a vector like x
containing (approximations to) .
Martin Maechler
expm1(x)
for computing is much more widely
known, and part of the ISO C standards now.
## a symmetric set of negative and positive x <- unique(c(2^-seq(-3/8, 54, by = 1/8), seq(7/8, 3, by = 1/128))) x <- x0 <- sort(c(-x, 0, x)) # negative *and* positive ## Mathematically, expm1x() = exp(x) - 1 - x >= 0 (and == 0 only at x=0): em1x <- expm1x(x) stopifnot(em1x >= 0, identical(x == 0, em1x == 0)) plot (x, em1x, type='b', log="y") lines(x, expm1(x)-x, col = adjustcolor(2, 1/2), lwd = 3) ## should nicely cover .. lines(x, exp(x)-1-x, col = adjustcolor(4, 1/4), lwd = 5) ## should nicely cover .. cuts <- c(4.4e-8, 0.10, 0.385, 1.1, 2)[-1] # *not* drawing 4.4e-8 v <- c(-rev(cuts), 0, cuts); stopifnot(!is.unsorted(v)) abline(v = v, lty = 3, col=adjustcolor("gray20", 1/2)) stopifnot(diff(em1x[x <= 0]) <= 0) stopifnot(diff(em1x[x >= 0]) >= 0) ## direct formula - may be really "bad" : expm1x.0 <- function(x) exp(x) -1 - x ## less direct formula - improved (but still not universally ok): expm1x.1 <- function(x) expm1(x) - x ax <- abs(x) # ==> show negative and positive x on top of each other plot (ax, em1x, type='l', log="xy", xlab = "|x| (for negative and positive x)") lines(ax, expm1(x)-x, col = adjustcolor(2, 1/2), lwd = 3) ## see problem at very left lines(ax, exp(x)-1-x, col = adjustcolor(4, 1/4), lwd = 5) ## see huge problems for |x| < ~10^{-7} legend("topleft", c("expm1x(x)", "expm1(x) - x", "exp(x) - 1 - x"), bty="n", col = c(1,2,4), lwd = c(1,3,5)) ## -------------------- Relative error of Taylor series approximations : twoP <- seq(-0.75, 54, by = 1/8) x <- 2^-twoP x <- sort(c(-x,x)) # negative *and* positive e1xAll <- cbind(expm1x.0 = expm1x.0(x), expm1x.1 = expm1x.1(x), vapply(1:15, \(k) expm1xTser(x, k=k), x)) colnames(e1xAll)[-(1:2)] <- paste0("k=",1:15) head(e1xAll) ## TODO plot !!
## a symmetric set of negative and positive x <- unique(c(2^-seq(-3/8, 54, by = 1/8), seq(7/8, 3, by = 1/128))) x <- x0 <- sort(c(-x, 0, x)) # negative *and* positive ## Mathematically, expm1x() = exp(x) - 1 - x >= 0 (and == 0 only at x=0): em1x <- expm1x(x) stopifnot(em1x >= 0, identical(x == 0, em1x == 0)) plot (x, em1x, type='b', log="y") lines(x, expm1(x)-x, col = adjustcolor(2, 1/2), lwd = 3) ## should nicely cover .. lines(x, exp(x)-1-x, col = adjustcolor(4, 1/4), lwd = 5) ## should nicely cover .. cuts <- c(4.4e-8, 0.10, 0.385, 1.1, 2)[-1] # *not* drawing 4.4e-8 v <- c(-rev(cuts), 0, cuts); stopifnot(!is.unsorted(v)) abline(v = v, lty = 3, col=adjustcolor("gray20", 1/2)) stopifnot(diff(em1x[x <= 0]) <= 0) stopifnot(diff(em1x[x >= 0]) >= 0) ## direct formula - may be really "bad" : expm1x.0 <- function(x) exp(x) -1 - x ## less direct formula - improved (but still not universally ok): expm1x.1 <- function(x) expm1(x) - x ax <- abs(x) # ==> show negative and positive x on top of each other plot (ax, em1x, type='l', log="xy", xlab = "|x| (for negative and positive x)") lines(ax, expm1(x)-x, col = adjustcolor(2, 1/2), lwd = 3) ## see problem at very left lines(ax, exp(x)-1-x, col = adjustcolor(4, 1/4), lwd = 5) ## see huge problems for |x| < ~10^{-7} legend("topleft", c("expm1x(x)", "expm1(x) - x", "exp(x) - 1 - x"), bty="n", col = c(1,2,4), lwd = c(1,3,5)) ## -------------------- Relative error of Taylor series approximations : twoP <- seq(-0.75, 54, by = 1/8) x <- 2^-twoP x <- sort(c(-x,x)) # negative *and* positive e1xAll <- cbind(expm1x.0 = expm1x.0(x), expm1x.1 = expm1x.1(x), vapply(1:15, \(k) expm1xTser(x, k=k), x)) colnames(e1xAll)[-(1:2)] <- paste0("k=",1:15) head(e1xAll) ## TODO plot !!
Format numbers in [0,1] with “precise” result,
notably using "1-.."
if needed.
format01prec(x, digits = getOption("digits"), width = digits + 2, eps = 1e-06, ..., FUN = function(x, ...) formatC(x, flag = "-", ...))
format01prec(x, digits = getOption("digits"), width = digits + 2, eps = 1e-06, ..., FUN = function(x, ...) formatC(x, flag = "-", ...))
x |
numbers in [0,1]; (still works if not) |
digits |
number of digits to use; is used as
|
width |
desired width (of strings in characters), is used as
|
eps |
small positive number: Use |
... |
optional further arguments passed to |
FUN |
a |
a character
vector of the same length as x
.
Martin Maechler, 14 May 1997
## Show that format01prec() does reveal more precision : cbind(format (1 - 2^-(16:24)), format01prec(1 - 2^-(16:24))) ## a bit more variety e <- c(2^seq(-24,0, by=2), 10^-(7:1)) ee <- sort(unique(c(e, 1-e))) noquote(ff <- format01prec(ee)) data.frame(ee, format01prec = ff)
## Show that format01prec() does reveal more precision : cbind(format (1 - 2^-(16:24)), format01prec(1 - 2^-(16:24))) ## a bit more variety e <- c(2^seq(-24,0, by=2), 10^-(7:1)) ee <- sort(unique(c(e, 1-e))) noquote(ff <- format01prec(ee)) data.frame(ee, format01prec = ff)
Both are R versions of C99 (and POSIX) standard C (and C++) mathlib functions of the same name.
frexp(x)
computes base-2 exponent e
and “mantissa”,
or fraction r
, such that , where
(unless when
x
is in c(0, -Inf, Inf, NaN)
where r == x
and e
is 0),
and is integer valued.
ldexp(f, E)
is the inverse of frexp()
: Given
fraction or mantissa f
and integer exponent E
, it returns
.
Viewed differently, it's the fastest way to multiply or divide (double
precision) numbers with
.
frexp(x) ldexp(f, E)
frexp(x) ldexp(f, E)
x |
numeric (coerced to |
f |
numeric fraction (vector), in |
E |
integer valued, exponent of |
frexp
returns a list
with named components r
(of type double
) and e
(of type integer
).
Martin Maechler
On unix-alikes, typically man frexp
and man ldexp
Vaguely relatedly, log1mexp()
, lsum
, logspace.add
.
set.seed(47) x <- c(0, 2^(-3:3), (-1:1)/0, rlnorm(2^12, 10, 20) * sample(c(-1,1), 512, replace=TRUE)) head(x, 12) which(!(iF <- is.finite(x))) # 9 10 11 rF <- frexp(x) sapply(rF, summary) # (nice only when x had no NA's ..) data.frame(x=x[!iF], lapply(rF, `[`, !iF)) ## by C.99/POSIX 'r' should be the same as 'x' for these, ## x r e ## 1 -Inf -Inf 0 ## 2 NaN NaN 0 ## 3 Inf Inf 0 ## but on Windows, we've seen 3 NA's : ar <- abs(rF$r) ldx <- with(rF, ldexp(r, e)) stopifnot(exprs = { 0.5 <= ar[iF & x != 0] ar[iF] < 1 is.integer(rF$e) all.equal(x[iF], ldx[iF], tol= 4*.Machine$double.eps) ## but actually, they should even be identical, well at least when finite identical(x[iF], ldx[iF]) })
set.seed(47) x <- c(0, 2^(-3:3), (-1:1)/0, rlnorm(2^12, 10, 20) * sample(c(-1,1), 512, replace=TRUE)) head(x, 12) which(!(iF <- is.finite(x))) # 9 10 11 rF <- frexp(x) sapply(rF, summary) # (nice only when x had no NA's ..) data.frame(x=x[!iF], lapply(rF, `[`, !iF)) ## by C.99/POSIX 'r' should be the same as 'x' for these, ## x r e ## 1 -Inf -Inf 0 ## 2 NaN NaN 0 ## 3 Inf Inf 0 ## but on Windows, we've seen 3 NA's : ar <- abs(rF$r) ldx <- with(rF, ldexp(r, e)) stopifnot(exprs = { 0.5 <= ar[iF & x != 0] ar[iF] < 1 is.integer(rF$e) all.equal(x[iF], ldx[iF], tol= 4*.Machine$double.eps) ## but actually, they should even be identical, well at least when finite identical(x[iF], ldx[iF]) })
Computes accurately in
for numeric argument
a
;
For "mpfr"
numbers, the precision is increased intermediately such
that should not lose precision.
FIXME: "Pure-R" implementation is in ‘ ~/R/Pkgs/DPQ/TODO_R_versions_gam1_etc.R ’
gam1d(a, warnIf = TRUE, verbose = FALSE)
gam1d(a, warnIf = TRUE, verbose = FALSE)
a |
a numeric or numeric-alike, typically inheriting from |
warnIf |
logical if a |
verbose |
logical indicating if some output from C code execution should be printed to the console. |
https://dlmf.nist.gov/ states the well-know Taylor series for
with ,
, (Euler's gamma,
, with
recursion
.
Hence,
Consequently, for ,
,
.
gam <- Const("gamma", 128) z <- Rmpfr::zeta(mpfr(1:7, 128)) (c3 <- (gam^2 -z[2])/2) # -0.655878071520253881077019515145 (c4 <- (gam*c3 - z[2]*c2 + z[3])/3) # -0.04200263503409523552900393488 (c4 <- gam*(gam^2/6 - z[2]/2) + z[3]/3) (c5 <- (gam*c4 - z[2]*c3 + z[3]*c2 - z[4])/4) # 0.1665386113822914895017007951 (c5 <- (gam^4/6 - gam^2*z[2] + z[2]^2/2 + gam*z[3]*4/3 - z[4])/4)
a numeric-alike vector like a
.
Martin Maechler building on C code of TOMS 708
TOMS 708, see pbeta
g1 <- function(u) 1/gamma(u+1) - 1 u <- seq(-.5, 1.5, by=1/16); set.seed(1); u <- sample(u) # permuted (to check logic) g11 <- vapply(u, gam1d, 1) gam1d. <- gam1d(u) stopifnot( all.equal(g1(u), g11) ) stopifnot( identical(g11, gam1d.) ) ## Comparison of g1() and gam1d(), slightly extending the [-.5, 1.5] interval: u <- seq(-0.525, 1.525, length.out = 2001) mg1 <- cbind(g1 = g1(u), gam1d = gam1d(u)) clr <- adjustcolor(1:2, 1/2) matplot(u, mg1, type = "l", lty = 1, lwd=1:2, col=clr) # *no* visual difference ## now look at *relative* errors relErrV <- sfsmisc::relErrV relE <- relErrV(mg1[,"gam1d"], mg1[,"g1"]) plot(u, relE, type = "l") plot(u, abs(relE), type = "l", log = "y", main = "|rel.diff| gam1d() vs 'direct' 1/gamma(u+1) - 1") ## now {Rmpfr} for "truth" : if(requireNamespace("Rmpfr")) withAutoprint({ asN <- Rmpfr::asNumeric; mpfr <- Rmpfr::mpfr gam1M <- g1(mpfr(u, 512)) # "cheap": high precision avoiding "all" cancellation relE <- asN(relErrV(gam1M, gam1d(u))) plot(relE ~ u, type="l", ylim = c(-1,1) * 2.5e-15, main = expression("Relative Error of " ~~ gam1d(u) %~~% frac(1, Gamma(u+1)) - 1)) grid(lty = 3); abline(v = c(-.5, 1.5), col = adjustcolor(4, 1/2), lty=2, lwd=2) }) if(requireNamespace("Rmpfr") && FALSE) { ## Comparison using Rmpfr; slightly extending the [-.5, 1.5] interval: ## {relErrV(), mpfr(), asN() defined above} u <- seq(-0.525, 1.525, length.out = 2001) gam1M <- gam1(mpfr(u, 128)) relE <- asN(relErrV(gam1M, gam1d(u))) plot(relE ~ u, type="l", ylim = c(-1,1) * 2.5e-15, main = expression("Relative Error of " ~~ gam1d(u) == frac(1, Gamma(u+1)) - 1)) grid(lty = 3); abline(v = c(-.5, 1.5), col = adjustcolor(4, 1/2), lty=2, lwd=2) ## what about the direct formula -- how bad is it really ? relED <- asN(relErrV(gam1M, g1(u))) plot(relE ~ u, type="l", ylim = c(-1,1) * 1e-14, main = expression("Relative Error of " ~~ gam1d(u) == frac(1, Gamma(u+1)) - 1)) lines(relED ~ u, col = adjustcolor(2, 1/2), lwd = 2) # mtext("comparing with direct formula 1/gamma(u+1) - 1") legend("top", c("gam1d(u)", "1/gamma(u+1) - 1"), col = 1:2, lwd=1:2, bty="n") ## direct is clearly *worse* , but not catastrophical }
g1 <- function(u) 1/gamma(u+1) - 1 u <- seq(-.5, 1.5, by=1/16); set.seed(1); u <- sample(u) # permuted (to check logic) g11 <- vapply(u, gam1d, 1) gam1d. <- gam1d(u) stopifnot( all.equal(g1(u), g11) ) stopifnot( identical(g11, gam1d.) ) ## Comparison of g1() and gam1d(), slightly extending the [-.5, 1.5] interval: u <- seq(-0.525, 1.525, length.out = 2001) mg1 <- cbind(g1 = g1(u), gam1d = gam1d(u)) clr <- adjustcolor(1:2, 1/2) matplot(u, mg1, type = "l", lty = 1, lwd=1:2, col=clr) # *no* visual difference ## now look at *relative* errors relErrV <- sfsmisc::relErrV relE <- relErrV(mg1[,"gam1d"], mg1[,"g1"]) plot(u, relE, type = "l") plot(u, abs(relE), type = "l", log = "y", main = "|rel.diff| gam1d() vs 'direct' 1/gamma(u+1) - 1") ## now {Rmpfr} for "truth" : if(requireNamespace("Rmpfr")) withAutoprint({ asN <- Rmpfr::asNumeric; mpfr <- Rmpfr::mpfr gam1M <- g1(mpfr(u, 512)) # "cheap": high precision avoiding "all" cancellation relE <- asN(relErrV(gam1M, gam1d(u))) plot(relE ~ u, type="l", ylim = c(-1,1) * 2.5e-15, main = expression("Relative Error of " ~~ gam1d(u) %~~% frac(1, Gamma(u+1)) - 1)) grid(lty = 3); abline(v = c(-.5, 1.5), col = adjustcolor(4, 1/2), lty=2, lwd=2) }) if(requireNamespace("Rmpfr") && FALSE) { ## Comparison using Rmpfr; slightly extending the [-.5, 1.5] interval: ## {relErrV(), mpfr(), asN() defined above} u <- seq(-0.525, 1.525, length.out = 2001) gam1M <- gam1(mpfr(u, 128)) relE <- asN(relErrV(gam1M, gam1d(u))) plot(relE ~ u, type="l", ylim = c(-1,1) * 2.5e-15, main = expression("Relative Error of " ~~ gam1d(u) == frac(1, Gamma(u+1)) - 1)) grid(lty = 3); abline(v = c(-.5, 1.5), col = adjustcolor(4, 1/2), lty=2, lwd=2) ## what about the direct formula -- how bad is it really ? relED <- asN(relErrV(gam1M, g1(u))) plot(relE ~ u, type="l", ylim = c(-1,1) * 1e-14, main = expression("Relative Error of " ~~ gam1d(u) == frac(1, Gamma(u+1)) - 1)) lines(relED ~ u, col = adjustcolor(2, 1/2), lwd = 2) # mtext("comparing with direct formula 1/gamma(u+1) - 1") legend("top", c("gam1d(u)", "1/gamma(u+1) - 1"), col = 1:2, lwd=1:2, bty="n") ## direct is clearly *worse* , but not catastrophical }
Computes accurately notably when
.
Specifically, it uses high (double precision) accuracy rational
approximations for
.
gamln1(a, warnIf = TRUE)
gamln1(a, warnIf = TRUE)
a |
a numeric or numeric-alike, typically inheriting from |
warnIf |
logical if a |
It uses for
, where
and
are
polynomials of degree 6 with coefficient vectors
and
,
p <- c( .577215664901533, .844203922187225, -.168860593646662, -.780427615533591, -.402055799310489, -.0673562214325671, -.00271935708322958) q <- c( 1, 2.88743195473681, 3.12755088914843, 1.56875193295039, .361951990101499, .0325038868253937, 6.67465618796164e-4)
Similarly, for ,
, the result is
, with 5th degree polynomials
and
and coefficient vectors
r <- c(.422784335098467, .848044614534529, .565221050691933, .156513060486551, .017050248402265, 4.97958207639485e-4) s <- c( 1 , 1.24313399877507, .548042109832463, .10155218743983, .00713309612391, 1.16165475989616e-4)
a numeric-alike vector like a
.
Martin Maechler building on C code of TOMS 708
TOMS 708, see pbeta
lgamma1p()
for different algorithms to compute ,
notably when outside the interval
.
Package DPQmpfr's
lgamma1pM()
provides
very precise such computations.
lgamma()
(and gamma()
(same page)).
lg1 <- function(u) lgamma(u+1) # the simple direct form ## The curve, zeros at u=0 & u=1: curve(lg1, -.2, 1.25, col=2, lwd=2, n=999) title("lgamma(x + 1)"); abline(h=0, v=0:1, lty=3) u <- (-16:100)/80 ; set.seed(1); u <- sample(u) # permuted (to check logic) g11 <- vapply(u, gamln1, numeric(1)) gamln1. <- gamln1(u) stopifnot( identical(g11, gamln1.) ) stopifnot( all.equal(lg1(u), g11) ) u <- (-160:1000)/800 relE <- sfsmisc::relErrV(gamln1(u), lg1(u)) plot(u, relE, type="l", main = expression("rel.diff." ~~ gamln1(u) %~~% lgamma(u+1))) plot(u, abs(relE), type="l", log="y", yaxt="n", main = expression("|rel.diff.|" ~~ gamln1(u) %~~% lgamma(u+1))) sfsmisc::eaxis(2) if(requireNamespace("DPQmpfr")) withAutoprint({ ## Comparison using Rmpfr; extending the [-.2, 1.25] interval a bit u <- seq(-0.225, 1.31, length.out = 2000) lg1pM <- DPQmpfr::lgamma1pM(Rmpfr::mpfr(u, 128)) relE <- Rmpfr::asNumeric(sfsmisc::relErrV(lg1pM, gamln1(u, warnIf=FALSE))) plot(relE ~ u, type="l", ylim = c(-1,1) * 2.3e-15, main = expression("relative error of " ~~ gamln1(u) == log( Gamma(u+1) ))) grid(lty = 3); abline(v = c(-.2, 1.25), col = adjustcolor(4, 1/2), lty=2, lwd=2) ## well... TOMS 708 gamln1() is good (if "only" 14 digits required ## what about the direct formula -- how bad is it really ? relED <- Rmpfr::asNumeric(sfsmisc::relErrV(lg1pM, lg1(u))) lines(relED ~ u, col = adjustcolor(2, 1/2)) ## amazingly, the direct formula is partly (around -0.2 and +0.4) even better than gamln1() ! plot(abs(relE) ~ u, type="l", log = "y", ylim = c(7e-17, 1e-14), main = expression("|relative error| of " ~~ gamln1(u) == log( Gamma(u+1) ))) grid(lty = 3); abline(v = c(-.2, 1.25), col = adjustcolor(4, 1/2), lty=2, lwd=2) relED <- Rmpfr::asNumeric(sfsmisc::relErrV(lg1pM, lg1(u))) lines(abs(relED) ~ u, col = adjustcolor(2, 1/2)) })
lg1 <- function(u) lgamma(u+1) # the simple direct form ## The curve, zeros at u=0 & u=1: curve(lg1, -.2, 1.25, col=2, lwd=2, n=999) title("lgamma(x + 1)"); abline(h=0, v=0:1, lty=3) u <- (-16:100)/80 ; set.seed(1); u <- sample(u) # permuted (to check logic) g11 <- vapply(u, gamln1, numeric(1)) gamln1. <- gamln1(u) stopifnot( identical(g11, gamln1.) ) stopifnot( all.equal(lg1(u), g11) ) u <- (-160:1000)/800 relE <- sfsmisc::relErrV(gamln1(u), lg1(u)) plot(u, relE, type="l", main = expression("rel.diff." ~~ gamln1(u) %~~% lgamma(u+1))) plot(u, abs(relE), type="l", log="y", yaxt="n", main = expression("|rel.diff.|" ~~ gamln1(u) %~~% lgamma(u+1))) sfsmisc::eaxis(2) if(requireNamespace("DPQmpfr")) withAutoprint({ ## Comparison using Rmpfr; extending the [-.2, 1.25] interval a bit u <- seq(-0.225, 1.31, length.out = 2000) lg1pM <- DPQmpfr::lgamma1pM(Rmpfr::mpfr(u, 128)) relE <- Rmpfr::asNumeric(sfsmisc::relErrV(lg1pM, gamln1(u, warnIf=FALSE))) plot(relE ~ u, type="l", ylim = c(-1,1) * 2.3e-15, main = expression("relative error of " ~~ gamln1(u) == log( Gamma(u+1) ))) grid(lty = 3); abline(v = c(-.2, 1.25), col = adjustcolor(4, 1/2), lty=2, lwd=2) ## well... TOMS 708 gamln1() is good (if "only" 14 digits required ## what about the direct formula -- how bad is it really ? relED <- Rmpfr::asNumeric(sfsmisc::relErrV(lg1pM, lg1(u))) lines(relED ~ u, col = adjustcolor(2, 1/2)) ## amazingly, the direct formula is partly (around -0.2 and +0.4) even better than gamln1() ! plot(abs(relE) ~ u, type="l", log = "y", ylim = c(7e-17, 1e-14), main = expression("|relative error| of " ~~ gamln1(u) == log( Gamma(u+1) ))) grid(lty = 3); abline(v = c(-.2, 1.25), col = adjustcolor(4, 1/2), lty=2, lwd=2) relED <- Rmpfr::asNumeric(sfsmisc::relErrV(lg1pM, lg1(u))) lines(abs(relED) ~ u, col = adjustcolor(2, 1/2)) })
Provide different variants or versions of computing the Gamma
() function.
gammaVer(x, version, stirlerrV = c("R3", "R4..1", "R4.4_0"), traceLev = 0L)
gammaVer(x, version, stirlerrV = c("R3", "R4..1", "R4.4_0"), traceLev = 0L)
x |
numeric vector of absissa value for the Gamma function. |
version |
integer in {1,2,..,5} specifying which variant is desired. |
stirlerrV |
a string, specifying the |
traceLev |
non-negative integer indicating the amount of diagnostic “tracing” output to the console during computation. |
All of these are good algorithms to compute (for real
), and indeed correspond to the versions R's implementation of
gamma(x)
over time. More specifically, the current version
numbers correspond to
. TODO
.
.
Used in R from ... up to versions 4.3.z
Possibly to be used in R 4.4.z and newer.
The stirlerrV
must be a string specifying the version of
stirlerr()
to be used:
"R3"
:the historical version, used in all R version up to R 4.3.z.
"R4..1"
:only started using lgamma1p(n)
instead of
lgamma(n + 1.)
in stirlerr(n)
for , in the direct formula.
"R4.4_0"
:uses 10 cutoffs instead 4, and these are larger to gain accuracy.
numeric vector as x
Martin Maechler
.... TODO ....
gamma()
, R's own Gamma function.
xx <- seq(-4, 10, by=1/2) gx <- sapply(1:5, gammaVer, x=xx) gamx <- gamma(xx) cbind(xx, gx, gamma=gamx) apply(gx, 2, all.equal, target=gamx, tol = 0) # typically: {T,T,T,T, 1.357e-16} stopifnot( apply(gx, 2, all.equal, target = gamx, tol = 1e-14)) # even 2e-16 (Lnx, 64b, R 4.2.1)
xx <- seq(-4, 10, by=1/2) gx <- sapply(1:5, gammaVer, x=xx) gamx <- gamma(xx) cbind(xx, gx, gamma=gamx) apply(gx, 2, all.equal, target=gamx, tol = 0) # typically: {T,T,T,T, 1.357e-16} stopifnot( apply(gx, 2, all.equal, target = gamx, tol = 1e-14)) # even 2e-16 (Lnx, 64b, R 4.2.1)
Transform the three parameters of the hypergeometric distribution function to the probability parameter of the “corresponding” binomial distribution.
hyper2binomP(x, m, n, k)
hyper2binomP(x, m, n, k)
x , m , n , k
|
see |
a number, the binomial probability.
See those in phyperBinMolenaar
.
dhyperBinMolenaar()
, phyperBinMolenaar.1()
,
*.2()
, etc, all of which are crucially based on hyper2binomP()
.
hyper2binomP(3,4,5,6) # 0.38856 ## The function is simply defined as function (x, m, n, k) { N <- m + n p <- m/N N.n <- N - (k - 1)/2 (m - x/2)/N.n - k * (x - k * p - 1/2)/(6 * N.n^2) }
hyper2binomP(3,4,5,6) # 0.38856 ## The function is simply defined as function (x, m, n, k) { N <- m + n p <- m/N N.n <- N - (k - 1)/2 (m - x/2)/N.n - k * (x - k * p - 1/2)/(6 * N.n^2) }
pbeta()
Computes the normalized incomplete beta function, in pure R code, derived from Nico Temme's Maple code for computing Table 1 in Gil et al (2023).
It uses a continued fraction, similarly to bfrac()
in the TOMS 708
algorithm underlying R's pbeta()
.
Ixpq(x, l_x, p, q, tol = 3e-16, it.max = 100L, plotIt = FALSE)
Ixpq(x, l_x, p, q, tol = 3e-16, it.max = 100L, plotIt = FALSE)
x |
numeric |
l_x |
|
p , q
|
the two shape parameters of the beta distribution. |
tol |
positive number, the convergence tolerance for the continued fraction computation. |
it.max |
maximal number of continued fraction steps. |
plotIt |
a |
a vector like x
or l_x
with corresponding
pbeta(x, *)
values.
Martin Maechler; based on original Maple code by Nico Temme.
Gil et al. (2023)
x <- seq(0, 1, by=1/16) r <- Ixpq(x, 1-x, p = 4, q = 7, plotIt = TRUE) cbind(x, r) ## and "test" ___FIXME__
x <- seq(0, 1, by=1/16) r <- Ixpq(x, 1-x, p = 4, q = 7, plotIt = TRUE) cbind(x, r) ## and "test" ___FIXME__
Compute log(beta(a,b))
in a simple (fast) or asymptotic
way. The asymptotic case is based on the asymptotic
(
gamma
) ratios, provided in Qab_terms()
and
logQab_asy()
.
lbeta_asy(a,b, ..)
is simply lgamma(a) - logQab_asy(a, b, ..)
.
lbetaM (a, b, k.max = 5, give.all = FALSE) lbeta_asy(a, b, k.max = 5, give.all = FALSE) lbetaMM (a, b, cutAsy = 1e-2, verbose = FALSE) betaI(a, n) lbetaI(a, n) logQab_asy(a, b, k.max = 5, give.all = FALSE) Qab_terms(a, k)
lbetaM (a, b, k.max = 5, give.all = FALSE) lbeta_asy(a, b, k.max = 5, give.all = FALSE) lbetaMM (a, b, cutAsy = 1e-2, verbose = FALSE) betaI(a, n) lbetaI(a, n) logQab_asy(a, b, k.max = 5, give.all = FALSE) Qab_terms(a, k)
a , b , n
|
the Beta parameters, see |
k.max , k
|
for |
give.all |
|
cutAsy |
cutoff value from where to switch to asymptotic formula. |
verbose |
logical (or integer) indicating if and how much monitoring information should be printed to the console. |
All lbeta*()
functions compute log(beta(a,b))
.
We use for
which is numerically challenging when becomes large compared to
a
, or .
With the beta function
and hence
or in R, lbeta(a,b) := lgamma(a) - logQab(a,b)
.
Indeed, typically everything has to be computed in log scale, as both
and
would overflow numerically for large
.
Consequently, we use
logQab*()
, and for the large case
logQab_asy()
specifically,
The 5 polynomial terms in Qab_terms()
have been derived by the
author in 1997, but not published, about getting asymptotic formula for
ratios, related to but different than formula
(6.1.47) in Abramowitz and Stegun.
We also have a vignette
about this, but really the problem has been adressed pragmatically
by the authors of TOMS 708, see the ‘References’ in
pbeta
,
by their routine algdiv()
which also is available in our
package DPQ, .
Note that this is related to computing
qbeta()
in boundary
cases. See also algdiv()
‘Details’.
a fast or simple (approximate) computation of lbeta(a,b)
.
Martin Maechler
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain; Formula (6.1.47), p.257
(r <- logQab_asy(1, 50)) (rF <- logQab_asy(1, 50, give.all=TRUE)) r == rF # all TRUE: here, even the first approx. is good! (r2 <- logQab_asy(5/4, 50)) (r2F <- logQab_asy(5/4, 50, give.all=TRUE)) r2 == r2F # TRUE only first entry "5" (r2F.3 <- logQab_asy(5/4, 50, k=3, give.all=TRUE)) ## Check relation to Beta(), Gamma() functions: a <- 1.1 * 2^(-6:4) b <- 1001.5 rDlgg <- lgamma(a+b) - lgamma(b) # suffers from cancellation for small 'a' rDlgb <- lgamma(a) - lbeta(a, b) # (ditto) ralgd <- - algdiv(a,b) rQasy <- logQab_asy(a, b) cbind(a, rDlgg, rDlgb, ralgd, rQasy) all.equal(rDlgg, rDlgb, tolerance = 0) # 3.0e-14 all.equal(rDlgb, ralgd, tolerance = 0) # 1.2e-16 all.equal(ralgd, rQasy, tolerance = 0) # 4.1e-10 all.equal(rQasy, rDlgg, tolerance = 0) # 3.5e-10 stopifnot(exprs = { all.equal(rDlgg, rDlgb, tolerance = 1e-12) # 3e-14 {from cancellations!} all.equal(rDlgb, ralgd, tolerance = 1e-13) # 1e-16 all.equal(ralgd, rQasy, tolerance = 2e-9) # 4.1e-10 all.equal(rQasy, rDlgg, tolerance = 2e-9) # 3.5e-10 all.equal(lgamma(a)-lbeta(a, 2*b), logQab_asy(a, 2*b), tolerance =1e-10)# 1.4e-11 all.equal(lgamma(a)-lbeta(a, b/2), logQab_asy(a, b/2), tolerance = 1e-7)# 1.2e-8 }) if(requireNamespace("Rmpfr")) withAutoprint({ aM <- Rmpfr::mpfr(a, 512) bM <- Rmpfr::mpfr(b, 512) rT <- lgamma(aM+bM) - lgamma(bM) # "True" i.e. accurate values relE <- Rmpfr::asNumeric(sfsmisc::relErrV(rT, cbind(rDlgg, rDlgb, ralgd, rQasy))) cbind(a, signif(relE,4)) ## a rDlgg rDlgb ralgd rQasy ## 0.0171875 4.802e-12 3.921e-16 4.145e-17 -4.260e-16 ## 0.0343750 1.658e-12 1.509e-15 -1.011e-17 1.068e-16 ## 0.0687500 -2.555e-13 6.853e-16 -1.596e-17 -1.328e-16 ## 0.1375000 1.916e-12 -7.782e-17 3.905e-17 -7.782e-17 ## 0.2750000 1.246e-14 7.001e-17 7.001e-17 -4.686e-17 ## 0.5500000 -2.313e-13 5.647e-17 5.647e-17 -6.040e-17 ## 1.1000000 -9.140e-14 -1.298e-16 -1.297e-17 -1.297e-17 ## 2.2000000 9.912e-14 2.420e-17 2.420e-17 -9.265e-17 ## 4.4000000 1.888e-14 6.810e-17 -4.873e-17 -4.873e-17 ## 8.8000000 -7.491e-15 1.004e-16 -1.638e-17 -4.118e-13 ## 17.6000000 2.222e-15 1.207e-16 3.974e-18 -6.972e-10 ## ==> logQab_asy() is very good _here_ as long as a << b })
(r <- logQab_asy(1, 50)) (rF <- logQab_asy(1, 50, give.all=TRUE)) r == rF # all TRUE: here, even the first approx. is good! (r2 <- logQab_asy(5/4, 50)) (r2F <- logQab_asy(5/4, 50, give.all=TRUE)) r2 == r2F # TRUE only first entry "5" (r2F.3 <- logQab_asy(5/4, 50, k=3, give.all=TRUE)) ## Check relation to Beta(), Gamma() functions: a <- 1.1 * 2^(-6:4) b <- 1001.5 rDlgg <- lgamma(a+b) - lgamma(b) # suffers from cancellation for small 'a' rDlgb <- lgamma(a) - lbeta(a, b) # (ditto) ralgd <- - algdiv(a,b) rQasy <- logQab_asy(a, b) cbind(a, rDlgg, rDlgb, ralgd, rQasy) all.equal(rDlgg, rDlgb, tolerance = 0) # 3.0e-14 all.equal(rDlgb, ralgd, tolerance = 0) # 1.2e-16 all.equal(ralgd, rQasy, tolerance = 0) # 4.1e-10 all.equal(rQasy, rDlgg, tolerance = 0) # 3.5e-10 stopifnot(exprs = { all.equal(rDlgg, rDlgb, tolerance = 1e-12) # 3e-14 {from cancellations!} all.equal(rDlgb, ralgd, tolerance = 1e-13) # 1e-16 all.equal(ralgd, rQasy, tolerance = 2e-9) # 4.1e-10 all.equal(rQasy, rDlgg, tolerance = 2e-9) # 3.5e-10 all.equal(lgamma(a)-lbeta(a, 2*b), logQab_asy(a, 2*b), tolerance =1e-10)# 1.4e-11 all.equal(lgamma(a)-lbeta(a, b/2), logQab_asy(a, b/2), tolerance = 1e-7)# 1.2e-8 }) if(requireNamespace("Rmpfr")) withAutoprint({ aM <- Rmpfr::mpfr(a, 512) bM <- Rmpfr::mpfr(b, 512) rT <- lgamma(aM+bM) - lgamma(bM) # "True" i.e. accurate values relE <- Rmpfr::asNumeric(sfsmisc::relErrV(rT, cbind(rDlgg, rDlgb, ralgd, rQasy))) cbind(a, signif(relE,4)) ## a rDlgg rDlgb ralgd rQasy ## 0.0171875 4.802e-12 3.921e-16 4.145e-17 -4.260e-16 ## 0.0343750 1.658e-12 1.509e-15 -1.011e-17 1.068e-16 ## 0.0687500 -2.555e-13 6.853e-16 -1.596e-17 -1.328e-16 ## 0.1375000 1.916e-12 -7.782e-17 3.905e-17 -7.782e-17 ## 0.2750000 1.246e-14 7.001e-17 7.001e-17 -4.686e-17 ## 0.5500000 -2.313e-13 5.647e-17 5.647e-17 -6.040e-17 ## 1.1000000 -9.140e-14 -1.298e-16 -1.297e-17 -1.297e-17 ## 2.2000000 9.912e-14 2.420e-17 2.420e-17 -9.265e-17 ## 4.4000000 1.888e-14 6.810e-17 -4.873e-17 -4.873e-17 ## 8.8000000 -7.491e-15 1.004e-16 -1.638e-17 -4.118e-13 ## 17.6000000 2.222e-15 1.207e-16 3.974e-18 -6.972e-10 ## ==> logQab_asy() is very good _here_ as long as a << b })
Provide R versions of simple formulas for computing the logarithm of
(the absolute value of) binomial coefficients, i.e., simpler, more direct
formulas than what (the C level) code of R's lchoose()
computes.
lfastchoose(n, k) f05lchoose(n, k)
lfastchoose(n, k) f05lchoose(n, k)
n |
a numeric vector. |
k |
a integer valued numeric vector. |
a numeric vector with the same attributes as n + k
.
Martin Maechler
lfastchoose # function(n, k) lgamma(n + 1) - lgamma(k + 1) - lgamma(n - k + 1) f05lchoose # function(n, k) lfastchoose(n = floor(n + 0.5), k = floor(k + 0.5)) ## interesting cases ?
lfastchoose # function(n, k) lgamma(n + 1) - lgamma(k + 1) - lgamma(n - k + 1) f05lchoose # function(n, k) lfastchoose(n = floor(n + 0.5), k = floor(k + 0.5)) ## interesting cases ?
log(gamma(a+1))
Compute
which is “in principle” the same as
log(gamma(a+1))
or lgamma(a+1)
,
accurately also for (very) small
.
lgamma1p (a, tol_logcf = 1e-14, f.tol = 1, ...) lgamma1p.(a, cutoff.a = 1e-6, k = 3) lgamma1p_series(x, k) lgamma1pC(x)
lgamma1p (a, tol_logcf = 1e-14, f.tol = 1, ...) lgamma1p.(a, cutoff.a = 1e-6, k = 3) lgamma1p_series(x, k) lgamma1pC(x)
a , x
|
a numeric vector. |
tol_logcf |
for |
f.tol |
numeric (factor) used in
|
... |
further optional arguments passed on to |
cutoff.a |
for |
k |
an integer, the number of terms in the series expansion used internally; currently for
|
lgamma1p()
is an R translation of the function (in Fortran) in
Didonato and Morris (1992) which uses a 40-degree polynomial approximation.
lgamma1p.(u)
for small uses up to 4 terms of
where ,
and
und
are similarly determined.
Then
log1p(.)
of the approximation above is used.
lgamma1p_series(x, k)
is a Taylor series approximation of order
k
, directly of (mostly via
Maple
), which starts as
,
where
is Euler's constant 0.5772156649.
lgamma1pC()
is an interface to R's C API (‘Mathlib’ / ‘Rmath.h’)
function lgamma1p()
.
a numeric vector with the same attributes as a
.
Morten Welinder (C code of Jan 2005, see R's bug issue
PR#7307) for lgamma1p()
.
Martin Maechler, notably for lgamma1p_series()
which works
with package Rmpfr but otherwise may be much less
accurate than Morten's 40 term series!
Didonato, A. and Morris, A., Jr, (1992)
Algorithm 708: Significant digit computation of the incomplete beta function ratios.
ACM Transactions on Mathematical Software, 18, 360–373;
see also pbeta
.
Yet another algorithm, fully double precision accurate in ,
is provided by
gamln1()
.
curve(lgamma1p, -1.25, 5, n=1001, col=2, lwd=2) abline(h=0, v=-1:0, lty=c(2,3,2), lwd=c(1, 1/2,1)) for(k in 1:15) curve(lgamma1p_series(x, k=k), add=TRUE, col=adjustcolor(paste0("gray",25+k*4), 2/3), lty = 3) curve(lgamma1p, -0.25, 1.25, n=1001, col=2, lwd=2) abline(h=0, v=0, lty=2) for(k in 1:15) curve(lgamma1p_series(x, k=k), add=TRUE, col=adjustcolor("gray20", 2/3), lty = 3) curve(-log(x*gamma(x)), 1e-30, .8, log="xy", col="gray50", lwd = 3, axes = FALSE, ylim = c(1e-30,1)) # underflows to zero at x ~= 1e-16 eaxGrid <- function(at.x = 10^(1-4*(0:8)), at.y = at.x) { sfsmisc::eaxis(1, sub10 = c(-2, 2), nintLog=16) sfsmisc::eaxis(2, sub10 = 2, nintLog=16) abline(h = at.y, v = at.x, col = "lightgray", lty = "dotted") } eaxGrid() curve(-lgamma( 1+x), add=TRUE, col="red2", lwd=1/2)# underflows even earlier curve(-lgamma1p (x), add=TRUE, col="blue") -> lgxy curve(-lgamma1p.(x), add=TRUE, col=adjustcolor("forest green",1/4), lwd = 5, lty = 2) for(k in 1:15) curve(-lgamma1p_series(x, k=k), add=TRUE, col=paste0("gray",80-k*4), lty = 3) stopifnot(with(lgxy, all.equal(y, -lgamma1pC(x)))) if(requireNamespace("Rmpfr")) { # accuracy comparisons, originally from ../tests/qgamma-ex.R x <- 2^(-(500:11)/8) x. <- Rmpfr::mpfr(x, 200) ## versions of lgamma1p(x) := lgamma(1+x) ## lgamma1p(x) = log gamma(x+1) = log (x * gamma(x)) = log(x) + lgamma(x) xct. <- log(x. * gamma(x.)) # using MPFR arithmetic .. no overflow/underflow ... xc2. <- log(x.) + lgamma(x.) # (ditto) AllEq <- function(target, current, ...) Rmpfr::all.equal(target, current, ..., formatFUN = function(x, ...) Rmpfr::format(x, digits = 9)) print(AllEq(xct., xc2., tol = 0)) # 2e-57 rr <- vapply(1:15, function(k) lgamma1p_series(x, k=k), x) colnames(rr) <- paste0("k=",1:15) relEr <- Rmpfr::asNumeric(sfsmisc::relErrV(xct., rr)) ## rel.error of direct simple computation: relE.D <- Rmpfr::asNumeric(sfsmisc::relErrV(xct., lgamma(1+x))) matplot(x, abs(relEr), log="xy", type="l", axes = FALSE, main = "|rel.Err(.)| for lgamma(1+x) =~= lgamma1p_series(x, k = 1:15)") eaxGrid() p2 <- -(53:52); twp <- 2^p2; labL <- lapply(p2, function(p) substitute(2^E, list(E=p))) abline(h = twp, lty=3) axis(4, at=twp, las=2, line=-1, labels=as.expression(labL), col=NA,col.ticks=NA) legend("topleft", paste("k =", 1:15), ncol=3, col=1:6, lty=1:5, bty="n") lines(x, abs(relE.D), col = adjustcolor(2, 2/3), lwd=2) legend("top", "lgamma(1+x)", col=2, lwd=2) ## zoom in: matplot(x, abs(relEr), log="xy", type="l", axes = FALSE, xlim = c(1e-5, 0.1), ylim = c(1e-17, 1e-10), main = "|rel.Err(.)| for lgamma(1+x) =~= lgamma1p_series(x, k = 1:15)") eaxGrid(10^(-5:1), 10^-(17:10)) abline(h = twp, lty=3) axis(4, at=twp, las=2, line=-1, labels=as.expression(labL), col=NA,col.ticks=NA) legend("topleft", paste("k =", 1:15), ncol=3, col=1:6, lty=1:5, bty="n") lines(x, abs(relE.D), col = adjustcolor(2, 2/3), lwd=2) legend("right", "lgamma(1+x)", col=2, lwd=2) } # Rmpfr only
curve(lgamma1p, -1.25, 5, n=1001, col=2, lwd=2) abline(h=0, v=-1:0, lty=c(2,3,2), lwd=c(1, 1/2,1)) for(k in 1:15) curve(lgamma1p_series(x, k=k), add=TRUE, col=adjustcolor(paste0("gray",25+k*4), 2/3), lty = 3) curve(lgamma1p, -0.25, 1.25, n=1001, col=2, lwd=2) abline(h=0, v=0, lty=2) for(k in 1:15) curve(lgamma1p_series(x, k=k), add=TRUE, col=adjustcolor("gray20", 2/3), lty = 3) curve(-log(x*gamma(x)), 1e-30, .8, log="xy", col="gray50", lwd = 3, axes = FALSE, ylim = c(1e-30,1)) # underflows to zero at x ~= 1e-16 eaxGrid <- function(at.x = 10^(1-4*(0:8)), at.y = at.x) { sfsmisc::eaxis(1, sub10 = c(-2, 2), nintLog=16) sfsmisc::eaxis(2, sub10 = 2, nintLog=16) abline(h = at.y, v = at.x, col = "lightgray", lty = "dotted") } eaxGrid() curve(-lgamma( 1+x), add=TRUE, col="red2", lwd=1/2)# underflows even earlier curve(-lgamma1p (x), add=TRUE, col="blue") -> lgxy curve(-lgamma1p.(x), add=TRUE, col=adjustcolor("forest green",1/4), lwd = 5, lty = 2) for(k in 1:15) curve(-lgamma1p_series(x, k=k), add=TRUE, col=paste0("gray",80-k*4), lty = 3) stopifnot(with(lgxy, all.equal(y, -lgamma1pC(x)))) if(requireNamespace("Rmpfr")) { # accuracy comparisons, originally from ../tests/qgamma-ex.R x <- 2^(-(500:11)/8) x. <- Rmpfr::mpfr(x, 200) ## versions of lgamma1p(x) := lgamma(1+x) ## lgamma1p(x) = log gamma(x+1) = log (x * gamma(x)) = log(x) + lgamma(x) xct. <- log(x. * gamma(x.)) # using MPFR arithmetic .. no overflow/underflow ... xc2. <- log(x.) + lgamma(x.) # (ditto) AllEq <- function(target, current, ...) Rmpfr::all.equal(target, current, ..., formatFUN = function(x, ...) Rmpfr::format(x, digits = 9)) print(AllEq(xct., xc2., tol = 0)) # 2e-57 rr <- vapply(1:15, function(k) lgamma1p_series(x, k=k), x) colnames(rr) <- paste0("k=",1:15) relEr <- Rmpfr::asNumeric(sfsmisc::relErrV(xct., rr)) ## rel.error of direct simple computation: relE.D <- Rmpfr::asNumeric(sfsmisc::relErrV(xct., lgamma(1+x))) matplot(x, abs(relEr), log="xy", type="l", axes = FALSE, main = "|rel.Err(.)| for lgamma(1+x) =~= lgamma1p_series(x, k = 1:15)") eaxGrid() p2 <- -(53:52); twp <- 2^p2; labL <- lapply(p2, function(p) substitute(2^E, list(E=p))) abline(h = twp, lty=3) axis(4, at=twp, las=2, line=-1, labels=as.expression(labL), col=NA,col.ticks=NA) legend("topleft", paste("k =", 1:15), ncol=3, col=1:6, lty=1:5, bty="n") lines(x, abs(relE.D), col = adjustcolor(2, 2/3), lwd=2) legend("top", "lgamma(1+x)", col=2, lwd=2) ## zoom in: matplot(x, abs(relEr), log="xy", type="l", axes = FALSE, xlim = c(1e-5, 0.1), ylim = c(1e-17, 1e-10), main = "|rel.Err(.)| for lgamma(1+x) =~= lgamma1p_series(x, k = 1:15)") eaxGrid(10^(-5:1), 10^-(17:10)) abline(h = twp, lty=3) axis(4, at=twp, las=2, line=-1, labels=as.expression(labL), col=NA,col.ticks=NA) legend("topleft", paste("k =", 1:15), ncol=3, col=1:6, lty=1:5, bty="n") lines(x, abs(relE.D), col = adjustcolor(2, 2/3), lwd=2) legend("right", "lgamma(1+x)", col=2, lwd=2) } # Rmpfr only
Compute an n-th order asymptotic approximation to log Gamma function,
using Bernoulli numbers Bern(k)
for k
in
.
lgammaAsymp(x, n)
lgammaAsymp(x, n)
x |
numeric vector |
n |
integer specifying the approximation order. |
numeric vector with the same attributes (length()
etc) as
x
, containing approximate lgamma(x)
values.
Martin Maechler
lgamma
; the -th Bernoulli number
Bern(n)
, and also exact fractions Bernoulli numbers
BernoulliQ()
from package gmp.
## The function is currently lgammaAsymp
## The function is currently lgammaAsymp
(1 -
(-a)) and
Numerically OptimallyCompute f(a) = log(1 - exp(-a)) quickly and numerically accurately.
log1mexp()
is simple pure R code;log1mexpC()
is an interface to R C API (‘Mathlib’ / ‘Rmath.h’)
function.
log1pexpC()
is an interface to R's ‘Mathlib’ double
function log1pexp()
which computes ,
accurately, notably for large
, say,
.
log1mexp (x) log1mexpC(x) log1pexpC(x)
log1mexp (x) log1mexpC(x) log1pexpC(x)
x |
numeric vector of positive values. |
Martin Maechler
Martin Mächler (2012).
Accurately Computing ;
https://CRAN.R-project.org/package=Rmpfr/vignettes/log1mexp-note.pdf.
The log1mexp()
function in CRAN package copula,
and the corresponding vignette (in the ‘References’).
l1m.xy <- curve(log1mexp(x), -10, 10, n=1001) stopifnot(with(l1m.xy, all.equal(y, log1mexpC(x)))) x <- seq(0, 710, length=1+710*2^4); stopifnot(diff(x) == 1/2^4) l1pm <- cbind(log1p(exp(x)), log1pexpC(x)) matplot(x, l1pm, type="l", log="xy") # both look the same iF <- is.finite(l1pm[,1]) stopifnot(all.equal(l1pm[iF,2], l1pm[iF,1], tol=1e-15))
l1m.xy <- curve(log1mexp(x), -10, 10, n=1001) stopifnot(with(l1m.xy, all.equal(y, log1mexpC(x)))) x <- seq(0, 710, length=1+710*2^4); stopifnot(diff(x) == 1/2^4) l1pm <- cbind(log1p(exp(x)), log1pexpC(x)) matplot(x, l1pm, type="l", log="xy") # both look the same iF <- is.finite(l1pm[,1]) stopifnot(all.equal(l1pm[iF,2], l1pm[iF,1], tol=1e-15))
log(1+x) - x
ComputationCompute
accurately also for small , i.e.,
.
Since April 2021, the pure R code version log1pmx()
also works
for "mpfr" numbers (from package Rmpfr).
rlog1(x)
, provided mostly for reference and reproducibility, is
used in TOMS Algorithm 708, see e.g. the reference of lgamma1p
.
and computes minus log1pmx(x), i.e., ,
using (argument reduction) and a rational approximation when
.
log1pmx (x, tol_logcf = 1e-14, eps2 = 0.01, minL1 = -0.79149064, trace.lcf = FALSE, logCF = if(is.numeric(x)) logcf else logcfR.) log1pmxC(x) # TODO in future: arguments (minL1, eps2, tol_logcf), # possibly with *different* defaults (!) rlog1(x)
log1pmx (x, tol_logcf = 1e-14, eps2 = 0.01, minL1 = -0.79149064, trace.lcf = FALSE, logCF = if(is.numeric(x)) logcf else logcfR.) log1pmxC(x) # TODO in future: arguments (minL1, eps2, tol_logcf), # possibly with *different* defaults (!) rlog1(x)
x |
numeric (or, for |
tol_logcf |
a non-negative number indicating the tolerance
(maximal relative error) for the auxiliary |
eps2 |
non-negative cutoff where the algorithm switches from a few
terms, to using |
minL1 |
negative cutoff, called |
trace.lcf |
|
logCF |
the |
In order to provide full (double precision) accuracy,
the computations happens differently in three regions for ,
is the first cutpoint,
or
:use log1pmx(x) := log1p(x) - x
,
:use
,
, and
:use
,
where , and
.
Note that the formulas based on are based on the (fast
converging) formula
where , see the reference.
log1pmxC()
is an interface to R C API (‘Rmathlib’) function.
a numeric vector (with the same attributes as x
).
A translation of Morten Welinder's C code of Jan 2005, see R's bug issue PR#7307, parametrized and tuned by Martin Maechler.
Abramowitz, M. and Stegun, I. A. (1972)
Handbook of Mathematical Functions. New York: Dover.
https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides
links to the full text which is in public domain.
Formula (4.1.29), p.68.
Martin Mächler (2021). log1pmx, ... Computing ... Probabilities in R. (DPQ package vignette)
logcf
, the auxiliary function,
lgamma1p
which calls log1pmx
, log1p
; also
expm1x)()
which computes expm1(x) - x
accurately, whereas
log1pmx(x)
computes log1p(x) - x
accurately
(doExtras <- DPQ:::doExtras()) # TRUE e.g. if interactive() n1 <- if(doExtras) 1001 else 201 curve(log1pmx, -.9999, 7, n=n1); abline(h=0, v=-1:0, lty=3) curve(log1pmx, -.1, .1, n=n1); abline(h=0, v=0, lty=3) curve(log1pmx, -.01, .01, n=n1) -> l1xz2; abline(h=0, v=0, lty=3) ## C and R versions correspond closely: with(l1xz2, stopifnot(all.equal(y, log1pmxC(x), tol = 1e-15))) e <- if(doExtras) 2^-12 else 2^-8; by.p <- 1/(if(doExtras) 256 else 64) xd <- c(seq(-1+e, 0+100*e, by=e), seq(by.p, 5, by=by.p)) # length 676 or 5476 if do.X. plot(xd, log1pmx(xd), type="l", col=2, main = "log1pmx(x)") abline(h=0, v=-1:0, lty=3) ## --- Compare rexp1() with log1pmx() ---------------------------- x <- seq(-0.5, 5/8, by=1/256) all.equal(log1pmx(x), -rlog1(x), tol = 0) # 2.838e-16 {|rel.error| <= 1.33e-15} stopifnot(all.equal(log1pmx(x), -rlog1(x), tol = 1e-14)) ## much more closely: x <- c(-1+1e-9, -1+1/256, -(127:50)/128, (-199:295)/512, 74:196/128) if(is.unsorted(x)) stop("x must be sorted for plots") rlog1.x <- rlog1(x) summary(relD <- sfsmisc::relErrV(log1pmx(x), -rlog1.x)) n.relD <- relD * 2^53 table(n.relD) ## 64-bit Linux F36 (gcc 12.2.1): ## -6 -5 -4 -3 -2 -1 0 2 4 6 8 10 12 14 ## 2 3 13 24 79 93 259 120 48 22 14 15 5 1 stopifnot(-10 <= n.relD, n.relD <= 20) # above Lnx: [-6, 14] if(requireNamespace("Rmpfr")) { relE <- Rmpfr::asNumeric(sfsmisc::relErrV(log1pmx(Rmpfr::mpfr(x,128)), -rlog1(x))) plot(x, pmax(2^-54, abs(relE)), log="y", type="l", main= "|rel.Err| of rlog1(x)") rl1.c <- c(-.39, 0.57, -.18, .18) # the cutoffs used inside rlog1() lc <- "gray" abline(v = rl1.c, col=lc, lty=2) axis(3, at=rl1.c, col=lc, cex.axis=3/4, mgp=c(2,.5,0)) abline(h= (1:4)*2^-53, lty=3, col = (cg <- adjustcolor(1, 1/4))) axis(4, at=(1:4)*2^-53, labels=expression(frac(epsilon[c],2), epsilon[c], frac(3,2)*epsilon[c], 2*epsilon[c]), cex.axis = 3/4, tcl=-1/4, las = 1, mgp=c(1.5,.5,0), col=cg) ## it seems the -.18 +.18 cutoffs should be slightly moved "outside" } ## much more graphics etc in ../tests/dnbinom-tst.R (and the vignette, see above)
(doExtras <- DPQ:::doExtras()) # TRUE e.g. if interactive() n1 <- if(doExtras) 1001 else 201 curve(log1pmx, -.9999, 7, n=n1); abline(h=0, v=-1:0, lty=3) curve(log1pmx, -.1, .1, n=n1); abline(h=0, v=0, lty=3) curve(log1pmx, -.01, .01, n=n1) -> l1xz2; abline(h=0, v=0, lty=3) ## C and R versions correspond closely: with(l1xz2, stopifnot(all.equal(y, log1pmxC(x), tol = 1e-15))) e <- if(doExtras) 2^-12 else 2^-8; by.p <- 1/(if(doExtras) 256 else 64) xd <- c(seq(-1+e, 0+100*e, by=e), seq(by.p, 5, by=by.p)) # length 676 or 5476 if do.X. plot(xd, log1pmx(xd), type="l", col=2, main = "log1pmx(x)") abline(h=0, v=-1:0, lty=3) ## --- Compare rexp1() with log1pmx() ---------------------------- x <- seq(-0.5, 5/8, by=1/256) all.equal(log1pmx(x), -rlog1(x), tol = 0) # 2.838e-16 {|rel.error| <= 1.33e-15} stopifnot(all.equal(log1pmx(x), -rlog1(x), tol = 1e-14)) ## much more closely: x <- c(-1+1e-9, -1+1/256, -(127:50)/128, (-199:295)/512, 74:196/128) if(is.unsorted(x)) stop("x must be sorted for plots") rlog1.x <- rlog1(x) summary(relD <- sfsmisc::relErrV(log1pmx(x), -rlog1.x)) n.relD <- relD * 2^53 table(n.relD) ## 64-bit Linux F36 (gcc 12.2.1): ## -6 -5 -4 -3 -2 -1 0 2 4 6 8 10 12 14 ## 2 3 13 24 79 93 259 120 48 22 14 15 5 1 stopifnot(-10 <= n.relD, n.relD <= 20) # above Lnx: [-6, 14] if(requireNamespace("Rmpfr")) { relE <- Rmpfr::asNumeric(sfsmisc::relErrV(log1pmx(Rmpfr::mpfr(x,128)), -rlog1(x))) plot(x, pmax(2^-54, abs(relE)), log="y", type="l", main= "|rel.Err| of rlog1(x)") rl1.c <- c(-.39, 0.57, -.18, .18) # the cutoffs used inside rlog1() lc <- "gray" abline(v = rl1.c, col=lc, lty=2) axis(3, at=rl1.c, col=lc, cex.axis=3/4, mgp=c(2,.5,0)) abline(h= (1:4)*2^-53, lty=3, col = (cg <- adjustcolor(1, 1/4))) axis(4, at=(1:4)*2^-53, labels=expression(frac(epsilon[c],2), epsilon[c], frac(3,2)*epsilon[c], 2*epsilon[c]), cex.axis = 3/4, tcl=-1/4, las = 1, mgp=c(1.5,.5,0), col=cg) ## it seems the -.18 +.18 cutoffs should be slightly moved "outside" } ## much more graphics etc in ../tests/dnbinom-tst.R (and the vignette, see above)
Compute a continued fraction approximation to the series (infinite sum)
Needed as auxiliary function in log1pmx()
and lgamma1p()
.
logcfR (x, i, d, eps, maxit = 10000L, trace = FALSE) logcfR.(x, i, d, eps, maxit = 10000L, trace = FALSE) logcf (x, i, d, eps, trace = FALSE)
logcfR (x, i, d, eps, maxit = 10000L, trace = FALSE) logcfR.(x, i, d, eps, maxit = 10000L, trace = FALSE) logcf (x, i, d, eps, trace = FALSE)
x |
numeric vector of values typically less than 1.
"mpfr" (of potentially high precision, package Rmpfr) work in
|
i |
positive numeric |
d |
non-negative numeric |
eps |
positive number, the convergence tolerance. |
maxit |
a positive integer, the maximal number of iterations or terms in the truncated series used. |
trace |
logical (or non-negative integer in the future) indicating if (and how much) diagnostic output should be printed to the console during the computations. |
logcfR.()
:a pure R version where the iterations happen
vectorized in x
, only for those components x[i]
they
have not yet converged. This is particularly beneficial for
not-very-short "mpfr"
vectors x
, and still conceptually
equivalent to the logcfR()
version.
logcfR()
:a pure R version where each x[i]
is
treated separately, hence “properly” vectorized, but slowly so.
logcf()
:only for numeric
x
, calls
into (a clone of) R's own (non-API currently) logcf()
C
Rmathlib function.
a numeric-alike vector with the same attributes as x
. For the
logcfR*()
versions, an "mpfr"
vector if x
is one.
Rescaling is done by (namespace hidden) “global”
scalefactor
which is , represented exactly (in
double
precision).
Martin Maechler, based on R's ‘nmath/pgamma.c’ implementation.
lgamma1p
, log1pmx
, and
pbeta
, whose prinicipal algorithm has evolved from TOMS 708.
x <- (-2:1)/2 logcf (x, 2,3, eps=1e-7, trace=TRUE) # shows iterations for each x[] logcfR(x, 2,3, eps=1e-7, trace=TRUE) # 1 line per x[] logcfR(x, 2,3, eps=1e-7, trace= 2 ) # shows iterations for each x[] n <- 2049; x <- seq(-1,1, length.out = n)[-n] ; stopifnot(diff(x) == 1/1024) plot(x, (lcf <- logcf(x, 2,3, eps=1e-12)), type="l", col=2) lcR <- logcfR (x, 2,3, eps=1e-12); all.equal(lcf, lcR , tol=0) lcR.<- logcfR.(x, 2,3, eps=1e-12); all.equal(lcf, lcR., tol=0) stopifnot(exprs = { all.equal(lcf, lcR., tol=1e-14)# seen 0 (!) all.equal(lcf, lcR, tol=1e-14)# seen 0 (!) -- failed for a while }) l32 <- curve(logcf(x, 3,2, eps=1e-7), -3, 1) abline(h=0,v=1, lty=3, col="gray50") plot(y~x, l32, log="y", type = "o", main = "logcf(*, 3,2) in log-scale")
x <- (-2:1)/2 logcf (x, 2,3, eps=1e-7, trace=TRUE) # shows iterations for each x[] logcfR(x, 2,3, eps=1e-7, trace=TRUE) # 1 line per x[] logcfR(x, 2,3, eps=1e-7, trace= 2 ) # shows iterations for each x[] n <- 2049; x <- seq(-1,1, length.out = n)[-n] ; stopifnot(diff(x) == 1/1024) plot(x, (lcf <- logcf(x, 2,3, eps=1e-12)), type="l", col=2) lcR <- logcfR (x, 2,3, eps=1e-12); all.equal(lcf, lcR , tol=0) lcR.<- logcfR.(x, 2,3, eps=1e-12); all.equal(lcf, lcR., tol=0) stopifnot(exprs = { all.equal(lcf, lcR., tol=1e-14)# seen 0 (!) all.equal(lcf, lcR, tol=1e-14)# seen 0 (!) -- failed for a while }) l32 <- curve(logcf(x, 3,2, eps=1e-7), -3, 1) abline(h=0,v=1, lty=3, col="gray50") plot(y~x, l32, log="y", type = "o", main = "logcf(*, 3,2) in log-scale")
Compute the log(arithm) of a sum (or difference) from the log of terms without causing overflows and without throwing away large handfuls of accuracy.
logspace.add(lx, ly)
:=
logspace.sub(lx, ly)
:=
logspace.add(lx, ly) logspace.sub(lx, ly)
logspace.add(lx, ly) logspace.sub(lx, ly)
lx , ly
|
numeric vectors, typically of the same
|
a numeric
vector of the same length as x+y
.
This is really from R's C source code for pgamma()
, i.e.,
‘<R>/src/nmath/pgamma.c’
The function definitions are very simple, logspace.sub()
using log1mexp()
.
Morten Welinder (for R's pgamma()
); Martin Maechler
set.seed(12) ly <- rnorm(100, sd= 50) lx <- ly + abs(rnorm(100, sd=100)) # lx - ly must be positive for *.sub() stopifnot(exprs = { all.equal(logspace.add(lx,ly), log(exp(lx) + exp(ly)), tol=1e-14) all.equal(logspace.sub(lx,ly), log(exp(lx) - exp(ly)), tol=1e-14) })
set.seed(12) ly <- rnorm(100, sd= 50) lx <- ly + abs(rnorm(100, sd=100)) # lx - ly must be positive for *.sub() stopifnot(exprs = { all.equal(logspace.add(lx,ly), log(exp(lx) + exp(ly)), tol=1e-14) all.equal(logspace.sub(lx,ly), log(exp(lx) - exp(ly)), tol=1e-14) })
Properly compute
for given log absolute values
lxabs =
and corresponding signs
signs =
. Here,
is of arbitrary sign.
Notably this works in many cases where the direct sum would have summands
that had overflown to +Inf
or underflown to -Inf
.
This is a (simpler, vector-only) version of copula:::lssum()
(CRAN
package copula).
Note that the precision is often not the problem for the direct
summation, as R's sum()
internally uses
"long double"
precision on most platforms.
lssum(lxabs, signs, l.off = max(lxabs), strict = TRUE)
lssum(lxabs, signs, l.off = max(lxabs), strict = TRUE)
lxabs |
n-vector of values |
signs |
corresponding signs |
l.off |
the offset to substract and re-add; ideally in the order of |
strict |
|
Marius Hofert and Martin Maechler (for package copula).
lsum()
which computes an exponential sum in log scale
with out signs.
rSamp <- function(n, lmean, lsd = 1/4, roundN = 16) { lax <- sort((1+1e-14*rnorm(n))*round(roundN*rnorm(n, m = lmean, sd = lsd))/roundN) sx <- rep_len(c(-1,1), n) list(lax=lax, sx=sx, x = sx*exp(lax)) } set.seed(101) L1 <- rSamp(1000, lmean = 700) # here, lssum() is not needed (no under-/overflow) summary(as.data.frame(L1)) ax <- exp(lax <- L1$lax) hist(lax); rug(lax) hist( ax); rug( ax) sx <- L1$sx table(sx) (lsSimple <- log(sum(L1$x))) # 700.0373 (lsS <- lssum(lxabs = lax, signs = sx))# ditto lsS - lsSimple # even exactly zero (in 64b Fedora 30 Linux which has nice 'long double') stopifnot(all.equal(700.037327351478, lsS, tol=1e-14), all.equal(lsS, lsSimple)) L2 <- within(L1, { lax <- lax + 10; x <- sx*exp(lax) }) ; summary(L2$x) # some -Inf, +Inf (lsSimpl2 <- log(sum(L2$ x))) # NaN (lsS2 <- lssum(lxabs = L2$ lax, signs = L2$ sx)) # 710.0373 stopifnot(all.equal(lsS2, lsS + 10, tol = 1e-14))
rSamp <- function(n, lmean, lsd = 1/4, roundN = 16) { lax <- sort((1+1e-14*rnorm(n))*round(roundN*rnorm(n, m = lmean, sd = lsd))/roundN) sx <- rep_len(c(-1,1), n) list(lax=lax, sx=sx, x = sx*exp(lax)) } set.seed(101) L1 <- rSamp(1000, lmean = 700) # here, lssum() is not needed (no under-/overflow) summary(as.data.frame(L1)) ax <- exp(lax <- L1$lax) hist(lax); rug(lax) hist( ax); rug( ax) sx <- L1$sx table(sx) (lsSimple <- log(sum(L1$x))) # 700.0373 (lsS <- lssum(lxabs = lax, signs = sx))# ditto lsS - lsSimple # even exactly zero (in 64b Fedora 30 Linux which has nice 'long double') stopifnot(all.equal(700.037327351478, lsS, tol=1e-14), all.equal(lsS, lsSimple)) L2 <- within(L1, { lax <- lax + 10; x <- sx*exp(lax) }) ; summary(L2$x) # some -Inf, +Inf (lsSimpl2 <- log(sum(L2$ x))) # NaN (lsS2 <- lssum(lxabs = L2$ lax, signs = L2$ sx)) # 710.0373 stopifnot(all.equal(lsS2, lsS + 10, tol = 1e-14))
Properly compute .
for given
. Here,
for all
.
If the inputs are denoted for
, we
compute
log(sum(exp(l[])))
, numerically stably.
Simple vector version of copula:::lsum()
(CRAN package
copula).
lsum(lx, l.off = max(lx))
lsum(lx, l.off = max(lx))
lx |
n-vector of values log(x_1),..,log(x_n). |
l.off |
the offset to substract and re-add; ideally in the order of the maximum of each column. |
Originally, via paired programming: Marius Hofert and Martin Maechler.
lssum()
which computes a sum in log scale
with specified (typically alternating) signs.
## The "naive" version : lsum0 <- function(lx) log(sum(exp(lx))) lx1 <- 10*(-80:70) # is easy lx2 <- 600:750 # lsum0() not ok [could work with rescaling] lx3 <- -(750:900) # lsum0() = -Inf - not good enough m3 <- cbind(lx1,lx2,lx3) lx6 <- lx5 <- lx4 <- lx3 lx4[149:151] <- -Inf ## = log(0) lx5[150] <- Inf lx6[1] <- NA_real_ m6 <- cbind(m3,lx4,lx5,lx6) stopifnot(exprs = { all.equal(lsum(lx1), lsum0(lx1)) all.equal((ls1 <- lsum(lx1)), 700.000045400960403, tol=8e-16) all.equal((ls2 <- lsum(lx2)), 750.458675145387133, tol=8e-16) all.equal((ls3 <- lsum(lx3)), -749.541324854612867, tol=8e-16) ## identical: matrix-version <==> vector versions identical(lsum(lx4), ls3) identical(lsum(lx4), lsum(head(lx4, -3))) # the last three were -Inf identical(lsum(lx5), Inf) identical(lsum(lx6), lx6[1]) identical((lm3 <- apply(m3, 2, lsum)), c(lx1=ls1, lx2=ls2, lx3=ls3)) identical(apply(m6, 2, lsum), c(lm3, lx4=ls3, lx5=Inf, lx6=lx6[1])) })
## The "naive" version : lsum0 <- function(lx) log(sum(exp(lx))) lx1 <- 10*(-80:70) # is easy lx2 <- 600:750 # lsum0() not ok [could work with rescaling] lx3 <- -(750:900) # lsum0() = -Inf - not good enough m3 <- cbind(lx1,lx2,lx3) lx6 <- lx5 <- lx4 <- lx3 lx4[149:151] <- -Inf ## = log(0) lx5[150] <- Inf lx6[1] <- NA_real_ m6 <- cbind(m3,lx4,lx5,lx6) stopifnot(exprs = { all.equal(lsum(lx1), lsum0(lx1)) all.equal((ls1 <- lsum(lx1)), 700.000045400960403, tol=8e-16) all.equal((ls2 <- lsum(lx2)), 750.458675145387133, tol=8e-16) all.equal((ls3 <- lsum(lx3)), -749.541324854612867, tol=8e-16) ## identical: matrix-version <==> vector versions identical(lsum(lx4), ls3) identical(lsum(lx4), lsum(head(lx4, -3))) # the last three were -Inf identical(lsum(lx5), Inf) identical(lsum(lx6), lx6[1]) identical((lm3 <- apply(m3, 2, lsum)), c(lx1=ls1, lx2=ls2, lx3=ls3)) identical(apply(m6, 2, lsum), c(lm3, lx4=ls3, lx5=Inf, lx6=lx6[1])) })
Given the function G()
and its derivative g()
,
newton()
uses the Newton method, starting at x0
,
to find a point xp at which G is zero. G()
and g()
may each depend on the same parameter (vector) z
.
Convergence typically happens when the stepsize becomes smaller than
eps
.
keepAll = TRUE
to also get the vectors of consecutive values of
x and G(x, z);
newton(x0, G, g, z, xMin = -Inf, xMax = Inf, warnRng = TRUE, dxMax = 1000, eps = 0.0001, maxiter = 1000L, warnIter = missing(maxiter) || maxiter >= 10L, keepAll = NA)
newton(x0, G, g, z, xMin = -Inf, xMax = Inf, warnRng = TRUE, dxMax = 1000, eps = 0.0001, maxiter = 1000L, warnIter = missing(maxiter) || maxiter >= 10L, keepAll = NA)
x0 |
numeric start value. |
G , g
|
must be |
z |
parameter vector for |
xMin , xMax
|
numbers defining the allowed range for x during the
iterations; e.g., useful to set to |
warnRng |
|
dxMax |
maximal step size in |
eps |
positive number, the absolute convergence tolerance. |
maxiter |
positive integer, specifying the maximal number of Newton iterations. |
warnIter |
logical specifying if a |
keepAll |
logical specifying if the full sequence of x- and G(x,*) values should be kept and returned:
|
Because of the quadrativc convergence at the end of the Newton algorithm,
often satisfies approximately
.
newton()
can be used to compute the quantile function of a
distribution, if you have a good starting value, and provide
the cumulative probability and density functions as R functions G
and g
respectively.
The result always contains the final x-value , and typically some
information about convergence, depending on the value of
keepAll
,
see above:
x |
the optimal |
G |
the function value |
it |
the integer number of iterations used. |
convergence |
logical indicating if the Newton algorithm converged
within |
x.vec |
the full vector of x values, |
G.vec |
the vector of function values (typically tending to zero),
i.e., |
Martin Maechler, ca. 2004
Newton's Method on Wikipedia, https://en.wikipedia.org/wiki/Newton%27s_method.
uniroot()
is much more sophisticated, works without
derivatives and is generally faster than newton()
.
newton(.)
is currently crucially used (only) in our function
qchisqN()
.
## The most simple non-trivial case : Computing SQRT(a) G <- function(x, a) x^2 - a g <- function(x, a) 2*x newton(1, G, g, z = 4 ) # z = a -- converges immediately newton(1, G, g, z = 400) # bad start, needs longer to converge ## More interesting, and related to non-central (chisq, e.t.) computations: ## When is x * log(x) < B, i.e., the inverse function of G = x*log(x) : xlx <- function(x, B) x*log(x) - B dxlx <- function(x, B) log(x) + 1 Nxlx <- function(B) newton(B, G=xlx, g=dxlx, z=B, maxiter=Inf)$x N1 <- function(B) newton(B, G=xlx, g=dxlx, z=B, maxiter = 1)$x N2 <- function(B) newton(B, G=xlx, g=dxlx, z=B, maxiter = 2)$x Bs <- c(outer(c(1,2,5), 10^(0:4))) plot (Bs, vapply(Bs, Nxlx, pi), type = "l", log ="xy") lines(Bs, vapply(Bs, N1 , pi), col = 2, lwd = 2, lty = 2) lines(Bs, vapply(Bs, N2 , pi), col = 3, lwd = 3, lty = 3) BL <- c(outer(c(1,2,5), 10^(0:6))) plot (BL, vapply(BL, Nxlx, pi), type = "l", log ="xy") lines(BL, BL, col="green2", lty=3) lines(BL, vapply(BL, N1 , pi), col = 2, lwd = 2, lty = 2) lines(BL, vapply(BL, N2 , pi), col = 3, lwd = 3, lty = 3) ## Better starting value from an approximate 1 step Newton: iL1 <- function(B) 2*B / (log(B) + 1) lines(BL, iL1(BL), lty=4, col="gray20") ## really better ==> use it as start Nxlx <- function(B) newton(iL1(B), G=xlx, g=dxlx, z=B, maxiter=Inf)$x N1 <- function(B) newton(iL1(B), G=xlx, g=dxlx, z=B, maxiter = 1)$x N2 <- function(B) newton(iL1(B), G=xlx, g=dxlx, z=B, maxiter = 2)$x plot (BL, vapply(BL, Nxlx, pi), type = "o", log ="xy") lines(BL, iL1(BL), lty=4, col="gray20") lines(BL, vapply(BL, N1 , pi), type = "o", col = 2, lwd = 2, lty = 2) lines(BL, vapply(BL, N2 , pi), type = "o", col = 3, lwd = 2, lty = 3) ## Manual 2-step Newton iL2 <- function(B) { lB <- log(B) ; B*(lB+1) / (lB * (lB - log(lB) + 1)) } lines(BL, iL2(BL), col = adjustcolor("sky blue", 0.6), lwd=6) ##==> iL2() is very close to true curve ## relative error: iLtrue <- vapply(BL, Nxlx, pi) cbind(BL, iLtrue, iL2=iL2(BL), relErL2 = 1-iL2(BL)/iLtrue) ## absolute error (in log-log scale; always positive!): plot(BL, iL2(BL) - iLtrue, type = "o", log="xy", axes=FALSE) if(requireNamespace("sfsmisc")) { sfsmisc::eaxis(1) sfsmisc::eaxis(2, sub10=2) } else { cat("no 'sfsmisc' package; maybe install.packages(\"sfsmisc\") ?\n") axis(1); axis(2) } ## 1 step from iL2() seems quite good: B. <- BL[-1] # starts at 2 NL2 <- lapply(B., function(B) newton(iL2(B), G=xlx, g=dxlx, z=B, maxiter=1)) str(NL2) iL3 <- sapply(NL2, `[[`, "x") cbind(B., iLtrue[-1], iL2=iL2(B.), iL3, relE.3 = 1- iL3/iLtrue[-1]) x. <- iL2(B.) all.equal(iL3, x. - xlx(x., B.) / dxlx(x.)) ## 7.471802e-8 ## Algebraic simplification of one newton step : all.equal((x.+B.)/(log(x.)+1), x. - xlx(x., B.) / dxlx(x.), tol = 4e-16) iN1 <- function(x, B) (x+B) / (log(x) + 1) B <- 12345 iN1(iN1(iN1(B, B),B),B) Nxlx(B)
## The most simple non-trivial case : Computing SQRT(a) G <- function(x, a) x^2 - a g <- function(x, a) 2*x newton(1, G, g, z = 4 ) # z = a -- converges immediately newton(1, G, g, z = 400) # bad start, needs longer to converge ## More interesting, and related to non-central (chisq, e.t.) computations: ## When is x * log(x) < B, i.e., the inverse function of G = x*log(x) : xlx <- function(x, B) x*log(x) - B dxlx <- function(x, B) log(x) + 1 Nxlx <- function(B) newton(B, G=xlx, g=dxlx, z=B, maxiter=Inf)$x N1 <- function(B) newton(B, G=xlx, g=dxlx, z=B, maxiter = 1)$x N2 <- function(B) newton(B, G=xlx, g=dxlx, z=B, maxiter = 2)$x Bs <- c(outer(c(1,2,5), 10^(0:4))) plot (Bs, vapply(Bs, Nxlx, pi), type = "l", log ="xy") lines(Bs, vapply(Bs, N1 , pi), col = 2, lwd = 2, lty = 2) lines(Bs, vapply(Bs, N2 , pi), col = 3, lwd = 3, lty = 3) BL <- c(outer(c(1,2,5), 10^(0:6))) plot (BL, vapply(BL, Nxlx, pi), type = "l", log ="xy") lines(BL, BL, col="green2", lty=3) lines(BL, vapply(BL, N1 , pi), col = 2, lwd = 2, lty = 2) lines(BL, vapply(BL, N2 , pi), col = 3, lwd = 3, lty = 3) ## Better starting value from an approximate 1 step Newton: iL1 <- function(B) 2*B / (log(B) + 1) lines(BL, iL1(BL), lty=4, col="gray20") ## really better ==> use it as start Nxlx <- function(B) newton(iL1(B), G=xlx, g=dxlx, z=B, maxiter=Inf)$x N1 <- function(B) newton(iL1(B), G=xlx, g=dxlx, z=B, maxiter = 1)$x N2 <- function(B) newton(iL1(B), G=xlx, g=dxlx, z=B, maxiter = 2)$x plot (BL, vapply(BL, Nxlx, pi), type = "o", log ="xy") lines(BL, iL1(BL), lty=4, col="gray20") lines(BL, vapply(BL, N1 , pi), type = "o", col = 2, lwd = 2, lty = 2) lines(BL, vapply(BL, N2 , pi), type = "o", col = 3, lwd = 2, lty = 3) ## Manual 2-step Newton iL2 <- function(B) { lB <- log(B) ; B*(lB+1) / (lB * (lB - log(lB) + 1)) } lines(BL, iL2(BL), col = adjustcolor("sky blue", 0.6), lwd=6) ##==> iL2() is very close to true curve ## relative error: iLtrue <- vapply(BL, Nxlx, pi) cbind(BL, iLtrue, iL2=iL2(BL), relErL2 = 1-iL2(BL)/iLtrue) ## absolute error (in log-log scale; always positive!): plot(BL, iL2(BL) - iLtrue, type = "o", log="xy", axes=FALSE) if(requireNamespace("sfsmisc")) { sfsmisc::eaxis(1) sfsmisc::eaxis(2, sub10=2) } else { cat("no 'sfsmisc' package; maybe install.packages(\"sfsmisc\") ?\n") axis(1); axis(2) } ## 1 step from iL2() seems quite good: B. <- BL[-1] # starts at 2 NL2 <- lapply(B., function(B) newton(iL2(B), G=xlx, g=dxlx, z=B, maxiter=1)) str(NL2) iL3 <- sapply(NL2, `[[`, "x") cbind(B., iLtrue[-1], iL2=iL2(B.), iL3, relE.3 = 1- iL3/iLtrue[-1]) x. <- iL2(B.) all.equal(iL3, x. - xlx(x., B.) / dxlx(x.)) ## 7.471802e-8 ## Algebraic simplification of one newton step : all.equal((x.+B.)/(log(x.)+1), x. - xlx(x., B.) / dxlx(x.), tol = 4e-16) iN1 <- function(x, B) (x+B) / (log(x) + 1) B <- 12345 iN1(iN1(iN1(B, B),B),B) Nxlx(B)
The DPQ package provides some numeric constants used in some of its distribution computations.
all_mpfr()
and any_mpfr()
return TRUE
iff all (or ‘any’, respectively) of their arguments inherit from
class
"mpfr"
(from package Rmpfr).
logr(x,a)
computes log(x / (x + a))
in a numerically
stable way.
modf(x)
splits each x
into integer part (as
trunc(x)
) and fractional (remainder) part in
and corresponds to the R version of the C99 (and POSIX) standard C (and C++) mathlib
functions of the same name.
## Numeric Constants : % mostly in ../R/beta-fns.R M_LN2 # = log(2) = 0.693.... M_SQRT2 # = sqrt(2) = 1.4142... M_cutoff # := If |x| > |k| * M_cutoff, then log[ exp(-x) * k^x ] =~= -x # = 3196577161300663808 ~= 3.2e+18 M_minExp # = log(2) * .Machine$double.min.exp # ~= -708.396.. G_half # = sqrt(pi) = Gamma( 1/2 ) ## Functions : all_mpfr(...) any_mpfr(...) logr(x, a) # == log(x / (x + a)) -- but numerically smart; x >= 0, a > -x modf(x) okLongDouble(lambda = 999, verbose = 0L, tol = 1e-15)
## Numeric Constants : % mostly in ../R/beta-fns.R M_LN2 # = log(2) = 0.693.... M_SQRT2 # = sqrt(2) = 1.4142... M_cutoff # := If |x| > |k| * M_cutoff, then log[ exp(-x) * k^x ] =~= -x # = 3196577161300663808 ~= 3.2e+18 M_minExp # = log(2) * .Machine$double.min.exp # ~= -708.396.. G_half # = sqrt(pi) = Gamma( 1/2 ) ## Functions : all_mpfr(...) any_mpfr(...) logr(x, a) # == log(x / (x + a)) -- but numerically smart; x >= 0, a > -x modf(x) okLongDouble(lambda = 999, verbose = 0L, tol = 1e-15)
... |
numeric or |
x , a
|
number-like, not negative, now may be vectors of
|
lambda |
a number, typically in the order of 500–10'000. |
verbose |
a non-negative integer, if not zero,
|
tol |
numerical tolerance used to determine the accuracy required
for near equality in |
all_mpfr()
,all_mpfr()
:test if all
or
any
of their arguments or of class "mpfr"
(from
package Rmpfr). The arguments are evaluated only until
the result is determined, see the example.
logr()
computes in a numerically
stable way.
The numeric constant in the first case; a numeric (or "mpfr") vector of appropriate size in the 2nd case.
okLongDouble()
returns a logical
,
TRUE
iff the long double arithmetic with expl()
and
logl()
seems to work accurately
and consistently for exp(-lambda)
and log(lambda)
.
Martin Maechler
(Ms <- ls("package:DPQ", pattern = "^M")) lapply(Ms, function(nm) { cat(nm,": "); print(get(nm)) }) -> .tmp logr(1:3, a=1e-10) okLongDouble(verbose=TRUE) # verbose: show (C-level) computations ## typically TRUE, but not e.g. in a valgrinded R-devel of Oct.2019 ## Here is typically the "boundary": rr <- try(uniroot(function(x) okLongDouble(x) - 1/2, c(11350, 11400), tol=1e-7, extendInt = "yes")) str(rr, digits=9) ## seems somewhat platform dependent: now see ## $ root : num 11376.563 ## $ estim.prec: num 9.313e-08 ## $ iter : int 29 set.seed(2021); x <- runif(100, -7,7) mx <- modf(x) with(mx, head( cbind(x, i=mx$i, fr=mx$fr) )) # showing the first cases with(mx, stopifnot( x == fr + i, i == trunc(x), sign(fr) == sign(x)))
(Ms <- ls("package:DPQ", pattern = "^M")) lapply(Ms, function(nm) { cat(nm,": "); print(get(nm)) }) -> .tmp logr(1:3, a=1e-10) okLongDouble(verbose=TRUE) # verbose: show (C-level) computations ## typically TRUE, but not e.g. in a valgrinded R-devel of Oct.2019 ## Here is typically the "boundary": rr <- try(uniroot(function(x) okLongDouble(x) - 1/2, c(11350, 11400), tol=1e-7, extendInt = "yes")) str(rr, digits=9) ## seems somewhat platform dependent: now see ## $ root : num 11376.563 ## $ estim.prec: num 9.313e-08 ## $ iter : int 29 set.seed(2021); x <- runif(100, -7,7) mx <- modf(x) with(mx, head( cbind(x, i=mx$i, fr=mx$fr) )) # showing the first cases with(mx, stopifnot( x == fr + i, i == trunc(x), sign(fr) == sign(x)))
The binomial deviance function bd0(x,M)
can mathematically
be re-written as where we look into providing
numerically stable formula for
as its mathematical formula
suffers from cancellation for small
, even when
log1p(t)
is used instead of log(1+t)
.
Using a hybrid implementation, p1l1()
uses a direct formula, now
the stable one in p1l1p()
, for
and a series approximation for
for
some
.
NB: The re-expression log1pmx()
is almost perfect; it
fixes the cancellation problem entirely (and exposes the fact that
log1pmx()
's internal cutoff seems sub optimal.
p1l1p (t, ...) p1l1. (t) p1l1 (t, F = t^2/2) p1l1ser(t, k, F = t^2/2) .p1l1ser(t, k, F = t^2/2)
p1l1p (t, ...) p1l1. (t) p1l1 (t, F = t^2/2) p1l1ser(t, k, F = t^2/2) .p1l1ser(t, k, F = t^2/2)
t |
numeric a-like vector ("mpfr" included), larger (or equal) to -1. |
... |
optional (tuning) arguments, passed to |
k |
small positive integer, the number of terms to use in the Taylor
series approximation |
F |
numeric vector of multiplication factor; must be
|
for now see in bd0()
.
numeric vector “as” t
.
Martin Maechler
bd0
; our package vignette log1pmx, bd0, stirlerr - Probability Computations in R.
dbinom
the latter for the C.Loader(2000) reference.
(doExtras <- DPQ:::doExtras()) # TRUE e.g. if interactive() t <- seq(-1, 4, by=1/64) plot(t, p1l1ser(t, 1), type="l") lines(t, p1l1.(t), lwd=5, col=adjustcolor(1, 1/2)) # direct formula for(k in 2:6) lines(t, p1l1ser(t, k), col=k) ## zoom in t <- 2^seq(-59,-1, by=1/4) t <- c(-rev(t), 0, t) stopifnot(!is.unsorted(t)) k.s <- 1:12; names(k.s) <- paste0("k=", 1:12) ## True function values: use Rmpfr with 256 bits precision: --- ### eventually move this to ../tests/ & ../vignettes/log1pmx-etc.Rnw #### FIXME: eventually replace with if(requireNamespace("Rmpfr")){ ......} #### ===== if((needRmpfr <- is.na(match("Rmpfr", (srch0 <- search()))))) require("Rmpfr") p1l1.T <- p1l1.(mpfr(t, 256)) # "true" values p1l1.n <- asNumeric(p1l1.T) all.equal(sapply(k.s, function(k) p1l1ser(t,k)) -> m.p1l1, sapply(k.s, function(k) .p1l1ser(t,k)) -> m.p1l., tolerance = 0) p1tab <- cbind(b1 = bd0(t+1, 1), b.10 = bd0(10*t+10,10)/10, dirct = p1l1.(t), p1l1p = p1l1p(t), p1l1 = p1l1 (t), sapply(k.s, function(k) p1l1ser(t,k))) matplot(t, p1tab, type="l", ylab = "p1l1*(t)") ## (absolute) error: ##' legend for matplot() mpLeg <- function(leg = colnames(p1tab), xy = "top", col=1:6, lty=1:5, lwd=1, pch = c(1L:9L, 0L, letters, LETTERS)[seq_along(leg)], ...) legend(xy, legend=leg, col=col, lty=lty, lwd=lwd, pch=pch, ncol=3, ...) titAbs <- "Absolute errors of p1l1(t) approximations" matplot(t, asNumeric(p1tab - p1l1.T), type="o", main=titAbs); mpLeg() i <- abs(t) <= 1/10 ## zoom in a bit matplot(t[i], abs(asNumeric((p1tab - p1l1.T)[i,])), type="o", log="y", main=titAbs, ylim = c(1e-18, 0.003)); mpLeg() ## Relative Error titR <- "|Relative error| of p1l1(t) approximations" matplot(t[i], abs(asNumeric((p1tab/p1l1.T - 1)[i,])), type="o", log="y", ylim = c(1e-18, 2^-10), main=titR) mpLeg(xy="topright", bg= adjustcolor("gray80", 4/5)) i <- abs(t) <= 2^-10 # zoom in more matplot(t[i], abs(asNumeric((p1tab/p1l1.T - 1)[i,])), type="o", log="y", ylim = c(1e-18, 1e-9)) mpLeg(xy="topright", bg= adjustcolor("gray80", 4/5)) ## Correct number of digits corDig <- asNumeric(-log10(abs(p1tab/p1l1.T - 1))) cbind(t, round(corDig, 1))# correct number of digits matplot(t, corDig, type="o", ylim = c(1,17)) (cN <- colnames(corDig)) legend(-.5, 14, cN, col=1:6, lty=1:5, pch = c(1L:9L, 0L, letters), ncol=2) ## plot() function >>>> using global (t, corDig) <<<<<<<<< p.relEr <- function(i, ylim = c(11,17), type = "o", leg.pos = "left", inset=1/128, main = sprintf( "Correct #{Digits} in p1l1() approx., notably Taylor(k=1 .. %d)", max(k.s))) { if((neg <- all(t[i] < 0))) t <- -t stopifnot(all(t[i] > 0), length(ylim) == 2) # as we use log="x" matplot(t[i], corDig[i,], type=type, ylim=ylim, log="x", xlab = quote(t), xaxt="n", main=main) legend(leg.pos, cN, col=1:6, lty=1:5, pch = c(1L:9L, 0L, letters), ncol=2, bg=adjustcolor("gray90", 7/8), inset=inset) t.epsC <- -log10(c(1,2,4)* .Machine$double.eps) axis(2, at=t.epsC, labels = expression(epsilon[C], 2*epsilon[C], 4*epsilon[C]), las=2, col=2, line=1) tenRs <- function(t) floor(log10(min(t))) : ceiling(log10(max(t))) tenE <- tenRs(t[i]) tE <- 10^tenE abline (h = t.epsC, v = tE, lty=3, col=adjustcolor("gray",.8), lwd=2) AX <- if(requireNamespace("sfsmisc")) sfsmisc::eaxis else axis AX(1, at= tE, labels = as.expression( lapply(tenE, if(neg) function(e) substitute(-10^{E}, list(E = e+0)) else function(e) substitute( 10^{E}, list(E = e+0))))) } p.relEr(t > 0, ylim = c(1,17)) p.relEr(t > 0) # full positive range p.relEr(t < 0) # full negative range if(FALSE) {## (actually less informative): p.relEr(i = 0 < t & t < .01) ## positive small t p.relEr(i = -.1 < t & t < 0) ## negative small t } ## Find approximate formulas for accuracy of k=k* approximation d.corrD <- cbind(t=t, as.data.frame(corDig)) names(d.corrD) <- sub("k=", "nC_", names(d.corrD)) fmod <- function(k, data, cut.y.at = -log10(2 * .Machine$double.eps), good.y = -log10(.Machine$double.eps), # ~ 15.654 verbose=FALSE) { varNm <- paste0("nC_",k) stopifnot(is.numeric(y <- get(varNm, data, inherits=FALSE)), is.numeric(t <- data$t))# '$' works for data.frame, list, environment i <- 3 <= y & y <= cut.y.at i.pos <- i & t > 0 i.neg <- i & t < 0 if(verbose) cat(sprintf("k=%d >> y <= %g ==> #{pos. t} = %d ; #{neg. t} = %d\n", k, cut.y.at, sum(i.pos), sum(i.neg))) nCoefLm <- function(x,y) `names<-`(.lm.fit(x=x, y=y)$coeff, c("int", "slp")) nC.t <- function(x,y) { cf <- nCoefLm(x,y); c(cf, t.0 = exp((good.y - cf[[1]])/cf[[2]])) } cbind(pos = nC.t(cbind(1, log( t[i.pos])), y[i.pos]), neg = nC.t(cbind(1, log(-t[i.neg])), y[i.neg])) } rr <- sapply(k.s, fmod, data=d.corrD, verbose=TRUE, simplify="array") stopifnot(rr["slp",,] < 0) # all slopes are negative (important!) matplot(k.s, t(rr["slp",,]), type="o", xlab = quote(k), ylab = quote(slope[k])) ## fantastcally close to linear in k ## The numbers, nicely arranged ftable(aperm(rr, c(3,2,1))) signif(t(rr["t.0",,]),3) # ==> Should be boundaries for the hybrid p1l1() ## pos neg ## k=1 6.60e-16 6.69e-16 ## k=2 3.65e-08 3.65e-08 ## k=3 1.30e-05 1.32e-05 ## k=4 2.39e-04 2.42e-04 ## k=5 1.35e-03 1.38e-03 ## k=6 4.27e-03 4.34e-03 ## k=7 9.60e-03 9.78e-03 ## k=8 1.78e-02 1.80e-02 ## k=9 2.85e-02 2.85e-02 ## k=10 4.13e-02 4.14e-02 ## k=11 5.62e-02 5.64e-02 ## k=12 7.24e-02 7.18e-02 ###------------- Well, p1l1p() is really basically good enough ... with a small exception: rErr1k <- curve(asNumeric(p1l1p(x) / p1l1.(mpfr(x, 4096)) - 1), -.999, .999, n = if(doExtras) 4000 else 800, col=2, lwd=2) abline(h = c(-8,-4,-2:2,4,8)* 2^-52, lty=2, col=adjustcolor("gray20", 1/4)) ## well, have a "spike" at around -0.8 -- why? plot(abs(y) ~ x, data = rErr1k, ylim = c(4e-17, max(abs(y))), ylab = expression(abs(hat(p)/p - 1)), main = "p1l1p(x) -- Relative Error wrt mpfr(*. 4096) [log]", col=2, lwd=1.5, type = "b", cex=1/2, log="y", yaxt="n") sfsmisc::eaxis(2) eps124 <- c(1, 2,4,8)* 2^-52 abline(h = eps124, lwd=c(3,1,1,1), lty=c(1,2,2,2), col=adjustcolor("gray20", 1/4)) axLab <- expression(epsilon[c], 2*epsilon[c], 4*epsilon[c], 8*epsilon[c]) axis(4, at = eps124, labels = axLab, col="gray20", las=1) abline(v= -.791, lty=3, lwd=2, col="blue4") # -.789 from visual .. ##--> The "error" is in log1pmx() which has cutoff minLog1Value = -0.79149064 ##--> which is clearly not optimal, at least not for computing p1l1p() d <- if(doExtras) 1/2048 else 1/512; x <- seq(-1+d, 1, by=d) p1l1Xct <- p1l1.(mpfr(x, if(doExtras) 4096 else 512)) rEx.5 <- asNumeric(p1l1p(x, minL1 = -0.5) / p1l1Xct - 1) lines(x, abs(rEx.5), lwd=2.5, col=adjustcolor(4, 1/2)); abline(v=-.5, lty=2,col=4) rEx.25 <- asNumeric(p1l1p(x, minL1 = -0.25) / p1l1Xct - 1) lines(x, abs(rEx.25), lwd=3.5, col=adjustcolor(6, 1/2)); abline(v=-.25, lty=2,col=6) lines(lowess(x, abs(rEx.5), f=1/20), col=adjustcolor(4,offset=rep(1,4)/3), lwd=3) lines(lowess(x, abs(rEx.25), f=1/20), col=adjustcolor(6,offset=rep(1,4)/3), lwd=3) rEx.4 <- asNumeric(p1l1p(x, tol_logcf=1e-15, minL1 = -0.4) / p1l1Xct - 1) lines(x, abs(rEx.4), lwd=5.5, col=adjustcolor("brown", 1/2)); abline(v=-.25, lty=2,col="brown") if(needRmpfr && isNamespaceLoaded("Rmpfr")) detach("package:Rmpfr")
(doExtras <- DPQ:::doExtras()) # TRUE e.g. if interactive() t <- seq(-1, 4, by=1/64) plot(t, p1l1ser(t, 1), type="l") lines(t, p1l1.(t), lwd=5, col=adjustcolor(1, 1/2)) # direct formula for(k in 2:6) lines(t, p1l1ser(t, k), col=k) ## zoom in t <- 2^seq(-59,-1, by=1/4) t <- c(-rev(t), 0, t) stopifnot(!is.unsorted(t)) k.s <- 1:12; names(k.s) <- paste0("k=", 1:12) ## True function values: use Rmpfr with 256 bits precision: --- ### eventually move this to ../tests/ & ../vignettes/log1pmx-etc.Rnw #### FIXME: eventually replace with if(requireNamespace("Rmpfr")){ ......} #### ===== if((needRmpfr <- is.na(match("Rmpfr", (srch0 <- search()))))) require("Rmpfr") p1l1.T <- p1l1.(mpfr(t, 256)) # "true" values p1l1.n <- asNumeric(p1l1.T) all.equal(sapply(k.s, function(k) p1l1ser(t,k)) -> m.p1l1, sapply(k.s, function(k) .p1l1ser(t,k)) -> m.p1l., tolerance = 0) p1tab <- cbind(b1 = bd0(t+1, 1), b.10 = bd0(10*t+10,10)/10, dirct = p1l1.(t), p1l1p = p1l1p(t), p1l1 = p1l1 (t), sapply(k.s, function(k) p1l1ser(t,k))) matplot(t, p1tab, type="l", ylab = "p1l1*(t)") ## (absolute) error: ##' legend for matplot() mpLeg <- function(leg = colnames(p1tab), xy = "top", col=1:6, lty=1:5, lwd=1, pch = c(1L:9L, 0L, letters, LETTERS)[seq_along(leg)], ...) legend(xy, legend=leg, col=col, lty=lty, lwd=lwd, pch=pch, ncol=3, ...) titAbs <- "Absolute errors of p1l1(t) approximations" matplot(t, asNumeric(p1tab - p1l1.T), type="o", main=titAbs); mpLeg() i <- abs(t) <= 1/10 ## zoom in a bit matplot(t[i], abs(asNumeric((p1tab - p1l1.T)[i,])), type="o", log="y", main=titAbs, ylim = c(1e-18, 0.003)); mpLeg() ## Relative Error titR <- "|Relative error| of p1l1(t) approximations" matplot(t[i], abs(asNumeric((p1tab/p1l1.T - 1)[i,])), type="o", log="y", ylim = c(1e-18, 2^-10), main=titR) mpLeg(xy="topright", bg= adjustcolor("gray80", 4/5)) i <- abs(t) <= 2^-10 # zoom in more matplot(t[i], abs(asNumeric((p1tab/p1l1.T - 1)[i,])), type="o", log="y", ylim = c(1e-18, 1e-9)) mpLeg(xy="topright", bg= adjustcolor("gray80", 4/5)) ## Correct number of digits corDig <- asNumeric(-log10(abs(p1tab/p1l1.T - 1))) cbind(t, round(corDig, 1))# correct number of digits matplot(t, corDig, type="o", ylim = c(1,17)) (cN <- colnames(corDig)) legend(-.5, 14, cN, col=1:6, lty=1:5, pch = c(1L:9L, 0L, letters), ncol=2) ## plot() function >>>> using global (t, corDig) <<<<<<<<< p.relEr <- function(i, ylim = c(11,17), type = "o", leg.pos = "left", inset=1/128, main = sprintf( "Correct #{Digits} in p1l1() approx., notably Taylor(k=1 .. %d)", max(k.s))) { if((neg <- all(t[i] < 0))) t <- -t stopifnot(all(t[i] > 0), length(ylim) == 2) # as we use log="x" matplot(t[i], corDig[i,], type=type, ylim=ylim, log="x", xlab = quote(t), xaxt="n", main=main) legend(leg.pos, cN, col=1:6, lty=1:5, pch = c(1L:9L, 0L, letters), ncol=2, bg=adjustcolor("gray90", 7/8), inset=inset) t.epsC <- -log10(c(1,2,4)* .Machine$double.eps) axis(2, at=t.epsC, labels = expression(epsilon[C], 2*epsilon[C], 4*epsilon[C]), las=2, col=2, line=1) tenRs <- function(t) floor(log10(min(t))) : ceiling(log10(max(t))) tenE <- tenRs(t[i]) tE <- 10^tenE abline (h = t.epsC, v = tE, lty=3, col=adjustcolor("gray",.8), lwd=2) AX <- if(requireNamespace("sfsmisc")) sfsmisc::eaxis else axis AX(1, at= tE, labels = as.expression( lapply(tenE, if(neg) function(e) substitute(-10^{E}, list(E = e+0)) else function(e) substitute( 10^{E}, list(E = e+0))))) } p.relEr(t > 0, ylim = c(1,17)) p.relEr(t > 0) # full positive range p.relEr(t < 0) # full negative range if(FALSE) {## (actually less informative): p.relEr(i = 0 < t & t < .01) ## positive small t p.relEr(i = -.1 < t & t < 0) ## negative small t } ## Find approximate formulas for accuracy of k=k* approximation d.corrD <- cbind(t=t, as.data.frame(corDig)) names(d.corrD) <- sub("k=", "nC_", names(d.corrD)) fmod <- function(k, data, cut.y.at = -log10(2 * .Machine$double.eps), good.y = -log10(.Machine$double.eps), # ~ 15.654 verbose=FALSE) { varNm <- paste0("nC_",k) stopifnot(is.numeric(y <- get(varNm, data, inherits=FALSE)), is.numeric(t <- data$t))# '$' works for data.frame, list, environment i <- 3 <= y & y <= cut.y.at i.pos <- i & t > 0 i.neg <- i & t < 0 if(verbose) cat(sprintf("k=%d >> y <= %g ==> #{pos. t} = %d ; #{neg. t} = %d\n", k, cut.y.at, sum(i.pos), sum(i.neg))) nCoefLm <- function(x,y) `names<-`(.lm.fit(x=x, y=y)$coeff, c("int", "slp")) nC.t <- function(x,y) { cf <- nCoefLm(x,y); c(cf, t.0 = exp((good.y - cf[[1]])/cf[[2]])) } cbind(pos = nC.t(cbind(1, log( t[i.pos])), y[i.pos]), neg = nC.t(cbind(1, log(-t[i.neg])), y[i.neg])) } rr <- sapply(k.s, fmod, data=d.corrD, verbose=TRUE, simplify="array") stopifnot(rr["slp",,] < 0) # all slopes are negative (important!) matplot(k.s, t(rr["slp",,]), type="o", xlab = quote(k), ylab = quote(slope[k])) ## fantastcally close to linear in k ## The numbers, nicely arranged ftable(aperm(rr, c(3,2,1))) signif(t(rr["t.0",,]),3) # ==> Should be boundaries for the hybrid p1l1() ## pos neg ## k=1 6.60e-16 6.69e-16 ## k=2 3.65e-08 3.65e-08 ## k=3 1.30e-05 1.32e-05 ## k=4 2.39e-04 2.42e-04 ## k=5 1.35e-03 1.38e-03 ## k=6 4.27e-03 4.34e-03 ## k=7 9.60e-03 9.78e-03 ## k=8 1.78e-02 1.80e-02 ## k=9 2.85e-02 2.85e-02 ## k=10 4.13e-02 4.14e-02 ## k=11 5.62e-02 5.64e-02 ## k=12 7.24e-02 7.18e-02 ###------------- Well, p1l1p() is really basically good enough ... with a small exception: rErr1k <- curve(asNumeric(p1l1p(x) / p1l1.(mpfr(x, 4096)) - 1), -.999, .999, n = if(doExtras) 4000 else 800, col=2, lwd=2) abline(h = c(-8,-4,-2:2,4,8)* 2^-52, lty=2, col=adjustcolor("gray20", 1/4)) ## well, have a "spike" at around -0.8 -- why? plot(abs(y) ~ x, data = rErr1k, ylim = c(4e-17, max(abs(y))), ylab = expression(abs(hat(p)/p - 1)), main = "p1l1p(x) -- Relative Error wrt mpfr(*. 4096) [log]", col=2, lwd=1.5, type = "b", cex=1/2, log="y", yaxt="n") sfsmisc::eaxis(2) eps124 <- c(1, 2,4,8)* 2^-52 abline(h = eps124, lwd=c(3,1,1,1), lty=c(1,2,2,2), col=adjustcolor("gray20", 1/4)) axLab <- expression(epsilon[c], 2*epsilon[c], 4*epsilon[c], 8*epsilon[c]) axis(4, at = eps124, labels = axLab, col="gray20", las=1) abline(v= -.791, lty=3, lwd=2, col="blue4") # -.789 from visual .. ##--> The "error" is in log1pmx() which has cutoff minLog1Value = -0.79149064 ##--> which is clearly not optimal, at least not for computing p1l1p() d <- if(doExtras) 1/2048 else 1/512; x <- seq(-1+d, 1, by=d) p1l1Xct <- p1l1.(mpfr(x, if(doExtras) 4096 else 512)) rEx.5 <- asNumeric(p1l1p(x, minL1 = -0.5) / p1l1Xct - 1) lines(x, abs(rEx.5), lwd=2.5, col=adjustcolor(4, 1/2)); abline(v=-.5, lty=2,col=4) rEx.25 <- asNumeric(p1l1p(x, minL1 = -0.25) / p1l1Xct - 1) lines(x, abs(rEx.25), lwd=3.5, col=adjustcolor(6, 1/2)); abline(v=-.25, lty=2,col=6) lines(lowess(x, abs(rEx.5), f=1/20), col=adjustcolor(4,offset=rep(1,4)/3), lwd=3) lines(lowess(x, abs(rEx.25), f=1/20), col=adjustcolor(6,offset=rep(1,4)/3), lwd=3) rEx.4 <- asNumeric(p1l1p(x, tol_logcf=1e-15, minL1 = -0.4) / p1l1Xct - 1) lines(x, abs(rEx.4), lwd=5.5, col=adjustcolor("brown", 1/2)); abline(v=-.25, lty=2,col="brown") if(needRmpfr && isNamespaceLoaded("Rmpfr")) detach("package:Rmpfr")
pbetaRv1()
is an implementation of the original
(“version 1” pbeta()
function in R (versions <=
2.2.x), before we started using TOMS 708 bratio()
instead, see
the current pbeta
help page also for references.
pbetaRv1()
is basically a manual translation from C to R of the
underlying pbeta_raw()
C function, see in R's source tree at
https://svn.r-project.org/R/branches/R-2-2-patches/src/nmath/pbeta.c
For consistency within R, we are using R's argument names
(q, shape1, shape2)
instead of C code's
(x, pin, qin )
.
It is only for the central beta distribution.
pbetaRv1(q, shape1, shape2, lower.tail = TRUE, eps = 0.5 * .Machine$double.eps, sml = .Machine$double.xmin, verbose = 0)
pbetaRv1(q, shape1, shape2, lower.tail = TRUE, eps = 0.5 * .Machine$double.eps, sml = .Machine$double.xmin, verbose = 0)
q , shape1 , shape2
|
non-negative numbers, q in |
lower.tail |
indicating if |
eps |
the tolerance used to determine congerence. |
sml |
the smallest positive number on the typical platform. The
default |
verbose |
integer indicating the amount of verbosity of
diagnostic output, |
a number.
The C code contains
This routine is a translation into C of a Fortran subroutine
by W. Fullerton of Los Alamos Scientific Laboratory.
Martin Maechler
(From the C code:)
Nancy E. Bosten and E.L. Battiste (1974). Remark on Algorithm 179 (S14): Incomplete Beta Ratio. Communications of the ACM, 17(3), 156–7.
all.equal(pbetaRv1(1/4, 2, 3), pbeta (1/4, 2, 3)) set.seed(101) N <- 1000 x <- sample.int(7, N, replace=TRUE) / 8 a <- rlnorm(N) b <- 5*rlnorm(N) pbt <- pbeta(x, a, b) for(i in 1:N) { stopifnot(all.equal(pbetaRv1(x[i], a[i], b[i]), pbt[i])) cat(".", if(i %% 20 == 0) paste0(i, "\n")) }
all.equal(pbetaRv1(1/4, 2, 3), pbeta (1/4, 2, 3)) set.seed(101) N <- 1000 x <- sample.int(7, N, replace=TRUE) / 8 a <- rlnorm(N) b <- 5*rlnorm(N) pbt <- pbeta(x, a, b) for(i in 1:N) { stopifnot(all.equal(pbetaRv1(x[i], a[i], b[i]), pbt[i])) cat(".", if(i %% 20 == 0) paste0(i, "\n")) }
Simple utilities for ease of comparison of the different
phyper
approximation in package DPQ:
phyperAllBinM()
computes all four Molenaar binomial approximations
to the hypergeometric cumulative distribution function phyper()
.
phyperAllBin()
computes Molenaar's four and additionally the other
four
phyperBin.1()
, *.2
, *.3
, and *.4
.
.suppHyper()
, support of the Hyperbolic, is a
simple 1-liner, providing all sensible integer values for the first
argument q
(or also x
) of the hyperbolic probability
functions (dhyper()
and phyper()
), and their
approximations (here in DPQ).
phyperAllBin (m, n, k, q = .suppHyper(m, n, k), lower.tail = TRUE, log.p = FALSE) phyperAllBinM(m, n, k, q = .suppHyper(m, n, k), lower.tail = TRUE, log.p = FALSE) .suppHyper(m, n, k)
phyperAllBin (m, n, k, q = .suppHyper(m, n, k), lower.tail = TRUE, log.p = FALSE) phyperAllBinM(m, n, k, q = .suppHyper(m, n, k), lower.tail = TRUE, log.p = FALSE) .suppHyper(m, n, k)
m |
the number of white balls in the urn. |
n |
the number of black balls in the urn. |
k |
the number of balls drawn from the urn, hence must be in |
q |
vector of quantiles representing the number of white balls
drawn without replacement from an urn which contains both black and
white balls. The default, |
lower.tail |
logical; if TRUE (default), probabilities are
|
log.p |
logical; if TRUE, probabilities p are given as log(p). |
the phyperAllBin*()
functions return
a numeric matrix
, with each column a different
approximation to phyper(m,n,k,q, lower.tail, log.p)
.
Note that the columns of phyperAllBinM()
are a subset of
those from phyperAllBin()
.
Martin Maechler
See those in phyperBinMolenaar
.
phyperBin.1
etc, and
phyperBinMolenaar
.
.suppHyper # very simple: stopifnot(identical(.suppHyper, ignore.environment = TRUE, function (m, n, k) max(0, k-n):min(k, m))) phBall <- phyperAllBin (5,15, 7) phBalM <- phyperAllBinM(5,15, 7) stopifnot(identical( ## indeed, ph...AllBinM() gives a *subset* of ph...AllBin(): phBall[, colnames(phBalM)] , phBalM) , .suppHyper(5, 15, 7) == 0:5 ) round(phBall, 4) cbind(q = 0:5, round(-log10(abs(1 - phBall / phyper(0:5, 5,15,7))), digits=2)) require(sfsmisc)## --> relErrV() {and eaxis()}: qq <- .suppHyper(20, 47, 31) phA <- phyperAllBin(20, 47, 31) rE <- relErrV(target = phyper(qq, 20,47,31), phA) signif(cbind(qq, rE), 4) ## Relative approximation error [ log scaled ] : matplot(qq, abs(rE), type="b", log="y", yaxt="n") eaxis(2) ## ---> approximations useful only "on the right", aka the right tail
.suppHyper # very simple: stopifnot(identical(.suppHyper, ignore.environment = TRUE, function (m, n, k) max(0, k-n):min(k, m))) phBall <- phyperAllBin (5,15, 7) phBalM <- phyperAllBinM(5,15, 7) stopifnot(identical( ## indeed, ph...AllBinM() gives a *subset* of ph...AllBin(): phBall[, colnames(phBalM)] , phBalM) , .suppHyper(5, 15, 7) == 0:5 ) round(phBall, 4) cbind(q = 0:5, round(-log10(abs(1 - phBall / phyper(0:5, 5,15,7))), digits=2)) require(sfsmisc)## --> relErrV() {and eaxis()}: qq <- .suppHyper(20, 47, 31) phA <- phyperAllBin(20, 47, 31) rE <- relErrV(target = phyper(qq, 20,47,31), phA) signif(cbind(qq, rE), 4) ## Relative approximation error [ log scaled ] : matplot(qq, abs(rE), type="b", log="y", yaxt="n") eaxis(2) ## ---> approximations useful only "on the right", aka the right tail
Compute the normal approximation (via pnorm(.)
from AS 152
to the cumulative hyperbolic distribution function phyper()
.
phyperApprAS152(q, m, n, k)
phyperApprAS152(q, m, n, k)
q |
vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls. |
m |
the number of white balls in the urn. |
n |
the number of black balls in the urn. |
k |
the number of balls drawn from the urn, hence must be in
|
a numeric
vector of the same length (etc) as q
.
I have Fortran (and C code translated from Fortran) which says
ALGORITHM AS R77 APPL. STATIST. (1989), VOL.38, NO.1 Replaces AS 59 and AS 152 Incorporates AS R86 from vol.40(2)
Martin Maechler, 19 Apr 1999
Lund, Richard E. (1980) Algorithm AS 152: Cumulative Hypergeometric Probabilities. Journal of the Royal Statistical Society. Series C (Applied Statistics), 29(2), 221–223. doi:10.2307/2986315
Shea, B. (1989) Remark AS R77: A Remark on Algorithm AS 152: Cumulative Hypergeometric Probabilities. JRSS C (Applied Statistics), 38(1), 199–204. doi:10.2307/2347696
Berger, R. (1991) Algorithm AS R86: A Remark on Algorithm AS 152: Cumulative Hypergeometric Probabilities. JRSS C (Applied Statistics), 40(2), 374–375. doi:10.2307/2347606
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function (q, m, n, k) { kk <- n nn <- m mm <- m + n ll <- q mean <- kk * nn/mm sig <- sqrt(mean * (mm - nn)/mm * (mm - kk)/(mm - 1)) pnorm(ll + 1/2, mean = mean, sd = sig) }
##---- Should be DIRECTLY executable !! ---- ##-- ==> Define data, use random, ##-- or do help(data=index) for the standard data sets. ## The function is currently defined as function (q, m, n, k) { kk <- n nn <- m mm <- m + n ll <- q mean <- kk * nn/mm sig <- sqrt(mean * (mm - nn)/mm * (mm - kk)/(mm - 1)) pnorm(ll + 1/2, mean = mean, sd = sig) }
Compute hypergeometric cumulative probabilities via (good) binomial
distribution approximations.
The arguments of these functions are exactly those of R's own
phyper()
.
phyperBin.1(q, m, n, k, lower.tail = TRUE, log.p = FALSE) phyperBin.2(q, m, n, k, lower.tail = TRUE, log.p = FALSE) phyperBin.3(q, m, n, k, lower.tail = TRUE, log.p = FALSE) phyperBin.4(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
phyperBin.1(q, m, n, k, lower.tail = TRUE, log.p = FALSE) phyperBin.2(q, m, n, k, lower.tail = TRUE, log.p = FALSE) phyperBin.3(q, m, n, k, lower.tail = TRUE, log.p = FALSE) phyperBin.4(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
q |
vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls. |
m |
the number of white balls in the urn. |
n |
the number of black balls in the urn. |
k |
the number of balls drawn from the urn, hence must be in |
lower.tail |
logical; if TRUE (default), probabilities are
|
log.p |
logical; if TRUE, probabilities p are given as log(p). |
TODO
a numeric
vector, with the length the maximum of the
lengths of q, m, n, k
.
Martin Maechler
## The 1st function is function (q, m, n, k, lower.tail = TRUE, log.p = FALSE) pbinom(q, size = k, prob = m/(m + n), lower.tail = lower.tail, log.p = log.p)
## The 1st function is function (q, m, n, k, lower.tail = TRUE, log.p = FALSE) pbinom(q, size = k, prob = m/(m + n), lower.tail = lower.tail, log.p = log.p)
Compute hypergeometric cumulative probabilities via Molenaar's binomial
approximations.
The arguments of these functions are exactly those of R's own
phyper()
.
phyperBinMolenaar.1(q, m, n, k, lower.tail = TRUE, log.p = FALSE) phyperBinMolenaar.2(q, m, n, k, lower.tail = TRUE, log.p = FALSE) phyperBinMolenaar.3(q, m, n, k, lower.tail = TRUE, log.p = FALSE) phyperBinMolenaar.4(q, m, n, k, lower.tail = TRUE, log.p = FALSE) phyperBinMolenaar (q, m, n, k, lower.tail = TRUE, log.p = FALSE) # Deprecated !
phyperBinMolenaar.1(q, m, n, k, lower.tail = TRUE, log.p = FALSE) phyperBinMolenaar.2(q, m, n, k, lower.tail = TRUE, log.p = FALSE) phyperBinMolenaar.3(q, m, n, k, lower.tail = TRUE, log.p = FALSE) phyperBinMolenaar.4(q, m, n, k, lower.tail = TRUE, log.p = FALSE) phyperBinMolenaar (q, m, n, k, lower.tail = TRUE, log.p = FALSE) # Deprecated !
q |
vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls. |
m |
the number of white balls in the urn. |
n |
the number of black balls in the urn. |
k |
the number of balls drawn from the urn, hence must be in
|
lower.tail |
logical; if TRUE (default), probabilities are
|
log.p |
logical; if TRUE, probabilities p are given as log(p). |
Molenaar(1970), as cited in Johnson et al (1992), proposed
phyperBinMolenaar.1()
;
the other three are just using the mathematical symmetries of the
hyperbolic distribution, swapping and
, and
using
lower.tail = TRUE
or FALSE
.
a numeric
vector, with the length the maximum of the
lengths of q, m, n, k
.
Martin Maechler
Johnson, N.L., Kotz, S. and Kemp, A.W. (1992)
Univariate Discrete Distributions, 2nd ed.; Wiley, doi:10.1002/bimj.4710360207.
Chapter 6, mostly Section 5 Approximations and Bounds, p.256 ff
Johnson, N.L., Kotz, S. and Kemp, A.W. (2005)
Univariate Discrete Distributions, 3rd ed.; Wiley; doi:10.1002/0471715816.
Chapter 6, Section 6.5 Approximations and Bounds, p.268 ff
phyper
, the hypergeometric distribution, and R's own
“exact” computation.
pbinom
, the binomial distribution functions.
Our utility phyperAllBin()
.
## The first function is simply function (q, m, n, k, lower.tail = TRUE, log.p = FALSE) pbinom(q, size = k, prob = hyper2binomP(q, m, n, k), lower.tail = lower.tail, log.p = log.p)
## The first function is simply function (q, m, n, k, lower.tail = TRUE, log.p = FALSE) pbinom(q, size = k, prob = hyper2binomP(q, m, n, k), lower.tail = lower.tail, log.p = log.p)
Pearson's incomplete Beta function approximation to the cumulative
hyperbolic distribution function phyper(.)
.
Note that in R, pbeta()
provides a version of the
incomplete Beta function.
phyperIbeta(q, m, n, k)
phyperIbeta(q, m, n, k)
q |
vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls. |
m |
the number of white balls in the urn. |
n |
the number of black balls in the urn. |
k |
the number of balls drawn from the urn, hence must be in
|
a numeric vector “like” q
with values approximately equal
to phyper(q,m,n,k)
.
Martin Maechler
Johnson, Kotz & Kemp (1992): (6.90), p.260 –> Bol'shev (1964)
## The function is currently defined as function (q, m, n, k) { Np <- m N <- n + m n <- k x <- q p <- Np/N np <- n * p xi <- (n + Np - 1 - 2 * np)/(N - 2) d.c <- (N - n) * (1 - p) + np - 1 cc <- n * (n - 1) * p * (Np - 1)/((N - 1) * d.c) lam <- (N - 2)^2 * np * (N - n) * (1 - p)/((N - 1) * d.c * (n + Np - 1 - 2 * np)) pbeta(1 - xi, lam - x + cc, x - cc + 1) }
## The function is currently defined as function (q, m, n, k) { Np <- m N <- n + m n <- k x <- q p <- Np/N np <- n * p xi <- (n + Np - 1 - 2 * np)/(N - 2) d.c <- (N - n) * (1 - p) + np - 1 cc <- n * (n - 1) * p * (Np - 1)/((N - 1) * d.c) lam <- (N - 2)^2 * np * (N - n) * (1 - p)/((N - 1) * d.c * (n + Np - 1 - 2 * np)) pbeta(1 - xi, lam - x + cc, x - cc + 1) }
Compute Molenaar's two normal approximations to the (cumulative
hypergeometric distribution phyper()
.
phyper1molenaar(q, m, n, k) phyper2molenaar(q, m, n, k)
phyper1molenaar(q, m, n, k) phyper2molenaar(q, m, n, k)
q |
(vector of) the number of white balls drawn without replacement from an urn which contains both black and white balls. |
m |
the number of white balls in the urn. |
n |
the number of black balls in the urn. |
k |
the number of balls drawn from the urn, hence in |
Both approximations are from page 261 of Johnson, Kotz & Kemp (1992).
phyper1molenaar
is formula , and
phyper2molenaar
is formula .
a numeric
vector, with the length the maximum of the
lengths of q, m, n, k
.
Martin Maechler
Johnson, Kotz & Kemp (1992): p.261
## TODO -- maybe see ../tests/hyper-dist-ex.R
## TODO -- maybe see ../tests/hyper-dist-ex.R
Compute Peizer's extremely good normal approximation to the cumulative hyperbolic distribution.
This implementation corrects a typo in the reference.
phyperPeizer(q, m, n, k)
phyperPeizer(q, m, n, k)
q |
vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls. |
m |
the number of white balls in the urn. |
n |
the number of black balls in the urn. |
k |
the number of balls drawn from the urn, hence must be in
|
a numeric
vector, with the length the maximum of the
lengths of q, m, n, k
.
Martin Maechler
Johnson, Kotz & Kemp (1992): (6.93) & (6.94), p.261 CORRECTED by M.M.
## The function is defined as phyperPeizer <- function(q, m, n, k) { ## Purpose: Peizer's extremely good Normal Approx. to cumulative Hyperbolic ## Johnson, Kotz & Kemp (1992): (6.93) & (6.94), p.261 __CORRECTED__ ## ---------------------------------------------------------------------- Np <- m; N <- n + m; n <- k; x <- q ## (6.94) -- in proper order! nn <- Np ; n. <- Np + 1/6 mm <- N - Np ; m. <- N - Np + 1/6 r <- n ; r. <- n + 1/6 s <- N - n ; s. <- N - n + 1/6 N. <- N - 1/6 A <- x + 1/2 ; A. <- x + 2/3 B <- Np - x - 1/2 ; B. <- Np - x - 1/3 C <- n - x - 1/2 ; C. <- n - x - 1/3 D <- N - Np - n + x + 1/2 ; D. <- N - Np - n + x + 2/3 n <- nn m <- mm ## After (6.93): L <- A * log((A*N)/(n*r)) + B * log((B*N)/(n*s)) + C * log((C*N)/(m*r)) + D * log((D*N)/(m*s)) ## (6.93) : pnorm((A.*D. - B.*C.) / abs(A*D - B*C) * sqrt(2*L* (m* n* r* s* N.)/ (m.*n.*r.*s.*N ))) # The book wrongly has an extra "2*" before `m* ' (after "2*L* (" ) above }
## The function is defined as phyperPeizer <- function(q, m, n, k) { ## Purpose: Peizer's extremely good Normal Approx. to cumulative Hyperbolic ## Johnson, Kotz & Kemp (1992): (6.93) & (6.94), p.261 __CORRECTED__ ## ---------------------------------------------------------------------- Np <- m; N <- n + m; n <- k; x <- q ## (6.94) -- in proper order! nn <- Np ; n. <- Np + 1/6 mm <- N - Np ; m. <- N - Np + 1/6 r <- n ; r. <- n + 1/6 s <- N - n ; s. <- N - n + 1/6 N. <- N - 1/6 A <- x + 1/2 ; A. <- x + 2/3 B <- Np - x - 1/2 ; B. <- Np - x - 1/3 C <- n - x - 1/2 ; C. <- n - x - 1/3 D <- N - Np - n + x + 1/2 ; D. <- N - Np - n + x + 2/3 n <- nn m <- mm ## After (6.93): L <- A * log((A*N)/(n*r)) + B * log((B*N)/(n*s)) + C * log((C*N)/(m*r)) + D * log((D*N)/(m*s)) ## (6.93) : pnorm((A.*D. - B.*C.) / abs(A*D - B*C) * sqrt(2*L* (m* n* r* s* N.)/ (m.*n.*r.*s.*N ))) # The book wrongly has an extra "2*" before `m* ' (after "2*L* (" ) above }
An R version of the first phyper()
algorithm in R, which was
used up to svn rev 30227
on 2004-07-09.
phyperR(q, m, n, k, lower.tail=TRUE, log.p=FALSE)
phyperR(q, m, n, k, lower.tail=TRUE, log.p=FALSE)
q |
vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls. |
m |
the number of white balls in the urn. |
n |
the number of black balls in the urn. |
k |
the number of balls drawn from the urn, hence must be in |
lower.tail |
logical; if TRUE (default), probabilities are
|
log.p |
logical; if TRUE, probabilities p are given as log(p). |
a numeric vector similar to phyper(q, m, n, k)
.
The original argument list in C
was (x, NR, NB, n)
where
there were red and black balls in the urn.
Note that we have vectorized a translation to R of the original C code.
Martin Maechler
phyper
and our phyperR2()
for the pure R
version of the newer (Welinder) phyper()
algorithm
m <- 9:12; n <- 7:10; k <- 10 x <- 0:(k+1) # length 12 ## confirmation that recycling + lower.tail, log.p now work: for(lg in c(FALSE,TRUE)) for(lt in c(FALSE, TRUE)) { cat("(lower.tail = ", lt, " -- log = ", lg,"):\n", sep="") withAutoprint({ (rr <- cbind(x, m, n, k, # recycling (to 12 rows) ph = phyper (x, m, n, k, lower.tail=lt, log.p=lg), phR = phyperR(x, m, n, k, lower.tail=lt, log.p=lg))) all.equal(rr[,"ph"], rr[,"phR"], tol = 0) ## saw 4.706e-15 1.742e-15 7.002e-12 1.086e-15 [x86_64 Lnx] stopifnot(all.equal(rr[,"ph"], rr[,"phR"], tol = if(lg && !lt) 2e-11 else 2e-14)) }) }
m <- 9:12; n <- 7:10; k <- 10 x <- 0:(k+1) # length 12 ## confirmation that recycling + lower.tail, log.p now work: for(lg in c(FALSE,TRUE)) for(lt in c(FALSE, TRUE)) { cat("(lower.tail = ", lt, " -- log = ", lg,"):\n", sep="") withAutoprint({ (rr <- cbind(x, m, n, k, # recycling (to 12 rows) ph = phyper (x, m, n, k, lower.tail=lt, log.p=lg), phR = phyperR(x, m, n, k, lower.tail=lt, log.p=lg))) all.equal(rr[,"ph"], rr[,"phR"], tol = 0) ## saw 4.706e-15 1.742e-15 7.002e-12 1.086e-15 [x86_64 Lnx] stopifnot(all.equal(rr[,"ph"], rr[,"phR"], tol = if(lg && !lt) 2e-11 else 2e-14)) }) }
Use pure R functions to compute (less efficiently and usually even less accurately) hypergeometric (point) probabilities with the same "Welinder"-algorithm as R's C level code has been doing since 2004.
Apart from boundary cases, each phyperR2()
call uses one
corresponding pdhyper()
call.
phyperR2(q, m, n, k, lower.tail = TRUE, log.p = FALSE, ...) pdhyper (q, m, n, k, log.p = FALSE, epsC = .Machine$double.eps, verbose = getOption("verbose"))
phyperR2(q, m, n, k, lower.tail = TRUE, log.p = FALSE, ...) pdhyper (q, m, n, k, log.p = FALSE, epsC = .Machine$double.eps, verbose = getOption("verbose"))
q |
vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls. |
m |
the number of white balls in the urn. |
n |
the number of black balls in the urn. |
k |
the number of balls drawn from the urn, hence must be in |
lower.tail |
logical; if TRUE (default), probabilities are
|
log.p |
logical; if TRUE, probabilities p are given as log(p). |
... |
further arguments, passed to |
epsC |
a non-negative number, the computer epsilon to be used;
effectively a relative convergence tolerance for the |
verbose |
logical indicating if the |
a number (as q
).
computes the ratio
phyper(q, m,n,k) / dhyper(q, m,n,k)
but without computing numerator or denominator explicitly.
(in the non-boundary cases) then just computes the
product dhyper(..) * pdhyper(..)
, of course “modulo”
lower.tail
and log.p
transformations.
Consequently, it typically returns values very close to the corresponding
R phyper(q, m,n,k, ..)
call.
For now, all arguments of these functions must be of length one.
Martin Maechler, based on R's C code originally provided by Morton Welinder from the Gnumeric project, who thanks Ian Smith for ideas.
Morten Welinder (2004) phyper accuracy and efficiency; R bug report PR#6772; https://bugs.r-project.org/show_bug.cgi?id=6772
## same example as phyper() m <- 10; n <- 7; k <- 8 vapply(0:9, phyperR2, 0.1, m=m, n=n, k=k) == phyper(0:9, m,n,k) ## *all* TRUE (for 64b FC30) ## 'verbose=TRUE' to see the number of terms used: vapply(0:9, phyperR2, 0.1, m=m, n=n, k=k, verbose=TRUE) ## Larger arguments: k <- 100 ; x <- .suppHyper(k,k,k) ph <- phyper (x, k,k,k) ph1 <- phyperR(x, k,k,k) # ~ old R version ph2 <- vapply(x, phyperR2, 0.1, m=k, n=k, k=k) cbind(x, ph, ph1, ph2, rE1 = 1-ph1/ph, rE = 1-ph2/ph) stopifnot(abs(1 -ph2/ph) < 8e-16) # 64bit FC30: see -2.22e-16 <= rE <= 3.33e-16 ## Morten Welinder's example: (p1R <- phyperR (59, 150, 150, 60, lower.tail=FALSE)) ## gave 6.372680161e-14 in "old R";, here -1.04361e-14 (worse!!) (p1x <- dhyper ( 0, 150, 150, 60))# is 5.111204798e-22. (p1N <- phyperR2(59, 150, 150, 60, lower.tail=FALSE)) # .. "perfect" (p1. <- phyper (59, 150, 150, 60, lower.tail=FALSE))# R's own all.equal(p1x, p1N, tol=0) # on Lnx even perfectly all.equal(p1x, p1., tol=0) # on Lnx even perfectly
## same example as phyper() m <- 10; n <- 7; k <- 8 vapply(0:9, phyperR2, 0.1, m=m, n=n, k=k) == phyper(0:9, m,n,k) ## *all* TRUE (for 64b FC30) ## 'verbose=TRUE' to see the number of terms used: vapply(0:9, phyperR2, 0.1, m=m, n=n, k=k, verbose=TRUE) ## Larger arguments: k <- 100 ; x <- .suppHyper(k,k,k) ph <- phyper (x, k,k,k) ph1 <- phyperR(x, k,k,k) # ~ old R version ph2 <- vapply(x, phyperR2, 0.1, m=k, n=k, k=k) cbind(x, ph, ph1, ph2, rE1 = 1-ph1/ph, rE = 1-ph2/ph) stopifnot(abs(1 -ph2/ph) < 8e-16) # 64bit FC30: see -2.22e-16 <= rE <= 3.33e-16 ## Morten Welinder's example: (p1R <- phyperR (59, 150, 150, 60, lower.tail=FALSE)) ## gave 6.372680161e-14 in "old R";, here -1.04361e-14 (worse!!) (p1x <- dhyper ( 0, 150, 150, 60))# is 5.111204798e-22. (p1N <- phyperR2(59, 150, 150, 60, lower.tail=FALSE)) # .. "perfect" (p1. <- phyper (59, 150, 150, 60, lower.tail=FALSE))# R's own all.equal(p1x, p1N, tol=0) # on Lnx even perfectly all.equal(p1x, p1., tol=0) # on Lnx even perfectly
Compute the four (4) symmetric phyper()
calls which
mathematically would be identical but in practice typically slightly
differ numerically.
phypers(m, n, k, q = .suppHyper(m, n, k), tol = sqrt(.Machine$double.eps))
phypers(m, n, k, q = .suppHyper(m, n, k), tol = sqrt(.Machine$double.eps))
m |
the number of white balls in the urn. |
n |
the number of black balls in the urn. |
k |
the number of balls drawn from the urn, hence must be in
|
q |
vector of quantiles representing the number of white balls
drawn without replacement from an urn which contains both black and
white balls. By default all “non-trivial” abscissa values
i.e., for which the mathematical value is strictly inside |
tol |
a non-negative number, the |
a list
with components
q |
Description of 'comp1' |
phyp |
a numeric |
Martin Maechler
Johnson et al
R's phyper
. In package DPQmpfr,
phyperQ()
uses (package gmp based) exact
rational arithmetic, summing up dhyperQ()
, terms
computed by chooseZ()
, exact (long integer) arithmetic
binomial coefficients.
## The function is defined as function(m,n,k, q = .suppHyper(m,n,k), tol = sqrt(.Machine$double.eps)) { N <- m+n pm <- cbind(ph = phyper(q, m, n , k), # 1 = orig. p2 = phyper(q, k, N-k, m), # swap m <-> k (keep N = m+n) ## "lower.tail = FALSE" <==> 1 - p..(..) Ip2= phyper(m-1-q, N-k, k, m, lower.tail=FALSE), Ip1= phyper(k-1-q, n, m, k, lower.tail=FALSE)) ## check that all are (approximately) the same : stopifnot(all.equal(pm[,1], pm[,2], tolerance=tol), all.equal(pm[,2], pm[,3], tolerance=tol), all.equal(pm[,3], pm[,4], tolerance=tol)) list(q = q, phyp = pm) } str(phs <- phypers(20, 47, 31)) with(phs, cbind(q, phyp)) with(phs, matplot(q, phyp, type = "b"), main = "phypers(20, 47, 31)") ## differences: with(phs, phyp[,-1] - phyp[,1]) ## *relative* relE <- with(phs, { phM <- rowMeans(phyp); 1 - phyp/phM }) print.table(cbind(q = phs$q, relE / .Machine$double.eps), zero.print = ".")
## The function is defined as function(m,n,k, q = .suppHyper(m,n,k), tol = sqrt(.Machine$double.eps)) { N <- m+n pm <- cbind(ph = phyper(q, m, n , k), # 1 = orig. p2 = phyper(q, k, N-k, m), # swap m <-> k (keep N = m+n) ## "lower.tail = FALSE" <==> 1 - p..(..) Ip2= phyper(m-1-q, N-k, k, m, lower.tail=FALSE), Ip1= phyper(k-1-q, n, m, k, lower.tail=FALSE)) ## check that all are (approximately) the same : stopifnot(all.equal(pm[,1], pm[,2], tolerance=tol), all.equal(pm[,2], pm[,3], tolerance=tol), all.equal(pm[,3], pm[,4], tolerance=tol)) list(q = q, phyp = pm) } str(phs <- phypers(20, 47, 31)) with(phs, cbind(q, phyp)) with(phs, matplot(q, phyp, type = "b"), main = "phypers(20, 47, 31)") ## differences: with(phs, phyp[,-1] - phyp[,1]) ## *relative* relE <- with(phs, { phM <- rowMeans(phyp); 1 - phyp/phM }) print.table(cbind(q = phs$q, relE / .Machine$double.eps), zero.print = ".")
Plot two noncentral (chi-squared or or ..) distribution curves
for visual comparison.
pl2curves(fun1, fun2, df, ncp, log = FALSE, from = 0, to = 2 * ncp, p.log = "", n = 2001, leg = TRUE, col2 = 2, lwd2 = 2, lty2 = 3, ...)
pl2curves(fun1, fun2, df, ncp, log = FALSE, from = 0, to = 2 * ncp, p.log = "", n = 2001, leg = TRUE, col2 = 2, lwd2 = 2, lty2 = 3, ...)
fun1 , fun2
|
|
df , ncp , log
|
parameters to be passed and used in both functions, which hence typically are non-central chi-squared or t density, probability or quantile functions. |
from , to
|
numbers determining the x-range, passed to
|
p.log |
string, passed as |
n |
the number of evaluation points, passed to |
leg |
logical specifying if a |
col2 , lwd2 , lty2
|
color, line width and line type for the second curve. (The first curve uses defaults for these graphical properties.) |
... |
further arguments passed to first |
TODO: inivisible return both curve() results, i.e., (x,y1, y2), possibly as data frame
Martin Maechler
curve
, ..
p.dnchiBessel <- function(df, ncp, log=FALSE, from=0, to = 2*ncp, p.log="", ...) { pl2curves(dnchisqBessel, dchisq, df=df, ncp=ncp, log=log, from=from, to=to, p.log=p.log, ...) } ## TODO the p.dnchiB() examples >>>>>> ../tests/chisq-nonc-ex.R <<<
p.dnchiBessel <- function(df, ncp, log=FALSE, from=0, to = 2*ncp, p.log="", ...) { pl2curves(dnchisqBessel, dchisq, df=df, ncp=ncp, log=log, from=from, to=to, p.log=p.log, ...) } ## TODO the p.dnchiB() examples >>>>>> ../tests/chisq-nonc-ex.R <<<
pnbetaAppr2()
and its inital version pnbetaAppr2v1()
provide the “approximation 2” of Chattamvelli and Shanmugam(1997)
to the noncentral Beta probability distribution.
pnbetaAS310()
is an R level interface to a C translation (and
“Rification”) of the AS 310
Fortran implementation.
pnbetaAppr2(x, a, b, ncp = 0, lower.tail = TRUE, log.p = FALSE) pnbetaAS310(x, a, b, ncp = 0, lower.tail = TRUE, log.p = FALSE, useAS226 = (ncp < 54.), errmax = 1e-6, itrmax = 100)
pnbetaAppr2(x, a, b, ncp = 0, lower.tail = TRUE, log.p = FALSE) pnbetaAS310(x, a, b, ncp = 0, lower.tail = TRUE, log.p = FALSE, useAS226 = (ncp < 54.), errmax = 1e-6, itrmax = 100)
x |
numeric vector (of quantiles), typically from inside |
a , b
|
the shape parameters of Beta, aka as |
ncp |
non-centrality parameter. |
log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
useAS226 |
|
errmax |
non-negative number determining convergence for AS 310. |
itrmax |
positive integer number, only |
a numeric vector of (log) probabilities of the same length as x
.
The authors in the reference compare AS 310 with Lam(1995), Frick(1990) and Lenth(1987)
and state to be better than them. R's current (2019) noncentral beta
implementation builds on these, too, with some amendments though; still,
pnbetaAS310()
may potentially be better, at least in certain
corners of the 4-dimensional input space.
Martin Maechler; pnbetaAppr2()
in Oct 2007.
– not yet implemented –
Gil, A., Segura, J., and Temme, N. M. (2019)
On the computation and inversion of the cumulative noncentral beta distribution function.
Applied Mathematics and Computation 361, 74–86; doi:10.1016/j.amc.2019.05.014 .
Chattamvelli, R., and Shanmugam, R. (1997)
Algorithm AS 310: Computing the Non-Central Beta Distribution Function.
Journal of the Royal Statistical Society. Series C (Applied Statistics)
46(1), 146–156, for “approximation 2” notably p.154;
doi:10.1111/1467-9876.00055 .
Lenth, R. V. (1987) Algorithm AS 226, ...,
Frick, H. (1990)'s AS R84, ..., and
Lam, M.L. (1995)'s AS R95 : See ‘References’ in R's pbeta
page.
R's own pbeta
.
## Same arguments as for Table 1 (p.151) of the reference a <- 5*rep(1:3, each=3) aargs <- cbind(a = a, b = a, ncp = rep(c(54, 140, 170), 3), x = 1e-4*c(8640, 9000, 9560, 8686, 9000, 9000, 8787, 9000, 9220)) aargs pnbA2 <- apply(aargs, 1, function(aa) do.call(pnbetaAppr2, as.list(aa))) pnA310<- apply(aargs, 1, function(aa) do.call(pnbetaAS310, as.list(aa))) aar2 <- aargs; dimnames(aar2)[[2]] <- c(paste0("shape", 1:2), "ncp", "q") pnbR <- apply(aar2, 1, function(aa) do.call(pbeta, as.list(aa))) range(relD2 <- 1 - pnbA2 /pnbR) range(relD310 <- 1 - pnA310/pnbR) cbind(aargs, pnbA2, pnA310, pnbR, relD2 = signif(relD2, 3), relD310 = signif(relD310, 3)) # <------> Table 1 stopifnot(abs(relD2) < 0.009) # max is 0.006286 stopifnot(abs(relD310) < 1e-5 ) # max is 6.3732e-6 ## Arguments as for Table 2 (p.152) of the reference : aarg2 <- cbind(a = c( 10, 10, 15, 20, 20, 20, 30, 30), b = c( 20, 10, 5, 10, 30, 50, 20, 40), ncp=c(150,120, 80,110, 65,130, 80,130), x = c(868,900,880,850,660,720,720,800)/1000) pnbA2 <- apply(aarg2, 1, function(aa) do.call(pnbetaAppr2, as.list(aa))) pnA310<- apply(aarg2, 1, function(aa) do.call(pnbetaAS310, as.list(aa))) aar2 <- aarg2; dimnames(aar2)[[2]] <- c(paste0("shape", 1:2), "ncp", "q") pnbR <- apply(aar2, 1, function(aa) do.call(pbeta, as.list(aa))) range(relD2 <- 1 - pnbA2 /pnbR) range(relD310 <- 1 - pnA310/pnbR) cbind(aarg2, pnbA2, pnA310, pnbR, relD2 = signif(relD2, 3), relD310 = signif(relD310, 3)) # <------> Table 2 stopifnot(abs(relD2 ) < 0.006) # max is 0.00412 stopifnot(abs(relD310) < 1e-5 ) # max is 5.5953e-6 ## Arguments as for Table 3 (p.152) of the reference : aarg3 <- cbind(a = c( 10, 10, 10, 15, 10, 12, 30, 35), b = c( 5, 10, 30, 20, 5, 17, 30, 30), ncp=c( 20, 54, 80,120, 55, 64,140, 20), x = c(644,700,780,760,795,560,800,670)/1000) pnbA3 <- apply(aarg3, 1, function(aa) do.call(pnbetaAppr2, as.list(aa))) pnA310<- apply(aarg3, 1, function(aa) do.call(pnbetaAS310, as.list(aa))) aar3 <- aarg3; dimnames(aar3)[[2]] <- c(paste0("shape", 1:2), "ncp", "q") pnbR <- apply(aar3, 1, function(aa) do.call(pbeta, as.list(aa))) range(relD2 <- 1 - pnbA3 /pnbR) range(relD310 <- 1 - pnA310/pnbR) cbind(aarg3, pnbA3, pnA310, pnbR, relD2 = signif(relD2, 3), relD310 = signif(relD310, 3)) # <------> Table 3 stopifnot(abs(relD2 ) < 0.09) # max is 0.06337 stopifnot(abs(relD310) < 1e-4) # max is 3.898e-5
## Same arguments as for Table 1 (p.151) of the reference a <- 5*rep(1:3, each=3) aargs <- cbind(a = a, b = a, ncp = rep(c(54, 140, 170), 3), x = 1e-4*c(8640, 9000, 9560, 8686, 9000, 9000, 8787, 9000, 9220)) aargs pnbA2 <- apply(aargs, 1, function(aa) do.call(pnbetaAppr2, as.list(aa))) pnA310<- apply(aargs, 1, function(aa) do.call(pnbetaAS310, as.list(aa))) aar2 <- aargs; dimnames(aar2)[[2]] <- c(paste0("shape", 1:2), "ncp", "q") pnbR <- apply(aar2, 1, function(aa) do.call(pbeta, as.list(aa))) range(relD2 <- 1 - pnbA2 /pnbR) range(relD310 <- 1 - pnA310/pnbR) cbind(aargs, pnbA2, pnA310, pnbR, relD2 = signif(relD2, 3), relD310 = signif(relD310, 3)) # <------> Table 1 stopifnot(abs(relD2) < 0.009) # max is 0.006286 stopifnot(abs(relD310) < 1e-5 ) # max is 6.3732e-6 ## Arguments as for Table 2 (p.152) of the reference : aarg2 <- cbind(a = c( 10, 10, 15, 20, 20, 20, 30, 30), b = c( 20, 10, 5, 10, 30, 50, 20, 40), ncp=c(150,120, 80,110, 65,130, 80,130), x = c(868,900,880,850,660,720,720,800)/1000) pnbA2 <- apply(aarg2, 1, function(aa) do.call(pnbetaAppr2, as.list(aa))) pnA310<- apply(aarg2, 1, function(aa) do.call(pnbetaAS310, as.list(aa))) aar2 <- aarg2; dimnames(aar2)[[2]] <- c(paste0("shape", 1:2), "ncp", "q") pnbR <- apply(aar2, 1, function(aa) do.call(pbeta, as.list(aa))) range(relD2 <- 1 - pnbA2 /pnbR) range(relD310 <- 1 - pnA310/pnbR) cbind(aarg2, pnbA2, pnA310, pnbR, relD2 = signif(relD2, 3), relD310 = signif(relD310, 3)) # <------> Table 2 stopifnot(abs(relD2 ) < 0.006) # max is 0.00412 stopifnot(abs(relD310) < 1e-5 ) # max is 5.5953e-6 ## Arguments as for Table 3 (p.152) of the reference : aarg3 <- cbind(a = c( 10, 10, 10, 15, 10, 12, 30, 35), b = c( 5, 10, 30, 20, 5, 17, 30, 30), ncp=c( 20, 54, 80,120, 55, 64,140, 20), x = c(644,700,780,760,795,560,800,670)/1000) pnbA3 <- apply(aarg3, 1, function(aa) do.call(pnbetaAppr2, as.list(aa))) pnA310<- apply(aarg3, 1, function(aa) do.call(pnbetaAS310, as.list(aa))) aar3 <- aarg3; dimnames(aar3)[[2]] <- c(paste0("shape", 1:2), "ncp", "q") pnbR <- apply(aar3, 1, function(aa) do.call(pbeta, as.list(aa))) range(relD2 <- 1 - pnbA3 /pnbR) range(relD310 <- 1 - pnA310/pnbR) cbind(aarg3, pnbA3, pnA310, pnbR, relD2 = signif(relD2, 3), relD310 = signif(relD310, 3)) # <------> Table 3 stopifnot(abs(relD2 ) < 0.09) # max is 0.06337 stopifnot(abs(relD310) < 1e-4) # max is 3.898e-5
Computes probabilities for the non-central chi-squared distribution, in
special cases, currently for df = 1
and df = 3
, using
‘exact’ formulas only involving the standard normal (Gaussian)
cdf and its derivative
, i.e., R's
pnorm()
and dnorm()
.
pnchi1sq(q, ncp = 0, lower.tail = TRUE, log.p = FALSE, epsS = .01) pnchi3sq(q, ncp = 0, lower.tail = TRUE, log.p = FALSE, epsS = .04)
pnchi1sq(q, ncp = 0, lower.tail = TRUE, log.p = FALSE, epsS = .01) pnchi3sq(q, ncp = 0, lower.tail = TRUE, log.p = FALSE, epsS = .04)
q |
number ( ‘quantile’, i.e., abscissa value.) |
ncp |
non-centrality parameter |
lower.tail , log.p
|
logical, see, e.g., |
epsS |
small number, determining where to switch from the
“small case” to the regular case, namely by defining
|
In the “small case” (epsS
above), the direct formulas
suffer from cancellation, and we use Taylor series expansions in
, which in turn use
“probabilists'” Hermite polynomials
.
The default values epsS
have currently been determined by
experiments as those in the ‘Examples’ below.
a numeric vector “like” q+ncp
, i.e., recycled to common length.
Martin Maechler, notably the Taylor approximations in the “small” cases.
Johnson et al.(1995), see ‘References’ in
pnchisqPearson
.
https://en.wikipedia.org/wiki/Hermite_polynomials for the notation.
pchisq
, the (simple and R-like) approximations, such as
pnchisqPearson
and the wienergerm approximations,
pchisqW()
etc.
qq <- seq(9500, 10500, length=1000) m1 <- cbind(pch = pchisq (qq, df=1, ncp = 10000), p1 = pnchi1sq(qq, ncp = 10000)) matplot(qq, m1, type = "l"); abline(h=0:1, v=10000+1, lty=3) all.equal(m1[,"p1"], m1[,"pch"], tol=0) # for now, 2.37e-12 m3 <- cbind(pch = pchisq (qq, df=3, ncp = 10000), p3 = pnchi3sq(qq, ncp = 10000)) matplot(qq, m3, type = "l"); abline(h=0:1, v=10000+3, lty=3) all.equal(m3[,"p3"], m3[,"pch"], tol=0) # for now, 1.88e-12 stopifnot(exprs = { all.equal(m1[,"p1"], m1[,"pch"], tol=1e-10) all.equal(m3[,"p3"], m3[,"pch"], tol=1e-10) }) ### Very small 'x' i.e., 'q' would lead to cancellation: ----------- ## df = 1 --------------------------------------------------------- qS <- c(0, 2^seq(-40,4, by=1/16)) m1s <- cbind(pch = pchisq (qS, df=1, ncp = 1) , p1.0= pnchi1sq(qS, ncp = 1, epsS = 0) , p1.4= pnchi1sq(qS, ncp = 1, epsS = 1e-4) , p1.3= pnchi1sq(qS, ncp = 1, epsS = 1e-3) , p1.2= pnchi1sq(qS, ncp = 1, epsS = 1e-2) ) cols <- adjustcolor(1:5, 1/2); lws <- seq(4,2, by = -1/2) abl.leg <- function(x.leg = "topright", epsS = 10^-(4:2), legend = NULL) { abline(h = .Machine$double.eps, v = epsS^2, lty = c(2,3,3,3), col= adjustcolor(1, 1/2)) if(is.null(legend)) legend <- c(quote(epsS == 0), as.expression(lapply(epsS, function(K) substitute(epsS == KK, list(KK = formatC(K, w=1)))))) legend(x.leg, legend, lty=1:4, col=cols, lwd=lws, bty="n") } matplot(qS, m1s, type = "l", log="y" , col=cols, lwd=lws) matplot(qS, m1s, type = "l", log="xy", col=cols, lwd=lws) ; abl.leg("right") ## ==== "Errors" =================================================== ## Absolute: ------------------------- matplot(qS, m1s[,1] - m1s[,-1] , type = "l", log="x" , col=cols, lwd=lws) matplot(qS, abs(m1s[,1] - m1s[,-1]), type = "l", log="xy", col=cols, lwd=lws) abl.leg("bottomright") rbind(all = range(aE1e2 <- abs(m1s[,"pch"] - m1s[,"p1.2"])), less.75 = range(aE1e2[qS <= 3/4])) ## Lnx(F34;i7) M1mac(BDR) ## all 0 7.772e-16 1.110e-15 ## less.75 0 1.665e-16 2.220e-16 stopifnot(aE1e2[qS <= 3/4] <= 4e-16, aE1e2 <= 2e-15) # check ## Relative: ------------------------- matplot(qS, 1 - m1s[,-1]/m1s[,1] , type = "l", log="x", col=cols, lwd=lws) abl.leg() matplot(qS, abs(1 - m1s[,-1]/m1s[,1]), type = "l", log="xy", col=cols, lwd=lws) abl.leg() ## number of correct digits ('Inf' |--> 17) : corrDigs <- pmin(round(-log10(abs(1 - m1s[,-1]/m1s[,1])[-1,]), 1), 17) table(corrDigs > 9.8) # all range(corrDigs[qS[-1] > 1e-8, 1 ], corrDigs[, 2:4]) # [11.8 , 17] (min (corrDigs[qS[-1] > 1e-6, 1:2], corrDigs[, 3:4]) -> mi6) # 13 (min (corrDigs[qS[-1] > 1e-4, 1:3], corrDigs[, 4]) -> mi4) # 13.9 stopifnot(exprs = { corrDigs >= 9.8 c(corrDigs[qS[-1] > 1e-8, 1 ], corrDigs[, 2]) >= 11.5 mi6 >= 12.7 mi4 >= 13.6 }) ## df = 3 -------------- NOTE: epsS=0 for small qS is "non-sense" -------- qS <- c(0, 2^seq(-40,4, by=1/16)) ee <- c(1e-3, 1e-2, .04) m3s <- cbind(pch = pchisq (qS, df=3, ncp = 1) , p1.0= pnchi3sq(qS, ncp = 1, epsS = 0) , p1.3= pnchi3sq(qS, ncp = 1, epsS = ee[1]) , p1.2= pnchi3sq(qS, ncp = 1, epsS = ee[2]) , p1.1= pnchi3sq(qS, ncp = 1, epsS = ee[3]) ) matplot(qS, m3s, type = "l", log="y" , col=cols, lwd=lws) matplot(qS, m3s, type = "l", log="xy", col=cols, lwd=lws); abl.leg("right", ee) ## ==== "Errors" =================================================== ## Absolute: ------------------------- matplot(qS, m3s[,1] - m3s[,-1] , type = "l", log="x" , col=cols, lwd=lws) matplot(qS, abs(m3s[,1] - m3s[,-1]), type = "l", log="xy", col=cols, lwd=lws) abl.leg("right", ee) ## Relative: ------------------------- matplot(qS, 1 - m3s[,-1]/m3s[,1] , type = "l", log="x", col=cols, lwd=lws) abl.leg(, ee) matplot(qS, abs(1 - m3s[,-1]/m3s[,1]), type = "l", log="xy", col=cols, lwd=lws) abl.leg(, ee)
qq <- seq(9500, 10500, length=1000) m1 <- cbind(pch = pchisq (qq, df=1, ncp = 10000), p1 = pnchi1sq(qq, ncp = 10000)) matplot(qq, m1, type = "l"); abline(h=0:1, v=10000+1, lty=3) all.equal(m1[,"p1"], m1[,"pch"], tol=0) # for now, 2.37e-12 m3 <- cbind(pch = pchisq (qq, df=3, ncp = 10000), p3 = pnchi3sq(qq, ncp = 10000)) matplot(qq, m3, type = "l"); abline(h=0:1, v=10000+3, lty=3) all.equal(m3[,"p3"], m3[,"pch"], tol=0) # for now, 1.88e-12 stopifnot(exprs = { all.equal(m1[,"p1"], m1[,"pch"], tol=1e-10) all.equal(m3[,"p3"], m3[,"pch"], tol=1e-10) }) ### Very small 'x' i.e., 'q' would lead to cancellation: ----------- ## df = 1 --------------------------------------------------------- qS <- c(0, 2^seq(-40,4, by=1/16)) m1s <- cbind(pch = pchisq (qS, df=1, ncp = 1) , p1.0= pnchi1sq(qS, ncp = 1, epsS = 0) , p1.4= pnchi1sq(qS, ncp = 1, epsS = 1e-4) , p1.3= pnchi1sq(qS, ncp = 1, epsS = 1e-3) , p1.2= pnchi1sq(qS, ncp = 1, epsS = 1e-2) ) cols <- adjustcolor(1:5, 1/2); lws <- seq(4,2, by = -1/2) abl.leg <- function(x.leg = "topright", epsS = 10^-(4:2), legend = NULL) { abline(h = .Machine$double.eps, v = epsS^2, lty = c(2,3,3,3), col= adjustcolor(1, 1/2)) if(is.null(legend)) legend <- c(quote(epsS == 0), as.expression(lapply(epsS, function(K) substitute(epsS == KK, list(KK = formatC(K, w=1)))))) legend(x.leg, legend, lty=1:4, col=cols, lwd=lws, bty="n") } matplot(qS, m1s, type = "l", log="y" , col=cols, lwd=lws) matplot(qS, m1s, type = "l", log="xy", col=cols, lwd=lws) ; abl.leg("right") ## ==== "Errors" =================================================== ## Absolute: ------------------------- matplot(qS, m1s[,1] - m1s[,-1] , type = "l", log="x" , col=cols, lwd=lws) matplot(qS, abs(m1s[,1] - m1s[,-1]), type = "l", log="xy", col=cols, lwd=lws) abl.leg("bottomright") rbind(all = range(aE1e2 <- abs(m1s[,"pch"] - m1s[,"p1.2"])), less.75 = range(aE1e2[qS <= 3/4])) ## Lnx(F34;i7) M1mac(BDR) ## all 0 7.772e-16 1.110e-15 ## less.75 0 1.665e-16 2.220e-16 stopifnot(aE1e2[qS <= 3/4] <= 4e-16, aE1e2 <= 2e-15) # check ## Relative: ------------------------- matplot(qS, 1 - m1s[,-1]/m1s[,1] , type = "l", log="x", col=cols, lwd=lws) abl.leg() matplot(qS, abs(1 - m1s[,-1]/m1s[,1]), type = "l", log="xy", col=cols, lwd=lws) abl.leg() ## number of correct digits ('Inf' |--> 17) : corrDigs <- pmin(round(-log10(abs(1 - m1s[,-1]/m1s[,1])[-1,]), 1), 17) table(corrDigs > 9.8) # all range(corrDigs[qS[-1] > 1e-8, 1 ], corrDigs[, 2:4]) # [11.8 , 17] (min (corrDigs[qS[-1] > 1e-6, 1:2], corrDigs[, 3:4]) -> mi6) # 13 (min (corrDigs[qS[-1] > 1e-4, 1:3], corrDigs[, 4]) -> mi4) # 13.9 stopifnot(exprs = { corrDigs >= 9.8 c(corrDigs[qS[-1] > 1e-8, 1 ], corrDigs[, 2]) >= 11.5 mi6 >= 12.7 mi4 >= 13.6 }) ## df = 3 -------------- NOTE: epsS=0 for small qS is "non-sense" -------- qS <- c(0, 2^seq(-40,4, by=1/16)) ee <- c(1e-3, 1e-2, .04) m3s <- cbind(pch = pchisq (qS, df=3, ncp = 1) , p1.0= pnchi3sq(qS, ncp = 1, epsS = 0) , p1.3= pnchi3sq(qS, ncp = 1, epsS = ee[1]) , p1.2= pnchi3sq(qS, ncp = 1, epsS = ee[2]) , p1.1= pnchi3sq(qS, ncp = 1, epsS = ee[3]) ) matplot(qS, m3s, type = "l", log="y" , col=cols, lwd=lws) matplot(qS, m3s, type = "l", log="xy", col=cols, lwd=lws); abl.leg("right", ee) ## ==== "Errors" =================================================== ## Absolute: ------------------------- matplot(qS, m3s[,1] - m3s[,-1] , type = "l", log="x" , col=cols, lwd=lws) matplot(qS, abs(m3s[,1] - m3s[,-1]), type = "l", log="xy", col=cols, lwd=lws) abl.leg("right", ee) ## Relative: ------------------------- matplot(qS, 1 - m3s[,-1]/m3s[,1] , type = "l", log="x", col=cols, lwd=lws) abl.leg(, ee) matplot(qS, abs(1 - m3s[,-1]/m3s[,1]), type = "l", log="xy", col=cols, lwd=lws) abl.leg(, ee)
Compute (approximate) probabilities for the non-central chi-squared distribution.
The non-central chi-squared distribution with df
degrees of freedom and non-centrality parameter
ncp
has density
for ; for more, see R's help page for
pchisq
.
R's own historical and current versions, but with more tuning parameters;
Historical relatively simple approximations listed in Johnson, Kotz, and Balakrishnan (1995):
Patnaik(1949)'s approximation to the non-central via central
chi-squared. Is also the formula in Abramowitz & Stegun, p.942.
Johnson et al mention that the approximation error is
for
.
Pearson(1959) is using 3 moments instead of 2 as Patnaik (to
approximate via a central chi-squared), and therefore better than
Patnaik for the right tail; further (in Johnson et al.), the
approximation error is for
.
Abdel-Aty(1954)'s “first approximation” based on
Wilson-Hilferty via Gaussian (pnorm
) probabilities, is
partly wrongly cited in Johnson et al., p.463, eq..
Bol'shev and Kuznetzov (1963) concentrate on the case of
small ncp
and provide an “approximation” via
central chi-squared with the same degrees of freedom
df
,
but a modified q
(‘x’); the approximation has error
for
and is from
Johnson et al., p.465, eq.
and
.
Sankaran(1959, 1963) proposes several further approximations base
on Gaussian probabilities, according to Johnson
et al., p.463. pnchisqSankaran_d()
implements its formula .
pnchisq()
:an R implementation of R's own C pnchisq_raw()
,
but almost only up to Feb.27, 2004, long before the log.p=TRUE
addition there, including logspace arithmetic in April 2014,
its finish on 2015-09-01. Currently for historical reference only.
pnchisqV()
:pnchisqRC()
:R's C implementation as of Aug.2019; but with many more options. Currently extreme cases tend to hang on Winbuilder (?)
pnchisqIT
:....
pnchisqTerms
:....
pnchisqT93
:pure R implementations of approximations when
both q
and ncp
are large, by Temme(1993), from Johnson
et al., p.467, formulas , and
, using
auxiliary functions
pnchisqT93a()
and pnchisqT93b()
respectively, with adapted formulas for the log.p=TRUE
cases.
pnchisq_ss()
:....
ss
:....
ss2
:....
ss2.
:....
pnchisq (q, df, ncp = 0, lower.tail = TRUE, cutOffncp = 80, itSimple = 110, errmax = 1e-12, reltol = 1e-11, maxit = 10* 10000, verbose = 0, xLrg.sigma = 5) pnchisqV(x, ..., verbose = 0) pnchisqRC (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, no2nd.call = FALSE, cutOffncp = 80, small.ncp.logspace = small.ncp.logspaceR2015, itSimple = 110, errmax = 1e-12, reltol = 8 * .Machine$double.eps, epsS = reltol/2, maxit = 1e6, verbose = FALSE) pnchisqAbdelAty (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) pnchisqBolKuz (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) pnchisqPatnaik (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) pnchisqPearson (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) pnchisqSankaran_d(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) pnchisq_ss (x, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, i.max = 10000) pnchisqTerms (x, df, ncp, lower.tail = TRUE, i.max = 1000) pnchisqT93 (q, df, ncp, lower.tail = TRUE, log.p = FALSE, use.a = q > ncp) pnchisqT93.a(q, df, ncp, lower.tail = TRUE, log.p = FALSE) pnchisqT93.b(q, df, ncp, lower.tail = TRUE, log.p = FALSE) ss (x, df, ncp, i.max = 10000, useLv = !(expMin < -lambda && 1/lambda < expMax)) ss2 (x, df, ncp, i.max = 10000, eps = .Machine$double.eps) ss2. (q, df, ncp = 0, errmax = 1e-12, reltol = 2 * .Machine$double.eps, maxit = 1e+05, eps = reltol, verbose = FALSE)
pnchisq (q, df, ncp = 0, lower.tail = TRUE, cutOffncp = 80, itSimple = 110, errmax = 1e-12, reltol = 1e-11, maxit = 10* 10000, verbose = 0, xLrg.sigma = 5) pnchisqV(x, ..., verbose = 0) pnchisqRC (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, no2nd.call = FALSE, cutOffncp = 80, small.ncp.logspace = small.ncp.logspaceR2015, itSimple = 110, errmax = 1e-12, reltol = 8 * .Machine$double.eps, epsS = reltol/2, maxit = 1e6, verbose = FALSE) pnchisqAbdelAty (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) pnchisqBolKuz (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) pnchisqPatnaik (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) pnchisqPearson (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) pnchisqSankaran_d(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) pnchisq_ss (x, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, i.max = 10000) pnchisqTerms (x, df, ncp, lower.tail = TRUE, i.max = 1000) pnchisqT93 (q, df, ncp, lower.tail = TRUE, log.p = FALSE, use.a = q > ncp) pnchisqT93.a(q, df, ncp, lower.tail = TRUE, log.p = FALSE) pnchisqT93.b(q, df, ncp, lower.tail = TRUE, log.p = FALSE) ss (x, df, ncp, i.max = 10000, useLv = !(expMin < -lambda && 1/lambda < expMax)) ss2 (x, df, ncp, i.max = 10000, eps = .Machine$double.eps) ss2. (q, df, ncp = 0, errmax = 1e-12, reltol = 2 * .Machine$double.eps, maxit = 1e+05, eps = reltol, verbose = FALSE)
x |
numeric vector (of ‘quantiles’, i.e., abscissa values). |
q |
number ( ‘quantile’, i.e., abscissa value.) |
df |
degrees of freedom |
ncp |
non-centrality parameter |
lower.tail , log.p
|
logical, see, e.g., |
i.max |
number of terms in evaluation ... |
use.a |
|
cutOffncp |
a positive number, the cutoff value for |
itSimple |
... |
errmax |
absolute error tolerance. |
reltol |
convergence tolerance for relative error. |
maxit |
maximal number of iterations. |
xLrg.sigma |
positive number ... |
no2nd.call |
logical indicating if a 2nd call is made to the internal function .... |
small.ncp.logspace |
logical vector or |
epsS |
small positive number, the convergence tolerance of the ‘simple’ iterations... |
verbose |
logical or integer specifying if or how much the algorithm progress should be monitored. |
... |
further arguments passed from |
useLv |
|
eps |
convergence tolerance, a positive number. |
pnchisq_ss()
uses si <- ss(x, df, ..)
to get the series terms,
and returns 2*dchisq(x, df = df +2) * sum(si$s)
.
ss()
computes the terms needed for the expansion used in
pnchisq_ss()
.
ss2()
computes some simple “statistics” about ss(..)
.
ss()
returns a list with 3 components
s |
the series |
i1 |
location (in |
max |
(first) location of the maximal value in the series (i.e.,
|
Martin Maechler, from May 1999; starting from a post to the S-news
mailing list by Ranjan Maitra (@ math.umbc.edu) who showed a version of
our pchisqAppr.0()
thanking Jim Stapleton for providing it.
Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995)
Continuous Univariate Distributions Vol 2, 2nd ed.; Wiley;
chapter 29 Noncentral -Distributions;
notably Section 8 Approximations, p.461 ff.
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun
pchisq
and the wienergerm approximations for it:
pchisqW()
etc.
r_pois()
and its plot function, for an aspect of the series
approximations we use in pnchisq_ss()
.
## set of quantiles to use : qq <- c(.001, .005, .01, .05, (1:9)/10, 2^seq(0, 10, by= 0.5)) ## Take "all interesting" pchisq-approximation from our pkg : pkg <- "package:DPQ" pnchNms <- c(paste0("pchisq", c("V", "W", "W.", "W.R")), ls(pkg, pattern = "^pnchisq")) pnchNms <- pnchNms[!grepl("Terms$", pnchNms)] pnchF <- sapply(pnchNms, get, envir = as.environment(pkg)) str(pnchF) ncps <- c(0, 1/8, 1/2) pnchR <- as.list(setNames(ncps, paste("ncp",ncps, sep="="))) for(i.n in seq_along(ncps)) { ncp <- ncps[i.n] pnF <- if(ncp == 0) pnchF[!grepl("chisqT93", pnchNms)] else pnchF pnchR[[i.n]] <- sapply(pnF, function(F) Vectorize(F, names(formals(F))[[1]])(qq, df = 3, ncp=ncp)) } str(pnchR, max=2) ## A case where the non-central P[] should be improved : ## First, the central P[] which is close to exact -- choosing df=2 allows ## truly exact values: chi^2 = Exp(1) ! opal <- palette() palette(c("black", "red", "green3", "blue", "cyan", "magenta", "gold3", "gray44")) cR <- curve(pchisq (x, df=2, lower.tail=FALSE, log.p=TRUE), 0, 4000, n=2001) cRC <- curve(pnchisqRC(x, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE), add=TRUE, col=adjustcolor(2,1/2), lwd=3, lty=2, n=2001) cR0 <- curve(pchisq (x, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE), add=TRUE, col=adjustcolor(3,1/2), lwd=4, n=2001) ## smart "named list" constructur : list_ <- function(...) `names<-`(list(...), vapply(sys.call()[-1L], as.character, "")) JKBfn <-list_(pnchisqPatnaik, pnchisqPearson, pnchisqAbdelAty, pnchisqBolKuz, pnchisqSankaran_d) cl. <- setNames(adjustcolor(3+seq_along(JKBfn), 1/2), names(JKBfn)) lw. <- setNames(2+seq_along(JKBfn), names(JKBfn)) cR.JKB <- sapply(names(JKBfn), function(nmf) { curve(JKBfn[[nmf]](x, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE), add=TRUE, col=cl.[[nmf]], lwd=lw.[[nmf]], lty=lw.[[nmf]], n=2001) }) legend("bottomleft", c("pchisq", "pchisq.ncp=0", "pnchisqRC", names(JKBfn)), col=c(palette()[1], adjustcolor(2:3,1/2), cl.), lwd=c(1,3,4, lw.), lty=c(1,2,1, lw.)) palette(opal)# revert all.equal(cRC, cR0, tol = 1e-15) # TRUE [for now] ## the problematic "jump" : as.data.frame(cRC)[744:750,] if(.Platform$OS.type == "unix") ## verbose=TRUE may reveal which branches of the algorithm are taken: pnchisqRC(1500, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE, verbose=TRUE) # ## |--> -Inf currently ## The *two* principal cases (both lower.tail = {TRUE,FALSE} !), where ## "2nd call" happens *and* is currently beneficial : dfs <- c(1:2, 5, 10, 20) pL. <- pnchisqRC(.00001, df=dfs, ncp=0, log.p=TRUE, lower.tail=FALSE, verbose = TRUE) pR. <- pnchisqRC( 100, df=dfs, ncp=0, log.p=TRUE, verbose = TRUE) ## R's own non-central version (specifying 'ncp'): pL0 <- pchisq (.00001, df=dfs, ncp=0, log.p=TRUE, lower.tail=FALSE) pR0 <- pchisq ( 100, df=dfs, ncp=0, log.p=TRUE) ## R's *central* version, i.e., *not* specifying 'ncp' : pL <- pchisq (.00001, df=dfs, log.p=TRUE, lower.tail=FALSE) pR <- pchisq ( 100, df=dfs, log.p=TRUE) cbind(pL., pL, relEc = signif(1-pL./pL, 3), relE0 = signif(1-pL./pL0, 3)) cbind(pR., pR, relEc = signif(1-pR./pR, 3), relE0 = signif(1-pR./pR0, 3))
## set of quantiles to use : qq <- c(.001, .005, .01, .05, (1:9)/10, 2^seq(0, 10, by= 0.5)) ## Take "all interesting" pchisq-approximation from our pkg : pkg <- "package:DPQ" pnchNms <- c(paste0("pchisq", c("V", "W", "W.", "W.R")), ls(pkg, pattern = "^pnchisq")) pnchNms <- pnchNms[!grepl("Terms$", pnchNms)] pnchF <- sapply(pnchNms, get, envir = as.environment(pkg)) str(pnchF) ncps <- c(0, 1/8, 1/2) pnchR <- as.list(setNames(ncps, paste("ncp",ncps, sep="="))) for(i.n in seq_along(ncps)) { ncp <- ncps[i.n] pnF <- if(ncp == 0) pnchF[!grepl("chisqT93", pnchNms)] else pnchF pnchR[[i.n]] <- sapply(pnF, function(F) Vectorize(F, names(formals(F))[[1]])(qq, df = 3, ncp=ncp)) } str(pnchR, max=2) ## A case where the non-central P[] should be improved : ## First, the central P[] which is close to exact -- choosing df=2 allows ## truly exact values: chi^2 = Exp(1) ! opal <- palette() palette(c("black", "red", "green3", "blue", "cyan", "magenta", "gold3", "gray44")) cR <- curve(pchisq (x, df=2, lower.tail=FALSE, log.p=TRUE), 0, 4000, n=2001) cRC <- curve(pnchisqRC(x, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE), add=TRUE, col=adjustcolor(2,1/2), lwd=3, lty=2, n=2001) cR0 <- curve(pchisq (x, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE), add=TRUE, col=adjustcolor(3,1/2), lwd=4, n=2001) ## smart "named list" constructur : list_ <- function(...) `names<-`(list(...), vapply(sys.call()[-1L], as.character, "")) JKBfn <-list_(pnchisqPatnaik, pnchisqPearson, pnchisqAbdelAty, pnchisqBolKuz, pnchisqSankaran_d) cl. <- setNames(adjustcolor(3+seq_along(JKBfn), 1/2), names(JKBfn)) lw. <- setNames(2+seq_along(JKBfn), names(JKBfn)) cR.JKB <- sapply(names(JKBfn), function(nmf) { curve(JKBfn[[nmf]](x, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE), add=TRUE, col=cl.[[nmf]], lwd=lw.[[nmf]], lty=lw.[[nmf]], n=2001) }) legend("bottomleft", c("pchisq", "pchisq.ncp=0", "pnchisqRC", names(JKBfn)), col=c(palette()[1], adjustcolor(2:3,1/2), cl.), lwd=c(1,3,4, lw.), lty=c(1,2,1, lw.)) palette(opal)# revert all.equal(cRC, cR0, tol = 1e-15) # TRUE [for now] ## the problematic "jump" : as.data.frame(cRC)[744:750,] if(.Platform$OS.type == "unix") ## verbose=TRUE may reveal which branches of the algorithm are taken: pnchisqRC(1500, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE, verbose=TRUE) # ## |--> -Inf currently ## The *two* principal cases (both lower.tail = {TRUE,FALSE} !), where ## "2nd call" happens *and* is currently beneficial : dfs <- c(1:2, 5, 10, 20) pL. <- pnchisqRC(.00001, df=dfs, ncp=0, log.p=TRUE, lower.tail=FALSE, verbose = TRUE) pR. <- pnchisqRC( 100, df=dfs, ncp=0, log.p=TRUE, verbose = TRUE) ## R's own non-central version (specifying 'ncp'): pL0 <- pchisq (.00001, df=dfs, ncp=0, log.p=TRUE, lower.tail=FALSE) pR0 <- pchisq ( 100, df=dfs, ncp=0, log.p=TRUE) ## R's *central* version, i.e., *not* specifying 'ncp' : pL <- pchisq (.00001, df=dfs, log.p=TRUE, lower.tail=FALSE) pR <- pchisq ( 100, df=dfs, log.p=TRUE) cbind(pL., pL, relEc = signif(1-pL./pL, 3), relE0 = signif(1-pL./pL0, 3)) cbind(pR., pR, relEc = signif(1-pR./pR, 3), relE0 = signif(1-pR./pR0, 3))
Functions implementing the two Wiener germ approximations to
pchisq()
, the (non-central) chi-squared distribution, and to
qchisq()
its inverse, the quantile function.
These have been proposed by Penev and Raykov (2000) who also listed a Fortran implementation.
In order to use them in numeric boundary cases, Martin Maechler has improved the original formulas.
Auxiliary functions:
sW()
:The as in the Wienergerm approximation,
but using Taylor expansion when needed, i.e.,
(x*ncp / df^2) << 1
.
qs()
:...
z0()
:...
z.f()
:...
z.s()
:...
.................. ..................
pchisqW. (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, Fortran = TRUE, variant = c("s", "f")) pchisqV (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, Fortran = TRUE, variant = c("s", "f")) pchisqW (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, variant = c("s", "f")) pchisqW.R(x, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, variant = c("s", "f"), verbose = getOption("verbose")) sW(x, df, ncp) qs(x, df, ncp, f.s = sW(x, df, ncp), eps1 = 1/2, sMax = 1e+100) z0(x, df, ncp) z.f(x, df, ncp) z.s(x, df, ncp, verbose = getOption("verbose"))
pchisqW. (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, Fortran = TRUE, variant = c("s", "f")) pchisqV (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, Fortran = TRUE, variant = c("s", "f")) pchisqW (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, variant = c("s", "f")) pchisqW.R(x, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, variant = c("s", "f"), verbose = getOption("verbose")) sW(x, df, ncp) qs(x, df, ncp, f.s = sW(x, df, ncp), eps1 = 1/2, sMax = 1e+100) z0(x, df, ncp) z.f(x, df, ncp) z.s(x, df, ncp, verbose = getOption("verbose"))
q , x
|
vector of quantiles (main argument, see |
df |
degrees of freedom (non-negative, but can be non-integer). |
ncp |
non-centrality parameter (non-negative). |
lower.tail , log.p
|
|
variant |
a |
Fortran |
logical specifying if the Fortran or the C version should be used. |
verbose |
logical (or integer) indicating if or how much diagnostic output should be printed to the console during the computations. |
f.s |
a number must be a “version” of |
eps1 |
for |
sMax |
for |
....TODO... or write vignette
all these functions return numeric
vectors according to
their arguments.
The exact auxiliary function names etc, are still considered provisional; currently they are exported for easier documentation and use, but may well all disappear from the exported functions or even completely.
Martin Maechler, mostly end of Jan 2004
Penev, Spiridon and Raykov, Tenko (2000) A Wiener Germ approximation of the noncentral chi square distribution and of its quantiles. Computational Statistics 15, 219–228. doi:10.1007/s001800000029
Dinges, H. (1989) Special cases of second order Wiener germ approximations. Probability Theory and Related Fields, 83, 5–57.
pchisq
, and other approximations for it:
pnchisq()
etc.
## see example(pnchisqAppr) which looks at all of the pchisq() approximating functions
## see example(pnchisqAppr) which looks at all of the pchisq() approximating functions
Provide the first few terms of the asymptotic series approximation to
pnorm()
's (extreme) tail, from Abramawitz and Stegun's
26.2.13 (p.932).
pnormAsymp(x, k, lower.tail = FALSE, log.p = FALSE)
pnormAsymp(x, k, lower.tail = FALSE, log.p = FALSE)
x |
positive (at least non-negative) numeric vector. |
lower.tail , log.p
|
logical, see, e.g., |
k |
integer |
a numeric vector “as” x
; see the examples, on how to use it
with arbitrary precise mpfr
-numbers from package Rmpfr.
Martin Maechler
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain.
pnormU_S53
for (also asymptotic) upper and lower bounds.
x <- c((2:10)*2, 25, (3:9)*10, (1:9)*100, (1:8)*1000, (2:4)*5000) Px <- pnorm(x, lower.tail = FALSE, log.p=TRUE) PxA <- sapply(setNames(0:5, paste("k =",0:5)), pnormAsymp, x=x, lower.tail = FALSE, log.p=TRUE) ## rel.errors : signif(head( cbind(x, 1 - PxA/Px) , 20)) ## Look more closely with high precision computations if(requireNamespace("Rmpfr")) { ## ensure our function uses Rmpfr's dnorm(), etc: environment(pnormAsymp) <- asNamespace("Rmpfr") environment(pnormU_S53) <- asNamespace("Rmpfr") x. <- Rmpfr::mpfr(x, precBits=256) Px. <- Rmpfr::pnorm(x., lower.tail = FALSE, log.p=TRUE) ## manual, better sapplyMpfr(): PxA. <- sapply(setNames(0:5, paste("k =",0:5)), pnormAsymp, x=x., lower.tail = FALSE, log.p=TRUE) PxA. <- new("mpfrMatrix", unlist(PxA.), Dim=dim(PxA.), Dimnames=dimnames(PxA.)) PxA2 <- Rmpfr::cbind(pn_dbl = Px, PxA., pnormU_S53 = pnormU_S53(x=x., lower.tail = FALSE, log.p=TRUE)) ## rel.errors : note that pnormU_S53() is very slightly better than "k=2": print( Rmpfr::roundMpfr(Rmpfr::cbind(x., 1 - PxA2/Px.), precBits = 13), width = 111) pch <- c("R", 0:5, "U") matplot(x, abs(1 -PxA2/Px.), type="o", log="xy", pch=pch, main="pnorm(<tail>) approximations' relative errors - pnormAsymp(*, k=k)") legend("bottomleft", colnames(PxA2), col=1:6, pch=pch, lty=1:5, bty="n", inset=.01) at1 <- axTicks(1, axp = c(par("xaxp")[1:2], 3)) axis(1, at=at1) abline(h = 1:2* 2^-53, v = at1, lty=3, col=adjustcolor("gray20", 1/2)) axis(4, las=2, at= 2^-53, label = quote(epsilon[C]), col="gray20") }
x <- c((2:10)*2, 25, (3:9)*10, (1:9)*100, (1:8)*1000, (2:4)*5000) Px <- pnorm(x, lower.tail = FALSE, log.p=TRUE) PxA <- sapply(setNames(0:5, paste("k =",0:5)), pnormAsymp, x=x, lower.tail = FALSE, log.p=TRUE) ## rel.errors : signif(head( cbind(x, 1 - PxA/Px) , 20)) ## Look more closely with high precision computations if(requireNamespace("Rmpfr")) { ## ensure our function uses Rmpfr's dnorm(), etc: environment(pnormAsymp) <- asNamespace("Rmpfr") environment(pnormU_S53) <- asNamespace("Rmpfr") x. <- Rmpfr::mpfr(x, precBits=256) Px. <- Rmpfr::pnorm(x., lower.tail = FALSE, log.p=TRUE) ## manual, better sapplyMpfr(): PxA. <- sapply(setNames(0:5, paste("k =",0:5)), pnormAsymp, x=x., lower.tail = FALSE, log.p=TRUE) PxA. <- new("mpfrMatrix", unlist(PxA.), Dim=dim(PxA.), Dimnames=dimnames(PxA.)) PxA2 <- Rmpfr::cbind(pn_dbl = Px, PxA., pnormU_S53 = pnormU_S53(x=x., lower.tail = FALSE, log.p=TRUE)) ## rel.errors : note that pnormU_S53() is very slightly better than "k=2": print( Rmpfr::roundMpfr(Rmpfr::cbind(x., 1 - PxA2/Px.), precBits = 13), width = 111) pch <- c("R", 0:5, "U") matplot(x, abs(1 -PxA2/Px.), type="o", log="xy", pch=pch, main="pnorm(<tail>) approximations' relative errors - pnormAsymp(*, k=k)") legend("bottomleft", colnames(PxA2), col=1:6, pch=pch, lty=1:5, bty="n", inset=.01) at1 <- axTicks(1, axp = c(par("xaxp")[1:2], 3)) axis(1, at=at1) abline(h = 1:2* 2^-53, v = at1, lty=3, col=adjustcolor("gray20", 1/2)) axis(4, las=2, at= 2^-53, label = quote(epsilon[C]), col="gray20") }
Bounds for , i.e.,
pnorm(x, *,
lower.tail=FALSE)
, typically related to Mill's Ratio.
pnormL_LD10(x, lower.tail = FALSE, log.p = FALSE) pnormU_S53 (x, lower.tail = FALSE, log.p = FALSE)
pnormL_LD10(x, lower.tail = FALSE, log.p = FALSE) pnormU_S53 (x, lower.tail = FALSE, log.p = FALSE)
x |
positive (at least non-negative) numeric vector. |
lower.tail , log.p
|
logical, see, e.g., |
a numeric vector like x
Martin Maechler
Lutz Duembgen (2010)
Bounding Standard Gaussian Tail Probabilities;
arXiv preprint 1012.2063
,
https://arxiv.org/abs/1012.2063
x <- seq(1/64, 10, by=1/64) px <- cbind( lQ = pnorm (x, lower.tail=FALSE, log.p=TRUE) , Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE) , Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE)) matplot(x, px, type="l") # all on top of each other matplot(x, (D <- px[,2:3] - px[,1]), type="l") # the differences abline(h=0, lty=3, col=adjustcolor(1, 1/2)) ## check they are lower and upper bounds indeed : stopifnot(D[,"Lo"] < 0, D[,"Up"] > 0) matplot(x[x>4], D[x>4,], type="l") # the differences abline(h=0, lty=3, col=adjustcolor(1, 1/2)) ### zoom out to larger x : [1, 1000] x <- seq(1, 1000, by=1/4) px <- cbind( lQ = pnorm (x, lower.tail=FALSE, log.p=TRUE) , Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE) , Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE)) matplot(x, px, type="l") # all on top of each other matplot(x, (D <- px[,2:3] - px[,1]), type="l", log="x") # the differences abline(h=0, lty=3, col=adjustcolor(1, 1/2)) ## check they are lower and upper bounds indeed : table(D[,"Lo"] < 0) # no longer always true table(D[,"Up"] > 0) ## not even when equality (where it's much better though): table(D[,"Lo"] <= 0) table(D[,"Up"] >= 0) ## *relative* differences: matplot(x, (rD <- 1 - px[,2:3] / px[,1]), type="l", log = "x") abline(h=0, lty=3, col=adjustcolor(1, 1/2)) ## abs() matplot(x, abs(rD), type="l", log = "xy", axes=FALSE, # NB: curves *cross* main = "relative differences 1 - pnormUL(x, *)/pnorm(x,*)") legend("top", c("Low.Bnd(D10)", "Upp.Bnd(S53)"), bty="n", col=1:2, lty=1:2) sfsmisc::eaxis(1, sub10 = 2) sfsmisc::eaxis(2) abline(h=(1:4)*2^-53, col=adjustcolor(1, 1/4)) ### zoom out to LARGE x : --------------------------- x <- 2^seq(0, 30, by = 1/64) if(FALSE)## or even HUGE: x <- 2^seq(4, 513, by = 1/16) px <- cbind( lQ = pnorm (x, lower.tail=FALSE, log.p=TRUE) , a0 = dnorm(x, log=TRUE) , a1 = dnorm(x, log=TRUE) - log(x) , Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE) , Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE)) col4 <- adjustcolor(1:4, 1/2) doLegTit <- function() { title(main = "relative differences 1 - pnormUL(x, *)/pnorm(x,*)") legend("top", c("phi(x)", "phi(x)/x", "Low.Bnd(D10)", "Upp.Bnd(S53)"), bty="n", col=col4, lty=1:4) } ## *relative* differences are relevant: matplot(x, (rD <- 1 - px[,-1] / px[,1]), type="l", log = "x", ylim = c(-1,1)/2^8, col=col4) ; doLegTit() abline(h=0, lty=3, col=adjustcolor(1, 1/2)) ## abs(rel.Diff) ---> can use log-log: matplot(x, abs(rD), type="l", log = "xy", xaxt="n", yaxt="n"); doLegTit() sfsmisc::eaxis(1, sub10=2) sfsmisc::eaxis(2, nintLog=12) abline(h=(1:4)*2^-53, col=adjustcolor(1, 1/4)) ## lower.tail=TRUE (w/ log.p=TRUE) works "the same" for x < 0: x <- - 2^seq(0, 30, by = 1/64) ## == px <- cbind( lQ = pnorm (x, lower.tail=TRUE, log.p=TRUE) , a0 = log1mexp(- dnorm(-x, log=TRUE)) , a1 = log1mexp(-(dnorm(-x, log=TRUE) - log(-x))) , Lo = log1mexp(-pnormL_LD10(-x, lower.tail=TRUE, log.p=TRUE)) , Up = log1mexp(-pnormU_S53 (-x, lower.tail=TRUE, log.p=TRUE)) ) matplot(-x, (rD <- 1 - px[,-1] / px[,1]), type="l", log = "x", ylim = c(-1,1)/2^8, col=col4) ; doLegTit() abline(h=0, lty=3, col=adjustcolor(1, 1/2))
x <- seq(1/64, 10, by=1/64) px <- cbind( lQ = pnorm (x, lower.tail=FALSE, log.p=TRUE) , Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE) , Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE)) matplot(x, px, type="l") # all on top of each other matplot(x, (D <- px[,2:3] - px[,1]), type="l") # the differences abline(h=0, lty=3, col=adjustcolor(1, 1/2)) ## check they are lower and upper bounds indeed : stopifnot(D[,"Lo"] < 0, D[,"Up"] > 0) matplot(x[x>4], D[x>4,], type="l") # the differences abline(h=0, lty=3, col=adjustcolor(1, 1/2)) ### zoom out to larger x : [1, 1000] x <- seq(1, 1000, by=1/4) px <- cbind( lQ = pnorm (x, lower.tail=FALSE, log.p=TRUE) , Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE) , Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE)) matplot(x, px, type="l") # all on top of each other matplot(x, (D <- px[,2:3] - px[,1]), type="l", log="x") # the differences abline(h=0, lty=3, col=adjustcolor(1, 1/2)) ## check they are lower and upper bounds indeed : table(D[,"Lo"] < 0) # no longer always true table(D[,"Up"] > 0) ## not even when equality (where it's much better though): table(D[,"Lo"] <= 0) table(D[,"Up"] >= 0) ## *relative* differences: matplot(x, (rD <- 1 - px[,2:3] / px[,1]), type="l", log = "x") abline(h=0, lty=3, col=adjustcolor(1, 1/2)) ## abs() matplot(x, abs(rD), type="l", log = "xy", axes=FALSE, # NB: curves *cross* main = "relative differences 1 - pnormUL(x, *)/pnorm(x,*)") legend("top", c("Low.Bnd(D10)", "Upp.Bnd(S53)"), bty="n", col=1:2, lty=1:2) sfsmisc::eaxis(1, sub10 = 2) sfsmisc::eaxis(2) abline(h=(1:4)*2^-53, col=adjustcolor(1, 1/4)) ### zoom out to LARGE x : --------------------------- x <- 2^seq(0, 30, by = 1/64) if(FALSE)## or even HUGE: x <- 2^seq(4, 513, by = 1/16) px <- cbind( lQ = pnorm (x, lower.tail=FALSE, log.p=TRUE) , a0 = dnorm(x, log=TRUE) , a1 = dnorm(x, log=TRUE) - log(x) , Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE) , Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE)) col4 <- adjustcolor(1:4, 1/2) doLegTit <- function() { title(main = "relative differences 1 - pnormUL(x, *)/pnorm(x,*)") legend("top", c("phi(x)", "phi(x)/x", "Low.Bnd(D10)", "Upp.Bnd(S53)"), bty="n", col=col4, lty=1:4) } ## *relative* differences are relevant: matplot(x, (rD <- 1 - px[,-1] / px[,1]), type="l", log = "x", ylim = c(-1,1)/2^8, col=col4) ; doLegTit() abline(h=0, lty=3, col=adjustcolor(1, 1/2)) ## abs(rel.Diff) ---> can use log-log: matplot(x, abs(rD), type="l", log = "xy", xaxt="n", yaxt="n"); doLegTit() sfsmisc::eaxis(1, sub10=2) sfsmisc::eaxis(2, nintLog=12) abline(h=(1:4)*2^-53, col=adjustcolor(1, 1/4)) ## lower.tail=TRUE (w/ log.p=TRUE) works "the same" for x < 0: x <- - 2^seq(0, 30, by = 1/64) ## == px <- cbind( lQ = pnorm (x, lower.tail=TRUE, log.p=TRUE) , a0 = log1mexp(- dnorm(-x, log=TRUE)) , a1 = log1mexp(-(dnorm(-x, log=TRUE) - log(-x))) , Lo = log1mexp(-pnormL_LD10(-x, lower.tail=TRUE, log.p=TRUE)) , Up = log1mexp(-pnormU_S53 (-x, lower.tail=TRUE, log.p=TRUE)) ) matplot(-x, (rD <- 1 - px[,-1] / px[,1]), type="l", log = "x", ylim = c(-1,1)/2^8, col=col4) ; doLegTit() abline(h=0, lty=3, col=adjustcolor(1, 1/2))
Compute different approximations for the non-central t-Distribution cumulative probability distribution function.
pntR (t, df, ncp, lower.tail = TRUE, log.p = FALSE, use.pnorm = (df > 4e5 || ncp^2 > 2*log(2)*1021), # .Machine$double.min.exp = -1022 itrmax = 1000, errmax = 1e-12, verbose = TRUE) pntR1 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, use.pnorm = (df > 4e5 || ncp^2 > 2*log(2)*1021), itrmax = 1000, errmax = 1e-12, verbose = TRUE) pntP94 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, itrmax = 1000, errmax = 1e-12, verbose = TRUE) pntP94.1 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, itrmax = 1000, errmax = 1e-12, verbose = TRUE) pnt3150 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, M = 1000, verbose = TRUE) pnt3150.1 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, M = 1000, verbose = TRUE) pntLrg (t, df, ncp, lower.tail = TRUE, log.p = FALSE) pntJW39 (t, df, ncp, lower.tail = TRUE, log.p = FALSE) pntJW39.0 (t, df, ncp, lower.tail = TRUE, log.p = FALSE) pntVW13 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, keepS = FALSE, verbose = FALSE) pntGST23_T6 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, y1.tol = 1e-8, Mterms = 20, alt = FALSE, verbose = TRUE) pntGST23_T6.1(t, df, ncp, lower.tail = TRUE, log.p = FALSE, y1.tol = 1e-8, Mterms = 20, alt = FALSE, verbose = TRUE) ## *Non*-asymptotic, (at least partly much) better version of R's Lenth(1998) algorithm pntGST23_1(t, df, ncp, lower.tail = TRUE, log.p = FALSE, j0max = 1e4, # for now IxpqFUN = Ixpq, alt = FALSE, verbose = TRUE, ...)
pntR (t, df, ncp, lower.tail = TRUE, log.p = FALSE, use.pnorm = (df > 4e5 || ncp^2 > 2*log(2)*1021), # .Machine$double.min.exp = -1022 itrmax = 1000, errmax = 1e-12, verbose = TRUE) pntR1 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, use.pnorm = (df > 4e5 || ncp^2 > 2*log(2)*1021), itrmax = 1000, errmax = 1e-12, verbose = TRUE) pntP94 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, itrmax = 1000, errmax = 1e-12, verbose = TRUE) pntP94.1 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, itrmax = 1000, errmax = 1e-12, verbose = TRUE) pnt3150 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, M = 1000, verbose = TRUE) pnt3150.1 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, M = 1000, verbose = TRUE) pntLrg (t, df, ncp, lower.tail = TRUE, log.p = FALSE) pntJW39 (t, df, ncp, lower.tail = TRUE, log.p = FALSE) pntJW39.0 (t, df, ncp, lower.tail = TRUE, log.p = FALSE) pntVW13 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, keepS = FALSE, verbose = FALSE) pntGST23_T6 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, y1.tol = 1e-8, Mterms = 20, alt = FALSE, verbose = TRUE) pntGST23_T6.1(t, df, ncp, lower.tail = TRUE, log.p = FALSE, y1.tol = 1e-8, Mterms = 20, alt = FALSE, verbose = TRUE) ## *Non*-asymptotic, (at least partly much) better version of R's Lenth(1998) algorithm pntGST23_1(t, df, ncp, lower.tail = TRUE, log.p = FALSE, j0max = 1e4, # for now IxpqFUN = Ixpq, alt = FALSE, verbose = TRUE, ...)
t |
vector of quantiles (called |
df |
degrees of freedom ( |
ncp |
non-centrality parameter |
log , log.p
|
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
use.pnorm |
The default corresponds to R |
itrmax |
number of iterations / terms. |
errmax |
convergence bound for the iterations. |
verbose |
|
M |
positive integer specifying the number of terms to use in the series. |
keepS |
|
y1.tol |
positive tolerance for warning if |
Mterms |
number of summation terms for |
j0max |
experimental: large integer limiting the summation
terms in |
IxpqFUN |
the (scaled) incomplete beta function |
alt |
|
... |
further arguments passed to |
pntR1()
:a pure R version of the (C level)
code of R's own pt()
, additionally giving more
flexibility (via arguments use.pnorm
, itrmax
, errmax
whose defaults here have been hard-coded in R's C code called by pt()
).
This implements an improved version of the AS 243 algorithm from Lenth(1989);
pt()
says:This computes the lower tail only, so the upper tail suffers from cancellation and a warning will be given when this is likely to be significant.
The code for non-zero
ncp
is principally intended to be used for moderate
values of ncp
: it will not be highly accurate,
especially in the tails, for large values.
pntR()
:the Vectorize()
d version of pntR1()
.
pntP94()
, pntP94.1()
:New versions of
pntR1()
, pntR()
; using the Posten (1994) algorithm.
pntP94()
is the Vectorize()
d version of
pntP94.1()
.
pnt3150()
, pnt3150.1()
:Simple inefficient but hopefully correct version of pntP94..() This is really a direct implementation of formula (31.50), p.532 of Johnson, Kotz and Balakrishnan (1995)
pntLrg()
:provides the pnorm()
approximation (to the non-central ) from
Abramowitz and Stegun (26.7.10), p.949; which should be employed only for
large
df
and/or ncp
.
pntJW39.0()
:use the Jennett & Welch (1939) approximation
see Johnson et al. (1995), p. 520, after (31.26a). This is still
fast for huge ncp
but has wrong asymptotic tail
for . Crucially needs
b_chi(df)
.
pntJW39()
:is an improved version of pntJW39.0()
,
using b_chi(df, one.minus=TRUE)
to avoid
cancellation when computing .
pntGST23_T6()
:(and pntGST23_T6.1()
for
informational purposes only) use the Gil et al.(2023)'s
approximation of their Theorem 6.
pntGST23_1()
:implements Gil et al.(2023)'s direct
pbeta()
based formula (1), which is very close to
Lenth's algorithm.
pntVW13()
:use MM's R translation of Viktor Witkowský (2013)'s matlab implementation.
a number for pntJKBf1()
and .pntJKBch1()
.
a numeric vector of the same length as the maximum of the lengths of
x, df, ncp
for pntJKBf()
and .pntJKBch()
.
Martin Maechler
Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions Vol~2, 2nd ed.; Wiley; chapter 31, Section 5 Distribution Function, p.514 ff
Lenth, R. V. (1989). Algorithm AS 243 —
Cumulative distribution function of the non-central distribution,
JRSS C (Applied Statistics) 38, 185–189.
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover; formula (26.7.10), p.949
Posten, Harry O. (1994) A new algorithm for the noncentral t distribution function, Journal of Statistical Computation and Simulation 51, 79–87; doi:10.1080/00949659408811623.
– not yet implemented –
Chattamvelli, R. and Shanmugam, R. (1994)
An enhanced algorithm for noncentral t-distribution,
Journal of Statistical Computation and Simulation 49, 77–83.
doi:10.1080/00949659408811561
– not yet implemented –
Akahira, Masafumi. (1995).
A higher order approximation to a percentage point of the noncentral t distribution,
Communications in Statistics - Simulation and Computation 24:3, 595–605;
doi:10.1080/03610919508813261
Michael Perakis and Evdokia Xekalaki (2003) On a Comparison of the Efficacy of Various Approximations of the Critical Values for Tests on the Process Capability Indices CPL, CPU, and Cpk, Communications in Statistics - Simulation and Computation 32, 1249–1264; doi:10.1081/SAC-120023888
Witkovský, Viktor (2013) A Note on Computing Extreme Tail Probabilities of the Noncentral T Distribution with Large Noncentrality Parameter, Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, Mathematica 52(2), 131–143.
Gil A., Segura J., and Temme N.M. (2023) New asymptotic representations of the noncentral t-distribution, Stud Appl Math. 151, 857–882; doi:10.1111/sapm.12609 ; acronym “GST23”.
pt
, for R's version of non-central t probabilities.
tt <- seq(0, 10, len = 21) ncp <- seq(0, 6, len = 31) pt3R <- outer(tt, ncp, pt, , df = 3) pt3JKB <- outer(tt, ncp, pntR, df = 3)# currently verbose stopifnot(all.equal(pt3R, pt3JKB, tolerance = 4e-15))# 64-bit Lnx: 2.78e-16 ## Gil et al.(2023) -- Table 1 p.869 str(GST23_tab1 <- read.table(header=TRUE, text = " x pnt_x_delta Rel.accuracy l_y j_max 5 0.7890745035061528e-20 0.20e-13 0.29178 254 8 0.1902963697413609e-07 0.40e-12 0.13863 294 11 0.4649258368179092e-03 0.12e-09 0.07845 310 14 0.2912746016055676e-01 0.11e-07 0.04993 317 17 0.1858422833307925e-00 0.41e-06 0.03441 321 20 0.4434882973203470e-00 0.82e-05 0.02510 323")) x1 <- c(5,8,11,14,17,20) (p1 <- pt (x1, df=10.3, ncp=20)) (p1R <- pntR(x1, df=10.3, ncp=20)) # verbose=TRUE is default all.equal(p1, p1R, tolerance=0) # 4.355452e-15 {on x86_64} as have *no* LDOUBLE on R level stopifnot(all.equal(p1, p1R)) ## NB: According to Gil et al., the first value (x=5) is really wrong ## p1.23 <- .. Gil et al., Table 1: p1.23.11 <- pntGST23_T6(x1, df=10.3, ncp=20, Mterms = 11) p1.23.20 <- pntGST23_T6(x1, df=10.3, ncp=20, Mterms = 20, verbose=TRUE) # ==> Mterms = 11 is good only for x=5 p1.23.50 <- pntGST23_T6(x1, df=10.3, ncp=20, Mterms = 50, verbose=TRUE) x <- 4:40 ; df <- 10.3 ncp <- 20 p1 <- pt (x, df=df, ncp=ncp) pG1 <- pntGST23_1(x, df=df, ncp=ncp) pG1.bR <- pntGST23_1(x, df=df, ncp=ncp, IxpqFUN = \(x, l_x=.5-x+.5, p, q) Ixpq(x,l_x, p,q)) pG1.BR <- pntGST23_1(x, df=df, ncp=ncp, IxpqFUN = \(x, l_x, p, q) pbeta(x, p,q)) cbind(x, p1, pG1, pG1.bR, pG1.BR) all.equal(pG1, p1, tolerance=0) # 1.034 e-12 all.equal(pG1, pG1.bR, tolerance=0) # 2.497031 e-13 all.equal(pG1, pG1.BR, tolerance=0) # 2.924698 e-13 all.equal(pG1.BR,pG1.bR,tolerance=0)# 1.68644 e-13 stopifnot(exprs = { all.equal(pG1, p1, tolerance = 4e-12) all.equal(pG1, pG1.bR, tolerance = 1e-12) all.equal(pG1, pG1.BR, tolerance = 1e-12) }) ncp <- 40 ## is > 37.62 = "critical" for Lenth' algorithm ### --------- pntVW13() -------------------------------------------------- ## length 1 arguments: str(rr <- pntVW13(t = 1, df = 2, ncp = 3, verbose=TRUE, keepS=TRUE)) all.equal(rr$cdf, pt(1,2,3), tol = 0)# "Mean relative difference: 4.956769e-12" stopifnot( all.equal(rr$cdf, pt(1,2,3)) ) str(rr <- pntVW13(t = 1:19, df = 2, ncp = 3, verbose=TRUE, keepS=TRUE)) str(r2 <- pntVW13(t = 1, df = 2:20, ncp = 3, verbose=TRUE, keepS=TRUE)) str(r3 <- pntVW13(t = 1, df = 2:20, ncp = 3:21, verbose=TRUE, keepS=TRUE)) pt1.10.5_T <- 4.34725285650591657e-5 # Ex. 7 of Witkovsky(2013) pt1.10.5 <- pntVW13(1, 10, 5) all.equal(pt1.10.5_T, pt1.10.5, tol = 0)# TRUE! (Lnx Fedora 40; 2024-07-04); # 3.117e-16 (Macbuilder R 4.4.0, macOS Ventura 13.3.1) stopifnot(exprs = { identical(rr$cdf, r1 <- pntVW13(t = 1:19, df = 2, ncp = 3)) identical(r1[1], pntVW13(1, 2, 3)) identical(r1[7], pntVW13(7, 2, 3)) all.equal(pt1.10.5_T, pt1.10.5, tol = 9e-16)# NB even tol=0 (64 Lnx) }) ## However, R' pt() is only equal for the very first cbind(t = 1:19, pntVW = r1, pt = pt(1:19, 2,3))
tt <- seq(0, 10, len = 21) ncp <- seq(0, 6, len = 31) pt3R <- outer(tt, ncp, pt, , df = 3) pt3JKB <- outer(tt, ncp, pntR, df = 3)# currently verbose stopifnot(all.equal(pt3R, pt3JKB, tolerance = 4e-15))# 64-bit Lnx: 2.78e-16 ## Gil et al.(2023) -- Table 1 p.869 str(GST23_tab1 <- read.table(header=TRUE, text = " x pnt_x_delta Rel.accuracy l_y j_max 5 0.7890745035061528e-20 0.20e-13 0.29178 254 8 0.1902963697413609e-07 0.40e-12 0.13863 294 11 0.4649258368179092e-03 0.12e-09 0.07845 310 14 0.2912746016055676e-01 0.11e-07 0.04993 317 17 0.1858422833307925e-00 0.41e-06 0.03441 321 20 0.4434882973203470e-00 0.82e-05 0.02510 323")) x1 <- c(5,8,11,14,17,20) (p1 <- pt (x1, df=10.3, ncp=20)) (p1R <- pntR(x1, df=10.3, ncp=20)) # verbose=TRUE is default all.equal(p1, p1R, tolerance=0) # 4.355452e-15 {on x86_64} as have *no* LDOUBLE on R level stopifnot(all.equal(p1, p1R)) ## NB: According to Gil et al., the first value (x=5) is really wrong ## p1.23 <- .. Gil et al., Table 1: p1.23.11 <- pntGST23_T6(x1, df=10.3, ncp=20, Mterms = 11) p1.23.20 <- pntGST23_T6(x1, df=10.3, ncp=20, Mterms = 20, verbose=TRUE) # ==> Mterms = 11 is good only for x=5 p1.23.50 <- pntGST23_T6(x1, df=10.3, ncp=20, Mterms = 50, verbose=TRUE) x <- 4:40 ; df <- 10.3 ncp <- 20 p1 <- pt (x, df=df, ncp=ncp) pG1 <- pntGST23_1(x, df=df, ncp=ncp) pG1.bR <- pntGST23_1(x, df=df, ncp=ncp, IxpqFUN = \(x, l_x=.5-x+.5, p, q) Ixpq(x,l_x, p,q)) pG1.BR <- pntGST23_1(x, df=df, ncp=ncp, IxpqFUN = \(x, l_x, p, q) pbeta(x, p,q)) cbind(x, p1, pG1, pG1.bR, pG1.BR) all.equal(pG1, p1, tolerance=0) # 1.034 e-12 all.equal(pG1, pG1.bR, tolerance=0) # 2.497031 e-13 all.equal(pG1, pG1.BR, tolerance=0) # 2.924698 e-13 all.equal(pG1.BR,pG1.bR,tolerance=0)# 1.68644 e-13 stopifnot(exprs = { all.equal(pG1, p1, tolerance = 4e-12) all.equal(pG1, pG1.bR, tolerance = 1e-12) all.equal(pG1, pG1.BR, tolerance = 1e-12) }) ncp <- 40 ## is > 37.62 = "critical" for Lenth' algorithm ### --------- pntVW13() -------------------------------------------------- ## length 1 arguments: str(rr <- pntVW13(t = 1, df = 2, ncp = 3, verbose=TRUE, keepS=TRUE)) all.equal(rr$cdf, pt(1,2,3), tol = 0)# "Mean relative difference: 4.956769e-12" stopifnot( all.equal(rr$cdf, pt(1,2,3)) ) str(rr <- pntVW13(t = 1:19, df = 2, ncp = 3, verbose=TRUE, keepS=TRUE)) str(r2 <- pntVW13(t = 1, df = 2:20, ncp = 3, verbose=TRUE, keepS=TRUE)) str(r3 <- pntVW13(t = 1, df = 2:20, ncp = 3:21, verbose=TRUE, keepS=TRUE)) pt1.10.5_T <- 4.34725285650591657e-5 # Ex. 7 of Witkovsky(2013) pt1.10.5 <- pntVW13(1, 10, 5) all.equal(pt1.10.5_T, pt1.10.5, tol = 0)# TRUE! (Lnx Fedora 40; 2024-07-04); # 3.117e-16 (Macbuilder R 4.4.0, macOS Ventura 13.3.1) stopifnot(exprs = { identical(rr$cdf, r1 <- pntVW13(t = 1:19, df = 2, ncp = 3)) identical(r1[1], pntVW13(1, 2, 3)) identical(r1[7], pntVW13(7, 2, 3)) all.equal(pt1.10.5_T, pt1.10.5, tol = 9e-16)# NB even tol=0 (64 Lnx) }) ## However, R' pt() is only equal for the very first cbind(t = 1:19, pntVW = r1, pt = pt(1:19, 2,3))
R_pow()
pow(x,y)
calls R C API ‘Rmathlib’'s R_pow(x,y)
function to compute x^y
or when try.int.y
is true
(as by default), and y
is integer valued and fits into integer
range, R_pow_di(x,y)
.
pow_di(x,y)
with integer y
calls R mathlib's R_pow_di(x,y)
.
pow (x, y, try.int.y = TRUE) pow_di(x, y) .pow (x, y)
pow (x, y, try.int.y = TRUE) pow_di(x, y) .pow (x, y)
x |
a numeric vector. |
y |
a numeric or in the case of |
try.int.y |
logical indicating if |
In January 2024, I found (e.g., in ‘tests/pow-tst.R’)
that the accuracy of pow_di()
, i.e., also the C function
R_pow_di()
in R's API is of much lower precision than R's
x^y
or (equivalently) R_pow(x,y)
in R's API, notably on
Linux and macOS, using glib etc, sometimes as soon as
or so.
.pow(x,y)
is identical to pow(x,y, try.int.y = FALSE)
a numeric vector like x
or y
which are recycled to common
length, of course.
Martin Maechler
Base R's ^
“operator”.
set.seed(27) x <- rnorm(100) y <- 0:9 stopifnot(exprs = { all.equal(x^y, pow(x,y)) all.equal(x^y, pow(x,y, FALSE)) all.equal(x^y, pow_di(x,y)) })
set.seed(27) x <- rnorm(100) y <- 0:9 stopifnot(exprs = { all.equal(x^y, pow(x,y)) all.equal(x^y, pow(x,y, FALSE)) all.equal(x^y, pow_di(x,y)) })
, notably for small
Compute accurately, notably also for small
, where
the naive formula suffers from cancellation, returning
1
, often.
pow1p(x, y, pow = ((x + 1) - 1) == x || abs(x) > 0.5 || is.na(x))
pow1p(x, y, pow = ((x + 1) - 1) == x || abs(x) > 0.5 || is.na(x))
x , y
|
numeric or number-like; in the latter case, arithmetic incl. |
pow |
|
A pure R-implementation of R 4.4.0's new C-level
pow1p()
function which was introduced for more accurate
dbinom_raw()
computations.
Currently, we use the “exact” (nested) polynomial formula for
.
MM is conjecturing that the default pow=FALSE
for (most)
is sub-optimal.
numeric or number-like, as x + y
.
Originally proposed by Morten Welinder, see PR#18642;
tweaked, notably for small integer y
, by Martin Maechler.
^
, log1p
,
dbinom_raw
.
x <- 2^-(1:50) y <- 99 f1 <- (1+x)^99 f2 <- exp(y * log1p(x)) fp <- pow1p(x, 99) matplot(x, cbind(f1, f2, fp), type = "l", col = 2:4) legend("top", legend = expression((1+x)^99, exp(99 * log1p(x)), pow1p(x, 99)), bty="n", col=2:4, lwd=2) cbind(x, f1, f2, sfsmisc::relErrV(f2, f1))
x <- 2^-(1:50) y <- 99 f1 <- (1+x)^99 f2 <- exp(y * log1p(x)) fp <- pow1p(x, 99) matplot(x, cbind(f1, f2, fp), type = "l", col = 2:4) legend("top", legend = expression((1+x)^99, exp(99 * log1p(x)), pow1p(x, 99)), bty="n", col=2:4, lwd=2) cbind(x, f1, f2, sfsmisc::relErrV(f2, f1))
Direct computation and errors of ppois
Poisson distribution
probabilities.
ppoisD(q, lambda, all.from.0 = TRUE, verbose = 0L) ppoisErr (lambda, ppFUN = ppoisD, iP = 1e-15, xM = qpois(iP, lambda=lambda, lower.tail=FALSE), verbose = FALSE)
ppoisD(q, lambda, all.from.0 = TRUE, verbose = 0L) ppoisErr (lambda, ppFUN = ppoisD, iP = 1e-15, xM = qpois(iP, lambda=lambda, lower.tail=FALSE), verbose = FALSE)
q |
numeric vector of non-negative integer values,
“quantiles” at which to evaluate |
lambda |
positive parameter of the Poisson distribution,
|
all.from.0 |
|
ppFUN |
alternative |
iP |
small number, |
xM |
(specified instead of |
verbose |
|
ppoisD()
contains the poisson probabilities along q
, i.e.,
is a numeric vector of length length(q)
.
re <- ppoisErr()
returns the relative “error” of
ppois(x0, lambda)
where ppFUN(x0, lambda)
is
assumed to be the truth and x0
the “worst case”, i.e., the
value (among x
) with the largest such difference.
Additionally, attr(re, "x0")
contains that value x0
.
Martin Maechler, March 2004; 2019 ff
(lams <- outer(c(1,2,5), 10^(0:3)))# 10^4 is already slow! system.time(e1 <- sapply(lams, ppoisErr)) e1 / .Machine$double.eps ## Try another 'ppFUN' :--------------------------------- ## this relies on the fact that it's *only* used on an 'x' of the form 0:M : ppD0 <- function(x, lambda, all.from.0=TRUE) cumsum(dpois(if(all.from.0) 0:x else x, lambda=lambda)) ## and test it: p0 <- ppD0 ( 1000, lambda=10) p1 <- ppois(0:1000, lambda=10) stopifnot(all.equal(p0,p1, tol=8*.Machine$double.eps)) system.time(p0.slow <- ppoisD(0:1000, lambda=10, all.from.0=FALSE))# not very slow, here p0.1 <- ppoisD(1000, lambda=10) if(requireNamespace("Rmpfr")) { ppoisMpfr <- function(x, lambda) cumsum(Rmpfr::dpois(x, lambda=lambda)) p0.best <- ppoisMpfr(0:1000, lambda = Rmpfr::mpfr(10, precBits = 256)) AllEq. <- Rmpfr::all.equal AllEq <- function(target, current, ...) AllEq.(target, current, ..., formatFUN = function(x, ...) Rmpfr::format(x, digits = 9)) print(AllEq(p0.best, p0, tol = 0)) # 2.06e-18 print(AllEq(p0.best, p0.slow, tol = 0)) # the "worst" (4.44e-17) print(AllEq(p0.best, p0.1, tol = 0)) # 1.08e-18 } ## Now (with 'all.from.0 = TRUE', it is fast too): p15 <- ppoisErr(2^13) p15.0. <- ppoisErr(2^13, ppFUN = ppD0) c(p15, p15.0.) / .Machine$double.eps # on Lnx 64b, see (-10 2.5), then (-2 -2) ## lapply(), so you see "x0" values : str(e0. <- lapply(lams, ppoisErr, ppFUN = ppD0)) ## The first version [called 'err.lambd0()' for years] used simple cumsum(dpois(..)) ## NOTE: It is *stil* much faster, as it relies on special x == 0:M relation ## Author: Martin Maechler, Date: 1 Mar 2004, 17:40 ## e0 <- sapply(lams, function(lamb) ppoisErr(lamb, ppFUN = ppD0)) all.equal(e1, e0) # typically TRUE, though small "random" differences: cbind(e1, e0) * 2^53 # on Lnx 64b, seeing integer values in {-24, .., 33}
(lams <- outer(c(1,2,5), 10^(0:3)))# 10^4 is already slow! system.time(e1 <- sapply(lams, ppoisErr)) e1 / .Machine$double.eps ## Try another 'ppFUN' :--------------------------------- ## this relies on the fact that it's *only* used on an 'x' of the form 0:M : ppD0 <- function(x, lambda, all.from.0=TRUE) cumsum(dpois(if(all.from.0) 0:x else x, lambda=lambda)) ## and test it: p0 <- ppD0 ( 1000, lambda=10) p1 <- ppois(0:1000, lambda=10) stopifnot(all.equal(p0,p1, tol=8*.Machine$double.eps)) system.time(p0.slow <- ppoisD(0:1000, lambda=10, all.from.0=FALSE))# not very slow, here p0.1 <- ppoisD(1000, lambda=10) if(requireNamespace("Rmpfr")) { ppoisMpfr <- function(x, lambda) cumsum(Rmpfr::dpois(x, lambda=lambda)) p0.best <- ppoisMpfr(0:1000, lambda = Rmpfr::mpfr(10, precBits = 256)) AllEq. <- Rmpfr::all.equal AllEq <- function(target, current, ...) AllEq.(target, current, ..., formatFUN = function(x, ...) Rmpfr::format(x, digits = 9)) print(AllEq(p0.best, p0, tol = 0)) # 2.06e-18 print(AllEq(p0.best, p0.slow, tol = 0)) # the "worst" (4.44e-17) print(AllEq(p0.best, p0.1, tol = 0)) # 1.08e-18 } ## Now (with 'all.from.0 = TRUE', it is fast too): p15 <- ppoisErr(2^13) p15.0. <- ppoisErr(2^13, ppFUN = ppD0) c(p15, p15.0.) / .Machine$double.eps # on Lnx 64b, see (-10 2.5), then (-2 -2) ## lapply(), so you see "x0" values : str(e0. <- lapply(lams, ppoisErr, ppFUN = ppD0)) ## The first version [called 'err.lambd0()' for years] used simple cumsum(dpois(..)) ## NOTE: It is *stil* much faster, as it relies on special x == 0:M relation ## Author: Martin Maechler, Date: 1 Mar 2004, 17:40 ## e0 <- sapply(lams, function(lamb) ppoisErr(lamb, ppFUN = ppD0)) all.equal(e1, e0) # typically TRUE, though small "random" differences: cbind(e1, e0) * 2^53 # on Lnx 64b, seeing integer values in {-24, .., 33}
A data frame with 17 pt()
examples from Witosky (2013)'s ‘Table 1’.
We provide the results for the FOSS Softwares,
additionally including octave
's, running the original 2013
matlab code, and the corrected one from 2022.
data(pt_Witkovsky_Tab1)
data(pt_Witkovsky_Tab1)
A data frame with 17 observations on the following numeric
variables.
x
the abscissa, called q
in pt()
.
nu
the positive degrees of freedom, called df
in pt()
.
delta
the noncentrality parameter, called ncp
in pt()
.
true_pnt
“true” values (computed via higher precision, see Witkovsky(2013)).
NCTCDFVW
the pt()
values computed with Witkovsky's
matlab implementation. Confirmed by using octave
(on Fedora 40 Linux).
These correspond to our R (package DPQ) pntVW13()
values.
Boost
computed via the Boost C++ library; reported by Witkovsky.
R_3.3.0
computed by R version 3.3.0; confirmed to be identical using R 4.4.1
NCT2013_octave_7.3.0
values computed using Witkovsky's
original matlab code, by octave
7.3.0
NCT2022_octave_8.4.0
values computed using Witkovsky's
2022 corrected matlab code, by octave
8.4.0
The table was extracted (by MM) from the result of
pdftotext --layout <*>.pdf
from the publication.
The NCT2013_octave_7.3.0
column was computed from the 2013 code,
using GPL octave 7.3.0
on Linux Fedora 38, whereas
NCT2013_octave_8.4..0
from the 2022 code,
using GPL octave 8.4.0
on Linux Fedora 40.
Note that the ‘arXiv’ pre-publication has very slightly differing
numbers in its R
column, e.g., first entry ending in 00200
instead of 00111
.
Witkovský, Viktor (2013) A Note on Computing Extreme Tail Probabilities of the Noncentral T Distribution with Large Noncentrality Parameter, Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, Mathematica 52(2), 131–143.
data(pt_Witkovsky_Tab1) stopifnot(is.data.frame(d.W <- pt_Witkovsky_Tab1), # shorter nrow(d.W) >= 17) mW <- as.matrix(d.W); row.names(mW) <- NULL # more efficient colnames(mW)[1:3] # "x" "nu" "delta" ## use 'R pt() - compatible' names: (n3 <- names(formals(pt)[1:3]))# "q" "df" "ncp" colnames(mW)[1:3] <- n3 ptR <- apply(mW[, 1:3], 1, \(a3) unname(do.call(pt, as.list(a3)))) cNm <- paste0("R_", with(R.version, paste(major, minor, sep="."))) mW <- cbind(mW, `colnames<-`(cbind(ptR), cNm), relErr = sfsmisc::relErrV(mW[,"true_pnt"], ptR)) mW ## is current R better than R 3.3.0? -- or even "the same"? all.equal(ptR, mW[,"R_3.3.0"]) # still true in R 4.4.1 all.equal(ptR, mW[,"R_3.3.0"], tolerance = 1e-14) # (ditto) table(ptR == mW[,"R_3.3.0"]) # {see only 4 (out of 17) *exactly* equal ??} ## How close to published NCTCDFVW is octave's run of the 2022 code? with(d.W, all.equal(NCTCDFVW, NCT2022_octave_8.4.0, tolerance = 0)) # 3.977e-16 pVW <- apply(unname(mW[, 1:3]), 1, \(a3) unname(do.call(pntVW13, as.list(a3)))) all.equal(pVW, d.W$NCT2013_oct, tolerance = 0)# 2013-based pntVW13() --> 5.6443e-16 all.equal(pVW, d.W$NCT2022_oct, tolerance = 0)
data(pt_Witkovsky_Tab1) stopifnot(is.data.frame(d.W <- pt_Witkovsky_Tab1), # shorter nrow(d.W) >= 17) mW <- as.matrix(d.W); row.names(mW) <- NULL # more efficient colnames(mW)[1:3] # "x" "nu" "delta" ## use 'R pt() - compatible' names: (n3 <- names(formals(pt)[1:3]))# "q" "df" "ncp" colnames(mW)[1:3] <- n3 ptR <- apply(mW[, 1:3], 1, \(a3) unname(do.call(pt, as.list(a3)))) cNm <- paste0("R_", with(R.version, paste(major, minor, sep="."))) mW <- cbind(mW, `colnames<-`(cbind(ptR), cNm), relErr = sfsmisc::relErrV(mW[,"true_pnt"], ptR)) mW ## is current R better than R 3.3.0? -- or even "the same"? all.equal(ptR, mW[,"R_3.3.0"]) # still true in R 4.4.1 all.equal(ptR, mW[,"R_3.3.0"], tolerance = 1e-14) # (ditto) table(ptR == mW[,"R_3.3.0"]) # {see only 4 (out of 17) *exactly* equal ??} ## How close to published NCTCDFVW is octave's run of the 2022 code? with(d.W, all.equal(NCTCDFVW, NCT2022_octave_8.4.0, tolerance = 0)) # 3.977e-16 pVW <- apply(unname(mW[, 1:3]), 1, \(a3) unname(do.call(pntVW13, as.list(a3)))) all.equal(pVW, d.W$NCT2013_oct, tolerance = 0)# 2013-based pntVW13() --> 5.6443e-16 all.equal(pVW, d.W$NCT2022_oct, tolerance = 0)
Compute quantiles (inverse distribution values) of the beta distribution, using diverse approximations.
qbetaAppr.1(a, p, q, lower.tail=TRUE, log.p=FALSE, y = qnormUappr(a, lower.tail=lower.tail, log.p=log.p)) qbetaAppr.2(a, p, q, lower.tail=TRUE, log.p=FALSE, logbeta = lbeta(p,q)) qbetaAppr.3(a, p, q, lower.tail=TRUE, log.p=FALSE, logbeta = lbeta(p,q)) qbetaAppr.4(a, p, q, lower.tail=TRUE, log.p=FALSE, y = qnormUappr(a, lower.tail=lower.tail, log.p=log.p), verbose = getOption("verbose")) qbetaAppr (a, p, q, lower.tail=TRUE, log.p=FALSE, y = qnormUappr(a, lower.tail=lower.tail, log.p=log.p), logbeta = lbeta(p,q), verbose = getOption("verbose") && length(a) == 1) qbeta.R (alpha, p, q, lower.tail = TRUE, log.p = FALSE, logbeta = lbeta(p,q), low.bnd = 3e-308, up.bnd = 1-2.22e-16, method = c("AS109", "Newton-log"), tol.outer = 1e-15, f.acu = function(a,p,q) max(1e-300, 10^(-13- 2.5/pp^2 - .5/a^2)), fpu = .Machine$ double.xmin, qnormU.fun = function(u, lu) qnormUappr(p=u, lp=lu) , R.pre.2014 = FALSE , verbose = getOption("verbose") , non.finite.report = verbose )
qbetaAppr.1(a, p, q, lower.tail=TRUE, log.p=FALSE, y = qnormUappr(a, lower.tail=lower.tail, log.p=log.p)) qbetaAppr.2(a, p, q, lower.tail=TRUE, log.p=FALSE, logbeta = lbeta(p,q)) qbetaAppr.3(a, p, q, lower.tail=TRUE, log.p=FALSE, logbeta = lbeta(p,q)) qbetaAppr.4(a, p, q, lower.tail=TRUE, log.p=FALSE, y = qnormUappr(a, lower.tail=lower.tail, log.p=log.p), verbose = getOption("verbose")) qbetaAppr (a, p, q, lower.tail=TRUE, log.p=FALSE, y = qnormUappr(a, lower.tail=lower.tail, log.p=log.p), logbeta = lbeta(p,q), verbose = getOption("verbose") && length(a) == 1) qbeta.R (alpha, p, q, lower.tail = TRUE, log.p = FALSE, logbeta = lbeta(p,q), low.bnd = 3e-308, up.bnd = 1-2.22e-16, method = c("AS109", "Newton-log"), tol.outer = 1e-15, f.acu = function(a,p,q) max(1e-300, 10^(-13- 2.5/pp^2 - .5/a^2)), fpu = .Machine$ double.xmin, qnormU.fun = function(u, lu) qnormUappr(p=u, lp=lu) , R.pre.2014 = FALSE , verbose = getOption("verbose") , non.finite.report = verbose )
a , alpha
|
vector of probabilities (otherwise, e.g., in
|
p , q
|
the two shape parameters of the beta distribution; otherwise, e.g., in
|
y |
an approximation to |
lower.tail , log.p
|
logical, see, e.g., |
logbeta |
must be |
verbose |
logical or integer indicating if and how much “monitoring” information should be produced by the algorithm. |
low.bnd , up.bnd
|
lower and upper bounds for ...TODO... |
method |
a string specifying the approximation method to be used. |
tol.outer |
the “outer loop” convergence tolerance; the
default |
f.acu |
a |
fpu |
a very small positive number. |
qnormU.fun |
a |
R.pre.2014 |
a |
non.finite.report |
|
...
The R Core Team for the C version of qbeta
in R's sources;
Martin Maechler for the R port, and the approximations.
qbeta.R(0.6, 2, 3) # 0.4445 qbeta.R(0.6, 2, 3) - qbeta(0.6, 2,3) # almost 0 qbetaRV <- Vectorize(qbeta.R, "alpha") # now can use curve(qbetaRV(x, 1.5, 2.5)) curve(qbeta (x, 1.5, 2.5), add=TRUE, lwd = 3, col = adjustcolor("red", 1/2)) ## an example of disagreement (and doubt, as borderline, close to underflow): qbeta.R(0.5078, .01, 5) # -> 2.77558e-15 # but qbeta (0.5078, .01, 5) # now gives 4.651188e-31 -- correctly! qbeta (0.5078, .01, 5, ncp=0)# ditto ## which is because qbeta() now works in log-x scale here: curve(pbeta(x, .01, 5), 1e-40, 1, n=10001, log="x", xaxt="n") sfsmisc::eaxis(1); abline(h=.5078, lty=3); abline(v=4.651188e-31,col=2)
qbeta.R(0.6, 2, 3) # 0.4445 qbeta.R(0.6, 2, 3) - qbeta(0.6, 2,3) # almost 0 qbetaRV <- Vectorize(qbeta.R, "alpha") # now can use curve(qbetaRV(x, 1.5, 2.5)) curve(qbeta (x, 1.5, 2.5), add=TRUE, lwd = 3, col = adjustcolor("red", 1/2)) ## an example of disagreement (and doubt, as borderline, close to underflow): qbeta.R(0.5078, .01, 5) # -> 2.77558e-15 # but qbeta (0.5078, .01, 5) # now gives 4.651188e-31 -- correctly! qbeta (0.5078, .01, 5, ncp=0)# ditto ## which is because qbeta() now works in log-x scale here: curve(pbeta(x, .01, 5), 1e-40, 1, n=10001, log="x", xaxt="n") sfsmisc::eaxis(1); abline(h=.5078, lty=3); abline(v=4.651188e-31,col=2)
A pure R implementation, including many tuning parameter arguments, of R's own Rmathlib C code algorithm, but with more flexibility.
It is using Vectorize(qbinomR1, *)
where the hidden
qbinomR1
works for numbers (aka ‘scalar’, length one)
arguments only, the same as the C code.
qbinomR(p, size, prob, lower.tail = TRUE, log.p = FALSE, yLarge = 4096, # was hard wired to 1e5 incF = 1/64, # was hard wired to .001 iShrink = 8, # was hard wired to 100 relTol = 1e-15,# was hard wired to 1e-15 pfEps.n = 8, # was hard wired to 64: "fuzz to ensure left continuity" pfEps.L = 2, # was hard wired to 64: " " .. fpf = 4, # *MUST* be >= 1 (did not exist previously) trace = 0)
qbinomR(p, size, prob, lower.tail = TRUE, log.p = FALSE, yLarge = 4096, # was hard wired to 1e5 incF = 1/64, # was hard wired to .001 iShrink = 8, # was hard wired to 100 relTol = 1e-15,# was hard wired to 1e-15 pfEps.n = 8, # was hard wired to 64: "fuzz to ensure left continuity" pfEps.L = 2, # was hard wired to 64: " " .. fpf = 4, # *MUST* be >= 1 (did not exist previously) trace = 0)
p , size , prob , lower.tail , log.p
|
|
yLarge |
when |
incF |
a positive “increment factor” (originally hardwired to
0.001), used only when |
iShrink |
a positive increment shrinking factor, used only when
|
relTol |
relative tolerance, |
pfEps.n |
fuzz factor to ensure left continuity in the normal
case |
pfEps.L |
fuzz factor to ensure left continuity in case
|
fpf |
factor |
trace |
logical (or integer) specifying if (and how much) output should be produced from the algorithm. |
as mentioned on qbinom
help page,
qbinom
uses the Cornish–Fisher Expansion to include a skewness
correction to a normal approximation, thus defining y := Fn(p, size, prob, ..)
.
The following (root finding) binary search is tweaked by the
yLarge, ..., fpf
arguments.
a numeric vector like p
recycled to the common lengths of
p
, size
, and prob
.
Martin Maechler
set.seed(12) pr <- (0:16)/16 # supposedly recycled x10 <- rbinom(500, prob=pr, size = 10); p10 <- pbinom(x10, prob=pr, size= 10) x1c <- rbinom(500, prob=pr, size = 100); p1c <- pbinom(x1c, prob=pr, size=100) ## stopifnot(exprs = { table( x10 == (qp10 <- qbinom (p10, prob=pr, size= 10) )) table( qp10 == (qp10R <- qbinomR(p10, prob=pr, size= 10) )); summary(warnings()) # 30 x NaN table( x1c == (qp1c <- qbinom (p1c, prob=pr, size=100) )) table( qp1c == (qp1cR <- qbinomR(p1c, prob=pr, size=100) )); summary(warnings()) # 30 x NaN ## })
set.seed(12) pr <- (0:16)/16 # supposedly recycled x10 <- rbinom(500, prob=pr, size = 10); p10 <- pbinom(x10, prob=pr, size= 10) x1c <- rbinom(500, prob=pr, size = 100); p1c <- pbinom(x1c, prob=pr, size=100) ## stopifnot(exprs = { table( x10 == (qp10 <- qbinom (p10, prob=pr, size= 10) )) table( qp10 == (qp10R <- qbinomR(p10, prob=pr, size= 10) )); summary(warnings()) # 30 x NaN table( x1c == (qp1c <- qbinom (p1c, prob=pr, size=100) )) table( qp1c == (qp1cR <- qbinomR(p1c, prob=pr, size=100) )); summary(warnings()) # 30 x NaN ## })
Compute quantiles (inverse distribution values) for the chi-squared distribution. using Johnson,Kotz,.. ............TODO.......
qchisqKG (p, df, lower.tail = TRUE, log.p = FALSE) qchisqWH (p, df, lower.tail = TRUE, log.p = FALSE) qchisqAppr (p, df, lower.tail = TRUE, log.p = FALSE, tol = 5e-7) qchisqAppr.R(p, df, lower.tail = TRUE, log.p = FALSE, tol = 5e-07, maxit = 1000, verbose = getOption("verbose"), kind = NULL)
qchisqKG (p, df, lower.tail = TRUE, log.p = FALSE) qchisqWH (p, df, lower.tail = TRUE, log.p = FALSE) qchisqAppr (p, df, lower.tail = TRUE, log.p = FALSE, tol = 5e-7) qchisqAppr.R(p, df, lower.tail = TRUE, log.p = FALSE, tol = 5e-07, maxit = 1000, verbose = getOption("verbose"), kind = NULL)
p |
vector of probabilities. |
df |
degrees of freedom |
lower.tail , log.p
|
logical, see, e.g., |
tol |
non-negative number, the convergence tolerance |
maxit |
the maximal number of iterations |
verbose |
logical indicating if the algorithm should produce “monitoring” information. |
kind |
the kind of approximation; if
|
...
Martin Maechler
qchisq
. Further, our approximations to the
non-central chi-squared quantiles, qnchisqAppr
## TODO
## TODO
Compute approximations to the quantile (i.e., inverse cumulative) function of the Gamma distribution.
qgammaAppr(p, shape, lower.tail = TRUE, log.p = FALSE, tol = 5e-07) qgamma.R (p, alpha, scale = 1, lower.tail = TRUE, log.p = FALSE, EPS1 = 0.01, EPS2 = 5e-07, epsN = 1e-15, maxit = 1000, pMin = 1e-100, pMax = (1 - 1e-14), verbose = getOption("verbose")) qgammaApprKG(p, shape, lower.tail = TRUE, log.p = FALSE) qgammaApprSmallP(p, shape, lower.tail = TRUE, log.p = FALSE)
qgammaAppr(p, shape, lower.tail = TRUE, log.p = FALSE, tol = 5e-07) qgamma.R (p, alpha, scale = 1, lower.tail = TRUE, log.p = FALSE, EPS1 = 0.01, EPS2 = 5e-07, epsN = 1e-15, maxit = 1000, pMin = 1e-100, pMax = (1 - 1e-14), verbose = getOption("verbose")) qgammaApprKG(p, shape, lower.tail = TRUE, log.p = FALSE) qgammaApprSmallP(p, shape, lower.tail = TRUE, log.p = FALSE)
p |
numeric vector (possibly log tranformed) probabilities. |
shape , alpha
|
shape parameter, non-negative. |
scale |
scale parameter, non-negative, see |
lower.tail , log.p
|
logical, see, e.g., |
tol |
tolerance of maximal approximation error. |
EPS1 |
small positive number. ... |
EPS2 |
small positive number. ... |
epsN |
small positive number. ... |
maxit |
maximal number of iterations. ... |
pMin , pMax
|
boundaries for |
verbose |
logical indicating if the algorithm should produce “monitoring” information. |
qgammaApprSmallP(p, a)
should be a good approximation in the
following situation when both p
and shape
are small :
If we look at Abramowitz&Stegun
and its series
,
then the first order approximation
and hence its inverse
should be good as soon as
<==> x << (a+1)/a = (1 + 1/a)
<==> x < eps *(a+1)/a
<==> log(x) < log(eps) + log( (a+1)/a ) = log(eps) + log((a+1)/a) ~ -36 - log(a) where log(x) ~= log(p * gamma(a+1)) / a = (log(p) + lgamma1p(a))/a
such that the above
<==> (log(p) + lgamma1p(a))/a < log(eps) + log((a+1)/a)
<==> log(p) + lgamma1p(a) < a*(-log(a)+ log(eps) + log1p(a))
<==> log(p) < a*(-log(a)+ log(eps) + log1p(a)) - lgamma1p(a) =: bnd(a)
Note that qgammaApprSmallP()
indeed also builds on lgamma1p()
.
.qgammaApprBnd(a)
provides this bound ;
it is simply
a*(logEps + log1p(a) - log(a)) - lgamma1p(a)
, where
logEps
is =
log(eps)
where eps <-
.Machine$double.eps
, i.e. typically (always?) logEps
.
numeric
Martin Maechler
Abramowitz, M. and Stegun, I. A. (1972)
Handbook of Mathematical Functions. New York: Dover.
https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides
links to the full text which is in public domain.
qgamma
for R's Gamma distribution functions.
## TODO : Move some of the curve()s from ../tests/qgamma-ex.R !!
## TODO : Move some of the curve()s from ../tests/qgamma-ex.R !!
A pure R implementation, including many tuning parameter arguments, of R's own Rmathlib C code algorithm, but with more flexibility.
It is using Vectorize(qnbinomR1, *)
where the hidden
qnbinomR1
works for numbers (aka ‘scalar’, length one)
arguments only, the same as the C code.
qnbinomR(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE, yLarge = 4096, # was hard wired to 1e5 incF = 1/64, # was hard wired to .001 iShrink = 8, # was hard wired to 100 relTol = 1e-15,# was hard wired to 1e-15 pfEps.n = 8, # was hard wired to 64: "fuzz to ensure left continuity" pfEps.L = 2, # was hard wired to 64: " " .. fpf = 4, # *MUST* be >= 1 (did not exist previously) trace = 0)
qnbinomR(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE, yLarge = 4096, # was hard wired to 1e5 incF = 1/64, # was hard wired to .001 iShrink = 8, # was hard wired to 100 relTol = 1e-15,# was hard wired to 1e-15 pfEps.n = 8, # was hard wired to 64: "fuzz to ensure left continuity" pfEps.L = 2, # was hard wired to 64: " " .. fpf = 4, # *MUST* be >= 1 (did not exist previously) trace = 0)
p , size , prob , mu , lower.tail , log.p
|
|
yLarge , incF , iShrink , relTol , pfEps.n , pfEps.L , fpf
|
numeric
arguments tweaking the “root finding” search after the initial
Cornish-Fisher approximation, see |
trace |
logical (or integer) specifying if (and how much) output should be produced from the algorithm. |
a numeric vector like p
recycled to the common lengths of
p
, size
, and either prob
or mu
.
Martin Maechler
set.seed(12) x10 <- rnbinom(500, mu = 4, size = 10) ; p10 <- pnbinom(x10, mu=4, size=10) x1c <- rnbinom(500, prob = 31/32, size = 100); p1c <- pnbinom(x1c, prob=31/32, size=100) stopifnot(exprs = { x10 == qnbinom (p10, mu=4, size=10) x10 == qnbinomR(p10, mu=4, size=10) x1c == qnbinom (p1c, prob=31/32, size=100) x1c == qnbinomR(p1c, prob=31/32, size=100) })
set.seed(12) x10 <- rnbinom(500, mu = 4, size = 10) ; p10 <- pnbinom(x10, mu=4, size=10) x1c <- rnbinom(500, prob = 31/32, size = 100); p1c <- pnbinom(x1c, prob=31/32, size=100) stopifnot(exprs = { x10 == qnbinom (p10, mu=4, size=10) x10 == qnbinomR(p10, mu=4, size=10) x1c == qnbinom (p1c, prob=31/32, size=100) x1c == qnbinomR(p1c, prob=31/32, size=100) })
Compute quantiles (inverse distribution values) for the non-central chi-squared distribution.
....... using Johnson,Kotz, and other approximations ..............
qchisqAppr.0 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisqAppr.1 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisqAppr.2 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisqAppr.3 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisqApprCF1(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisqApprCF2(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisqCappr.2 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisqN (p, df, ncp = 0, qIni = qchisqAppr.0, ...) qnchisqAbdelAty (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qnchisqBolKuz (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qnchisqPatnaik (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qnchisqPearson (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qnchisqSankaran_d(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisqAppr.0 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisqAppr.1 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisqAppr.2 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisqAppr.3 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisqApprCF1(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisqApprCF2(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisqCappr.2 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qchisqN (p, df, ncp = 0, qIni = qchisqAppr.0, ...) qnchisqAbdelAty (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qnchisqBolKuz (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qnchisqPatnaik (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qnchisqPearson (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE) qnchisqSankaran_d(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
p |
vector of probabilities. |
df |
degrees of freedom |
ncp |
non-centrality parameter |
lower.tail , log.p
|
logical, see, e.g., |
qIni |
a |
... |
further arguments to |
Compute (approximate) quantiles, using approximations analogous to those
for the probabilities, see pnchisqPearson
.
...TODO...
...TODO...
...TODO...
...TODO...
...TODO...
...TODO...
...TODO...
Uses Newton iterations with pchisq()
and dchisq()
to determine qchisq(.)
values.
...TODO...
...TODO...
...TODO...
...TODO...
...TODO...
numeric
vectors of (noncentral) chi-squared quantiles,
corresponding to probabilities p
.
Martin Maechler, from May 1999; starting from a post to the S-news
mailing list by Ranjan Maitra (@ math.umbc.edu) who showed a version of
our qchisqAppr.0()
thanking Jim Stapleton for providing it.
Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995)
Continuous Univariate Distributions Vol 2, 2nd ed.; Wiley;
chapter 29 Noncentral -Distributions;
notably Section 8 Approximations, p.461 ff.
pp <- c(.001, .005, .01, .05, (1:9)/10, .95, .99, .995, .999) pkg <- "package:DPQ" qnchNms <- c(paste0("qchisqAppr.",0:3), paste0("qchisqApprCF",1:2), "qchisqN", "qchisqCappr.2", ls(pkg, pattern = "^qnchisq")) qnchF <- sapply(qnchNms, get, envir = as.environment(pkg)) for(ncp in c(0, 1/8, 1/2)) { cat("\n~~~~~~~~~~~~~\nncp: ", ncp,"\n=======\n") print(sapply(qnchF, function(F) Vectorize(F, "p")(pp, df = 3, ncp=ncp))) } ## Bug: qnchisqSankaran_d() has numeric overflow problems for large df: qnchisqSankaran_d(pp, df=1e200, ncp = 100) ## One current (2019-08) R bug: Noncentral chi-squared quantiles on *LOG SCALE* ## a) left/lower tail : ------------------------------------------------------- qs <- 2^seq(0,11, by=1/16) pqL <- pchisq(qs, df=5, ncp=1, log.p=TRUE) plot(qs, -pqL, type="l", log="xy") # + expected warning on log(0) -- all fine qpqL <- qchisq(pqL, df=5, ncp=1, log.p=TRUE) # severe overflow : qm <- cbind(qs, pqL, qchisq=qpqL , qchA.0 = qchisqAppr.0 (pqL, df=5, ncp=1, log.p=TRUE) , qchA.1 = qchisqAppr.1 (pqL, df=5, ncp=1, log.p=TRUE) , qchA.2 = qchisqAppr.2 (pqL, df=5, ncp=1, log.p=TRUE) , qchA.3 = qchisqAppr.3 (pqL, df=5, ncp=1, log.p=TRUE) , qchACF1= qchisqApprCF1(pqL, df=5, ncp=1, log.p=TRUE) , qchACF2= qchisqApprCF2(pqL, df=5, ncp=1, log.p=TRUE) , qchCa.2= qchisqCappr.2(pqL, df=5, ncp=1, log.p=TRUE) , qnPatnaik = qnchisqPatnaik (pqL, df=5, ncp=1, log.p=TRUE) , qnAbdelAty = qnchisqAbdelAty (pqL, df=5, ncp=1, log.p=TRUE) , qnBolKuz = qnchisqBolKuz (pqL, df=5, ncp=1, log.p=TRUE) , qnPearson = qnchisqPearson (pqL, df=5, ncp=1, log.p=TRUE) , qnSankaran_d= qnchisqSankaran_d(pqL, df=5, ncp=1, log.p=TRUE) ) round(qm[ qs %in% 2^(0:11) , -2]) #=> Approximations don't overflow but are not good enough ## b) right/upper tail , larger ncp ------------------------------------------- qS <- 2^seq(-3, 3, by=1/8) pqLu <- pchisq(qS, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) ## using "the alternative" (here is currently identical): identical(pqLu, (pqLu.<- log1p(-pchisq(qS, df=5, ncp=100)))) # here TRUE plot (qS, -pqLu, type="l", log="xy") # fine qpqLu <- qchisq(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) cbind(qS, pqLu, pqLu, qpqLu)# # severe underflow qchMat <- cbind(qchisq = qpqLu , qchA.0 = qchisqAppr.0 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qchA.1 = qchisqAppr.1 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qchA.2 = qchisqAppr.2 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qchA.3 = qchisqAppr.3 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qchACF1= qchisqApprCF1(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qchACF2= qchisqApprCF2(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qchCa.2= qchisqCappr.2(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qnPatnaik = qnchisqPatnaik (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qnAbdelAty = qnchisqAbdelAty (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qnBolKuz = qnchisqBolKuz (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qnPearson = qnchisqPearson (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qnSankaran_d= qnchisqSankaran_d(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) ) cbind(L2err <- sort(sqrt(colSums((qchMat - qS)^2)))) ##--> "Sankaran_d", "CF1" and "CF2" are good here plot (qS, qpqLu, type = "b", log="x", lwd=2) lines(qS, qS, col="gray", lty=2, lwd=3) top3 <- names(L2err)[1:3] use <- c("qchisq", top3) matlines(qS, qchMat[, use]) # 3 of the approximations are "somewhat ok" legend("topleft", c(use,"True"), bty="n", col=c(palette()[1:4], "gray"), lty = c(1:4,2), lwd = c(2, 1,1,1, 3))
pp <- c(.001, .005, .01, .05, (1:9)/10, .95, .99, .995, .999) pkg <- "package:DPQ" qnchNms <- c(paste0("qchisqAppr.",0:3), paste0("qchisqApprCF",1:2), "qchisqN", "qchisqCappr.2", ls(pkg, pattern = "^qnchisq")) qnchF <- sapply(qnchNms, get, envir = as.environment(pkg)) for(ncp in c(0, 1/8, 1/2)) { cat("\n~~~~~~~~~~~~~\nncp: ", ncp,"\n=======\n") print(sapply(qnchF, function(F) Vectorize(F, "p")(pp, df = 3, ncp=ncp))) } ## Bug: qnchisqSankaran_d() has numeric overflow problems for large df: qnchisqSankaran_d(pp, df=1e200, ncp = 100) ## One current (2019-08) R bug: Noncentral chi-squared quantiles on *LOG SCALE* ## a) left/lower tail : ------------------------------------------------------- qs <- 2^seq(0,11, by=1/16) pqL <- pchisq(qs, df=5, ncp=1, log.p=TRUE) plot(qs, -pqL, type="l", log="xy") # + expected warning on log(0) -- all fine qpqL <- qchisq(pqL, df=5, ncp=1, log.p=TRUE) # severe overflow : qm <- cbind(qs, pqL, qchisq=qpqL , qchA.0 = qchisqAppr.0 (pqL, df=5, ncp=1, log.p=TRUE) , qchA.1 = qchisqAppr.1 (pqL, df=5, ncp=1, log.p=TRUE) , qchA.2 = qchisqAppr.2 (pqL, df=5, ncp=1, log.p=TRUE) , qchA.3 = qchisqAppr.3 (pqL, df=5, ncp=1, log.p=TRUE) , qchACF1= qchisqApprCF1(pqL, df=5, ncp=1, log.p=TRUE) , qchACF2= qchisqApprCF2(pqL, df=5, ncp=1, log.p=TRUE) , qchCa.2= qchisqCappr.2(pqL, df=5, ncp=1, log.p=TRUE) , qnPatnaik = qnchisqPatnaik (pqL, df=5, ncp=1, log.p=TRUE) , qnAbdelAty = qnchisqAbdelAty (pqL, df=5, ncp=1, log.p=TRUE) , qnBolKuz = qnchisqBolKuz (pqL, df=5, ncp=1, log.p=TRUE) , qnPearson = qnchisqPearson (pqL, df=5, ncp=1, log.p=TRUE) , qnSankaran_d= qnchisqSankaran_d(pqL, df=5, ncp=1, log.p=TRUE) ) round(qm[ qs %in% 2^(0:11) , -2]) #=> Approximations don't overflow but are not good enough ## b) right/upper tail , larger ncp ------------------------------------------- qS <- 2^seq(-3, 3, by=1/8) pqLu <- pchisq(qS, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) ## using "the alternative" (here is currently identical): identical(pqLu, (pqLu.<- log1p(-pchisq(qS, df=5, ncp=100)))) # here TRUE plot (qS, -pqLu, type="l", log="xy") # fine qpqLu <- qchisq(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) cbind(qS, pqLu, pqLu, qpqLu)# # severe underflow qchMat <- cbind(qchisq = qpqLu , qchA.0 = qchisqAppr.0 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qchA.1 = qchisqAppr.1 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qchA.2 = qchisqAppr.2 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qchA.3 = qchisqAppr.3 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qchACF1= qchisqApprCF1(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qchACF2= qchisqApprCF2(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qchCa.2= qchisqCappr.2(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qnPatnaik = qnchisqPatnaik (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qnAbdelAty = qnchisqAbdelAty (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qnBolKuz = qnchisqBolKuz (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qnPearson = qnchisqPearson (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) , qnSankaran_d= qnchisqSankaran_d(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE) ) cbind(L2err <- sort(sqrt(colSums((qchMat - qS)^2)))) ##--> "Sankaran_d", "CF1" and "CF2" are good here plot (qS, qpqLu, type = "b", log="x", lwd=2) lines(qS, qS, col="gray", lty=2, lwd=3) top3 <- names(L2err)[1:3] use <- c("qchisq", top3) matlines(qS, qchMat[, use]) # 3 of the approximations are "somewhat ok" legend("topleft", c(use,"True"), bty="n", col=c(palette()[1:4], "gray"), lty = c(1:4,2), lwd = c(2, 1,1,1, 3))
Approximations to the standard normal (aka “Gaussian”) quantiles, i.e., the inverse of the normal cumulative probability function.
The qnormUappr*()
are relatively simple approximations from
Abramowitz and Stegun, computed by Hastings(1955):
qnormUappr()
is the 4-coefficient approximation to (the upper tail)
standard normal quantiles, qnorm()
, used in some
qbeta()
computations.
qnormUappr6()
is the “traditional” 6-coefficient approximation to
qnorm()
, see in ‘Details’.
qnormUappr(p, lp = .DT_Clog(p, lower.tail=lower.tail, log.p=log.p), lower.tail = FALSE, log.p = missing(p), tLarge = 1e10) qnormUappr6(p, lp = .DT_Clog(p, lower.tail=lower.tail, log.p=log.p), # ~= log(1-p) -- independent of lower.tail, log.p lower.tail = FALSE, log.p = missing(p), tLarge = 1e10) qnormCappr(p, k = 1) ## *implicit* lower.tail=TRUE, log.p=FALSE >>> TODO: add! << qnormAppr(p) # << deprecated; use qnormUappr(..) instead!
qnormUappr(p, lp = .DT_Clog(p, lower.tail=lower.tail, log.p=log.p), lower.tail = FALSE, log.p = missing(p), tLarge = 1e10) qnormUappr6(p, lp = .DT_Clog(p, lower.tail=lower.tail, log.p=log.p), # ~= log(1-p) -- independent of lower.tail, log.p lower.tail = FALSE, log.p = missing(p), tLarge = 1e10) qnormCappr(p, k = 1) ## *implicit* lower.tail=TRUE, log.p=FALSE >>> TODO: add! << qnormAppr(p) # << deprecated; use qnormUappr(..) instead!
p |
numeric vector of probabilities, possibly transformed, depending
on |
lp |
|
lower.tail |
logical; if TRUE (not the default here!), probabilities are
|
log.p |
logical; if TRUE, probabilities |
tLarge |
a large number |
k |
positive integer, specifying the iterative plugin ‘order’. |
This is now deprecated; use qnormUappr()
instead!
qnormAppr(p)
uses the simple 4 coefficient rational approximation
to qnorm(p)
, provided by Abramowitz and Stegun (26.2.22), p.933,
to be used only for and typically
qbeta()
computations, e.g., qbeta.R
.
The relative error of this approximation is quite asymmetric: It
is mainly < 0.
qnormUappr(p)
uses the same rational approximation directly for the
Upper tail where it is relatively good, and for the lower tail via
“swapping the tails”, so it is good there as well.
qnormUappr6(p, *)
uses the 6 coefficient rational approximation
to qnorm(p, *)
, from Abramowitz and Stegun (26.2.23), again
mostly useful in the outer tails.
qnormCappr(p, k)
inverts formula (26.2.24) of Abramowitz and Stegun,
and for improves it, by iterative recursive
plug-in, using A.&S. (26.2.25).
numeric vector of (approximate) normal quantiles corresponding to
probabilities p
Martin Maechler
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain.
Hastings jr., Cecil (1955) Approximations for Digital Computers. Princeton Univ. Press.
qnorm
(in base R package stats), and importantly,
qnormR
and qnormAsymp()
in this package (DPQ).
pp <- c(.001, .005, .01, .05, (1:9)/10, .95, .99, .995, .999) z_p <- qnorm(pp) assertDeprecation <- function(expr, verbose=TRUE) tools::assertCondition(expr, verbose=verbose, "deprecatedWarning") assertDeprecation(qA <- qnormAppr(pp)) (R <- cbind(pp, z_p, qA, qUA = qnormUappr(pp, lower.tail= TRUE), qA6 = qnormUappr6(pp, lower.tail=TRUE))) ## Errors, absolute and relative: relEr <- function(targ, curr) { ## simplistic "smart" rel.error E <- curr - targ r <- E/targ # simple, but fix 0/0: r[targ == 0 & E == 0] <- 0 r } mER <- cbind(pp, errA = z_p - R[,"qA" ], errUA = z_p - R[,"qUA"], rE.A = relEr(z_p, R[,"qA" ]), rE.UA = relEr(z_p, R[,"qUA"]), rE.A6 = relEr(z_p, R[,"qA6"])) signif(mER) lp <- -c(1000, 500, 200, 100, 50, 20:10, seq(9.75, 0, by = -1/8)) signif(digits=5, cbind(lp # 'p' need not be specified if 'lp' is ! , p. = -expm1(lp) , qnU = qnormUappr (lp=lp) , qnU6= qnormUappr6(lp=lp) , qnA1= qnormAsymp(lp=lp, lower.tail=FALSE, order=1) , qnA5= qnormAsymp(lp=lp, lower.tail=FALSE, order=5) , qn = qnorm(lp, log.p=TRUE) )) ## oops! shows *BUG* for last values where qnorm() > 0 ! curve(qnorm(x, lower.tail=FALSE), n=1001) curve(qnormUappr(x), add=TRUE, n=1001, col = adjustcolor("red", 1/2)) ## Error curve: curve(qnormUappr(x) - qnorm(x, lower.tail=FALSE), n=1001, main = "Absolute Error of qnormUappr(x)") abline(h=0, v=1/2, lty=2, col="gray") curve(qnormUappr(x) / qnorm(x, lower.tail=FALSE) - 1, n=1001, main = "Relative Error of qnormUappr(x)") abline(h=0, v=1/2, lty=2, col="gray") curve(qnormUappr(lp=x) / qnorm(x, log.p=TRUE) - 1, -200, -1, n=1001, main = "Relative Error of qnormUappr(lp=x)"); mtext(" & qnormUappr6() [log.p scale]", col=2) curve(qnormUappr6(lp=x) / qnorm(x, log.p=TRUE) - 1, add=TRUE, col=2, n=1001) abline(h=0, lty=2, col="gray") curve(qnormUappr(lp=x) / qnorm(x, log.p=TRUE) - 1, -2000, -.1, ylim = c(-2e-4, 1e-4), n=1001, main = "Relative Error of qnormUappr(lp=x)"); mtext(" & qnormUappr6() [log.p scale]", col=2) curve(qnormUappr6(lp=x) / qnorm(x, log.p=TRUE) - 1, add=TRUE, col=2, n=1001) abline(h=0, lty=2, col="gray") ## zoom out much more - switch x-axis {use '-x'} and log-scale: curve(qnormUappr6(lp=-x) / qnorm(-x, log.p=TRUE) - 1, .1, 1.1e10, log = "x", ylim = 2.2e-4*c(-2,1), n=2048, main = "Relative Error of qnormUappr6(lp = -x) [log.p scale]") -> xy.q abline(h=0, lty=2, col="gray") ## 2023-02: qnormUappr6() can be complemented with ## an approximation around center p=1/2: qnormCappr() p <- seq(0,1, by=2^-10) M <- cbind(p, qn=(qn <- qnorm(p)), reC1 = relEr(qn, qnormCappr(p)), reC2 = relEr(qn, qnormCappr(p, k=2)), reC3 = relEr(qn, qnormCappr(p, k=3)), reU6 = relEr(qn, qnormUappr6(p,lower.tail=TRUE))) matplot(M[,"p"], M[,-(1:2)], type="l", col=2:7, lty=1, lwd=2, ylim = c(-.004, +1e-4), xlab=quote(p), ylab = "relErr") abline(h=0, col="gray", lty=2) oo <- options(width=99) summary( M[,-(1:2)]) summary(abs(M[,-(1:2)])) options(oo)
pp <- c(.001, .005, .01, .05, (1:9)/10, .95, .99, .995, .999) z_p <- qnorm(pp) assertDeprecation <- function(expr, verbose=TRUE) tools::assertCondition(expr, verbose=verbose, "deprecatedWarning") assertDeprecation(qA <- qnormAppr(pp)) (R <- cbind(pp, z_p, qA, qUA = qnormUappr(pp, lower.tail= TRUE), qA6 = qnormUappr6(pp, lower.tail=TRUE))) ## Errors, absolute and relative: relEr <- function(targ, curr) { ## simplistic "smart" rel.error E <- curr - targ r <- E/targ # simple, but fix 0/0: r[targ == 0 & E == 0] <- 0 r } mER <- cbind(pp, errA = z_p - R[,"qA" ], errUA = z_p - R[,"qUA"], rE.A = relEr(z_p, R[,"qA" ]), rE.UA = relEr(z_p, R[,"qUA"]), rE.A6 = relEr(z_p, R[,"qA6"])) signif(mER) lp <- -c(1000, 500, 200, 100, 50, 20:10, seq(9.75, 0, by = -1/8)) signif(digits=5, cbind(lp # 'p' need not be specified if 'lp' is ! , p. = -expm1(lp) , qnU = qnormUappr (lp=lp) , qnU6= qnormUappr6(lp=lp) , qnA1= qnormAsymp(lp=lp, lower.tail=FALSE, order=1) , qnA5= qnormAsymp(lp=lp, lower.tail=FALSE, order=5) , qn = qnorm(lp, log.p=TRUE) )) ## oops! shows *BUG* for last values where qnorm() > 0 ! curve(qnorm(x, lower.tail=FALSE), n=1001) curve(qnormUappr(x), add=TRUE, n=1001, col = adjustcolor("red", 1/2)) ## Error curve: curve(qnormUappr(x) - qnorm(x, lower.tail=FALSE), n=1001, main = "Absolute Error of qnormUappr(x)") abline(h=0, v=1/2, lty=2, col="gray") curve(qnormUappr(x) / qnorm(x, lower.tail=FALSE) - 1, n=1001, main = "Relative Error of qnormUappr(x)") abline(h=0, v=1/2, lty=2, col="gray") curve(qnormUappr(lp=x) / qnorm(x, log.p=TRUE) - 1, -200, -1, n=1001, main = "Relative Error of qnormUappr(lp=x)"); mtext(" & qnormUappr6() [log.p scale]", col=2) curve(qnormUappr6(lp=x) / qnorm(x, log.p=TRUE) - 1, add=TRUE, col=2, n=1001) abline(h=0, lty=2, col="gray") curve(qnormUappr(lp=x) / qnorm(x, log.p=TRUE) - 1, -2000, -.1, ylim = c(-2e-4, 1e-4), n=1001, main = "Relative Error of qnormUappr(lp=x)"); mtext(" & qnormUappr6() [log.p scale]", col=2) curve(qnormUappr6(lp=x) / qnorm(x, log.p=TRUE) - 1, add=TRUE, col=2, n=1001) abline(h=0, lty=2, col="gray") ## zoom out much more - switch x-axis {use '-x'} and log-scale: curve(qnormUappr6(lp=-x) / qnorm(-x, log.p=TRUE) - 1, .1, 1.1e10, log = "x", ylim = 2.2e-4*c(-2,1), n=2048, main = "Relative Error of qnormUappr6(lp = -x) [log.p scale]") -> xy.q abline(h=0, lty=2, col="gray") ## 2023-02: qnormUappr6() can be complemented with ## an approximation around center p=1/2: qnormCappr() p <- seq(0,1, by=2^-10) M <- cbind(p, qn=(qn <- qnorm(p)), reC1 = relEr(qn, qnormCappr(p)), reC2 = relEr(qn, qnormCappr(p, k=2)), reC3 = relEr(qn, qnormCappr(p, k=3)), reU6 = relEr(qn, qnormUappr6(p,lower.tail=TRUE))) matplot(M[,"p"], M[,-(1:2)], type="l", col=2:7, lty=1, lwd=2, ylim = c(-.004, +1e-4), xlab=quote(p), ylab = "relErr") abline(h=0, col="gray", lty=2) oo <- options(width=99) summary( M[,-(1:2)]) summary(abs(M[,-(1:2)])) options(oo)
Implementing new asymptotic tail approximations of normal quantiles,
i.e., the R function qnorm()
, mostly useful when
log.p=TRUE
and log-scale p
is relatively large negative,
i.e., .
qnormAsymp(p, lp = .DT_Clog(p, lower.tail = lower.tail, log.p = log.p), order, lower.tail = TRUE, log.p = missing(p))
qnormAsymp(p, lp = .DT_Clog(p, lower.tail = lower.tail, log.p = log.p), order, lower.tail = TRUE, log.p = missing(p))
p |
numeric vector of probabilities, possibly transformed, depending
on |
lp |
numeric (vector) of |
order |
an integer in |
lower.tail |
logical; if true, probabilities are |
log.p |
logical; if |
These asymptotic approximations have been derived by Maechler (2022)
via iterative plug-in to the well known asymptotic approximations of
from Abramowitz and Stegun (26.2.13), p.932,
which are provided in our package DPQ as
pnormAsymp()
.
They will be used in R >= 4.3.0's qnorm()
to provide very accurate
quantiles in the extreme tails.
a numeric vector like p
or lp
if that was specified instead.
The simplemost (for extreme tails) is order = 0
, where the
asymptotic approximation is simply and
is
-lp
.
Martin Maechler
Martin Maechler (2022). Asymptotic Tail Formulas For Gaussian Quantiles; DPQ vignette, see https://CRAN.R-project.org/package=DPQ/vignettes/qnorm-asymp.pdf.
The upper tail approximations in Abramowitz & Stegun, in DPQ
available as qnormUappr()
and qnormUappr6()
,
are less accurate than our order >= 1
formulas in the tails.
lp <- -c(head(c(outer(c(5,2,1), 10^(18:1))), -2), 20:10, seq(9.75, 2, by = -1/8)) qnU6 <- qnormUappr6(lp=lp) # 'p' need not be specified if 'lp' is qnAsy <- sapply(0:5, function(ord) qnormAsymp(lp=lp, lower.tail=FALSE, order=ord)) matplot(-lp, cbind(qnU6, qnAsy), type = "b", log = "x", pch=1:7)# all "the same" legend("center", c("qnormUappr6()", paste0("qnormAsymp(*, order=",0:5,")")), bty="n", col=1:6, lty=1:5, pch=1:7) # as in matplot() p.ver <- function() mtext(R.version.string, cex=3/4, adj=1) matplot(-lp, cbind(qnU6, qnAsy) - qnorm(lp, lower.tail=TRUE, log.p=TRUE), pch=1:7, cex = .5, xaxt = "n", # and use eaxis() instead main = "absolute Error of qnorm() approximations", type = "b", log = "x") sfsmisc::eaxis(1, sub10=2); p.ver() legend("bottom", c("qnormUappr6()", paste0("qnormAsymp(*, order=",0:5,")")), bty="n", col=1:6, lty=1:5, pch=1:7, pt.cex=.5) ## If you look at the numbers, in versions of R <= 4.2.x, ## qnorm() is *worse* for large -lp than the higher order approximations ## ---> using qnormR() here: absP <- function(re) pmax(abs(re), 2e-17) # not zero, so log-scale "shows" it qnT <- qnormR(lp, lower.tail=TRUE, log.p=TRUE, version="2022") # ~= TRUE qnorm() matplot(-lp, absP(cbind(qnU6, qnAsy) / qnT - 1), ylim = c(2e-17, .01), xaxt = "n", yaxt = "n", col=1:7, lty=1:7, main = "relative |Error| of qnorm() approximations", type = "l", log = "xy") abline(h = .Machine$double.eps * c(1/2, 1, 2), col=adjustcolor("bisque",3/4), lty=c(5,2,5), lwd=c(1,3,1)) sfsmisc::eaxis(1, sub10 = 2, nintLog=20) sfsmisc::eaxis(2, sub10 = c(-3, 2), nintLog=16) mtext("qnT <- qnormR(*, version=\"2022\")", cex=0.9, adj=1)# ; p.ver() legend("topright", c("qnormUappr6()", paste0("qnormAsymp(*, order=",0:5,")")), bty="n", col=1:7, lty=1:7, cex = 0.8) ###=== Optimal cut points / regions for different approximation orders k ================= ## Zoom into each each cut-point region : p.qnormAsy2 <- function(r0, k, # use k-1 and k in region around r0 n = 2048, verbose=TRUE, ylim = c(-1,1) * 2.5e-16, rr = seq(r0 * 0.5, r0 * 1.25, length = n), ...) { stopifnot(is.numeric(rr), !is.unsorted(rr), # the initial 'r' length(k) == 1L, is.numeric(k), k == as.integer(k), k >= 1) k.s <- (k-1L):k; nks <- paste0("k=", k.s) if(missing(r0)) r0 <- quantile(rr, 2/3)# allow specifying rr instead of r0 if(verbose) cat("Around r0 =", r0,"; k =", deparse(k.s), "\n") lp <- (-rr^2) # = -r^2 = -s <==> rr = sqrt(- lp) q. <- qnormR(lp, lower.tail=FALSE, log.p=TRUE, version="2022-08")# *not* depending on R ver! pq <- pnorm(q., lower.tail=FALSE, log.p=TRUE) # ~= lp ## the arg of pnorm() is the true qnorm(pq, ..) == q. by construction ## cbind(rr, lp, q., pq) r <- sqrt(- pq) stopifnot(all.equal(rr, r, tol=1e-15)) qnAsy <- sapply(setNames(k.s, nks), function(ord) qnormAsymp(pq, lower.tail=FALSE, log.p=TRUE, order=ord)) relE <- qnAsy / q. - 1 m <- cbind(r, pq, relE) if(verbose) { print(head(m, 9)); for(j in 1:2) cat(" ..........\n") print(tail(m, 4)) } ## matplot(r, relE, type = "b", main = paste("around r0 = ", r0)) matplot(r, relE, type = "l", ylim = ylim, main = paste("Relative error of qnormAsymp(*, k) around r0 = ", r0, "for k =", deparse(k.s)), xlab = quote(r == sqrt(-log(p))), ...) legend("topleft", nks, col=1:2, lty=1:2, bty="n", lwd=2) for(j in seq_along(k.s)) lines(smooth.spline(r, relE[,j]), col=adjustcolor(j, 2/3), lwd=4, lty=2) cc <- "blue2"; lab <- substitute(r[0] == R, list(R = r0)) abline(v = r0, lty=2, lwd=2, col=cc) axis(3, at= r0, labels=lab, col=cc, col.axis=cc, line=-1) abline(h = (-1:1)*.Machine$double.eps, lty=c(3,1,3), col=c("green3", "gray", "tan2")) invisible(cbind(r = r, qn = q., relE)) } r0 <- c(27, 55, 109, 840, 36000, 6.4e8) # <--> in ../R/norm_f.R {and R's qnorm.c eventually} ## use k = 5 4 3 2 1 0 e.g. k = 0 good for r >= 6.4e8 for(ir in 2:length(r0)) { p.qnormAsy2(r0[ir], k = 5 +2-ir) # k = 5, 4, .. if(interactive() && ir < length(r0)) { cat("[Enter] to continue: "); cat(readLines(stdin(), n=1), "\n") } }
lp <- -c(head(c(outer(c(5,2,1), 10^(18:1))), -2), 20:10, seq(9.75, 2, by = -1/8)) qnU6 <- qnormUappr6(lp=lp) # 'p' need not be specified if 'lp' is qnAsy <- sapply(0:5, function(ord) qnormAsymp(lp=lp, lower.tail=FALSE, order=ord)) matplot(-lp, cbind(qnU6, qnAsy), type = "b", log = "x", pch=1:7)# all "the same" legend("center", c("qnormUappr6()", paste0("qnormAsymp(*, order=",0:5,")")), bty="n", col=1:6, lty=1:5, pch=1:7) # as in matplot() p.ver <- function() mtext(R.version.string, cex=3/4, adj=1) matplot(-lp, cbind(qnU6, qnAsy) - qnorm(lp, lower.tail=TRUE, log.p=TRUE), pch=1:7, cex = .5, xaxt = "n", # and use eaxis() instead main = "absolute Error of qnorm() approximations", type = "b", log = "x") sfsmisc::eaxis(1, sub10=2); p.ver() legend("bottom", c("qnormUappr6()", paste0("qnormAsymp(*, order=",0:5,")")), bty="n", col=1:6, lty=1:5, pch=1:7, pt.cex=.5) ## If you look at the numbers, in versions of R <= 4.2.x, ## qnorm() is *worse* for large -lp than the higher order approximations ## ---> using qnormR() here: absP <- function(re) pmax(abs(re), 2e-17) # not zero, so log-scale "shows" it qnT <- qnormR(lp, lower.tail=TRUE, log.p=TRUE, version="2022") # ~= TRUE qnorm() matplot(-lp, absP(cbind(qnU6, qnAsy) / qnT - 1), ylim = c(2e-17, .01), xaxt = "n", yaxt = "n", col=1:7, lty=1:7, main = "relative |Error| of qnorm() approximations", type = "l", log = "xy") abline(h = .Machine$double.eps * c(1/2, 1, 2), col=adjustcolor("bisque",3/4), lty=c(5,2,5), lwd=c(1,3,1)) sfsmisc::eaxis(1, sub10 = 2, nintLog=20) sfsmisc::eaxis(2, sub10 = c(-3, 2), nintLog=16) mtext("qnT <- qnormR(*, version=\"2022\")", cex=0.9, adj=1)# ; p.ver() legend("topright", c("qnormUappr6()", paste0("qnormAsymp(*, order=",0:5,")")), bty="n", col=1:7, lty=1:7, cex = 0.8) ###=== Optimal cut points / regions for different approximation orders k ================= ## Zoom into each each cut-point region : p.qnormAsy2 <- function(r0, k, # use k-1 and k in region around r0 n = 2048, verbose=TRUE, ylim = c(-1,1) * 2.5e-16, rr = seq(r0 * 0.5, r0 * 1.25, length = n), ...) { stopifnot(is.numeric(rr), !is.unsorted(rr), # the initial 'r' length(k) == 1L, is.numeric(k), k == as.integer(k), k >= 1) k.s <- (k-1L):k; nks <- paste0("k=", k.s) if(missing(r0)) r0 <- quantile(rr, 2/3)# allow specifying rr instead of r0 if(verbose) cat("Around r0 =", r0,"; k =", deparse(k.s), "\n") lp <- (-rr^2) # = -r^2 = -s <==> rr = sqrt(- lp) q. <- qnormR(lp, lower.tail=FALSE, log.p=TRUE, version="2022-08")# *not* depending on R ver! pq <- pnorm(q., lower.tail=FALSE, log.p=TRUE) # ~= lp ## the arg of pnorm() is the true qnorm(pq, ..) == q. by construction ## cbind(rr, lp, q., pq) r <- sqrt(- pq) stopifnot(all.equal(rr, r, tol=1e-15)) qnAsy <- sapply(setNames(k.s, nks), function(ord) qnormAsymp(pq, lower.tail=FALSE, log.p=TRUE, order=ord)) relE <- qnAsy / q. - 1 m <- cbind(r, pq, relE) if(verbose) { print(head(m, 9)); for(j in 1:2) cat(" ..........\n") print(tail(m, 4)) } ## matplot(r, relE, type = "b", main = paste("around r0 = ", r0)) matplot(r, relE, type = "l", ylim = ylim, main = paste("Relative error of qnormAsymp(*, k) around r0 = ", r0, "for k =", deparse(k.s)), xlab = quote(r == sqrt(-log(p))), ...) legend("topleft", nks, col=1:2, lty=1:2, bty="n", lwd=2) for(j in seq_along(k.s)) lines(smooth.spline(r, relE[,j]), col=adjustcolor(j, 2/3), lwd=4, lty=2) cc <- "blue2"; lab <- substitute(r[0] == R, list(R = r0)) abline(v = r0, lty=2, lwd=2, col=cc) axis(3, at= r0, labels=lab, col=cc, col.axis=cc, line=-1) abline(h = (-1:1)*.Machine$double.eps, lty=c(3,1,3), col=c("green3", "gray", "tan2")) invisible(cbind(r = r, qn = q., relE)) } r0 <- c(27, 55, 109, 840, 36000, 6.4e8) # <--> in ../R/norm_f.R {and R's qnorm.c eventually} ## use k = 5 4 3 2 1 0 e.g. k = 0 good for r >= 6.4e8 for(ir in 2:length(r0)) { p.qnormAsy2(r0[ir], k = 5 +2-ir) # k = 5, 4, .. if(interactive() && ir < length(r0)) { cat("[Enter] to continue: "); cat(readLines(stdin(), n=1), "\n") } }
qnorm()
with Diagnostics and Tuning ParametersComputes R level implementations of R's qnorm()
as
implemented in C code (in R's ‘Rmathlib’), historically and present.
qnormR1(p, mu = 0, sd = 1, lower.tail = TRUE, log.p = FALSE, trace = 0, version = ) qnormR (p, mu = 0, sd = 1, lower.tail = TRUE, log.p = FALSE, trace = 0, version = c("4.0.x", "1.0.x", "1.0_noN", "2020-10-17", "2022-08-04"))
qnormR1(p, mu = 0, sd = 1, lower.tail = TRUE, log.p = FALSE, trace = 0, version = ) qnormR (p, mu = 0, sd = 1, lower.tail = TRUE, log.p = FALSE, trace = 0, version = c("4.0.x", "1.0.x", "1.0_noN", "2020-10-17", "2022-08-04"))
p |
probability |
mu |
mean of the normal distribution. |
sd |
standard deviation of the normal distribution. |
lower.tail , log.p
|
logical, see, e.g., |
trace |
logical or integer; if positive or |
version |
a |
For qnormR1(p, ..)
, p
must be of length one, whereas
qnormR(p, m, s, ..)
works vectorized in p
, mu
, and
sd
. In the DPQ package source, qnormR
is simply the result of
Vectorize(qnormR1, ...)
.
a numeric vector like the input q
.
Martin Maechler
For version
s "1.0.x"
and "1.0_noN"
:
Beasley, J.D. and Springer, S.G. (1977)
Algorithm AS 111: The Percentage Points of the Normal Distribution.
JRSS C (Appied Statistics) 26, 118–121; doi:10.2307/2346889.
For the asymptotic approximations used in version
s newer than
"4.0.x"
, i.e., "2020-10-17"
and later, see the
reference(s) on qnormAsymp
's help page.
qR <- curve(qnormR, n = 2^11) abline(h=0, v=0:1, lty=3, col=adjustcolor(1, 1/2)) with(qR, all.equal(y, qnorm(x), tol=0)) # currently shows TRUE with(qR, all.equal(pnorm(y), x, tol=0)) # currently: mean rel. diff.: 2e-16 stopifnot(with(qR, all.equal(pnorm(y), x, tol = 1e-14))) (ver.qn <- eval(formals(qnormR)$version)) # the possible versions (doExtras <- DPQ:::doExtras()) # TRUE e.g. if interactive() lp <- - 4^(1:30) # effect of 'trace = *' : qpAll <- sapply(ver.qn, function (V) qnormR(lp, log.p=TRUE, trace=doExtras, version = V)) head(qpAll) # the "1.0" versions underflow quickly .. cAdj <- adjustcolor(palette(), 1/2) matplot(-lp, -qpAll, log="xy", type="l", lwd=3, col=cAdj, axes=FALSE, main = "- qnormR(lp, log.p=TRUE, version = * )") sfsmisc::eaxis(1, nintLog=15, sub=2); sfsmisc::eaxis(2) lines(-lp, sqrt(-2*lp), col=cAdj[ncol(qpAll)+1]) leg <- as.expression(c(paste("version=", ver.qn), quote(sqrt(-2 %.% lp)))) matlines(-lp, -qpAll[,2:3], lwd=6, col=cAdj[2:3]) legend("top", leg, bty='n', col=cAdj, lty=1:3, lwd=2) ## Showing why/where R's qnorm() was poor up to 2020: log.p=TRUE extreme tail ##% MM: more TODO? --> ~/R/MM/NUMERICS/dpq-functions/qnorm-extreme-bad.R qs <- 2^seq(0, 155, by=1/8) lp <- pnorm(qs, lower.tail=FALSE, log.p=TRUE) ## The inverse of pnorm() fails BADLY for extreme tails: ## this is identical to qnorm(..) in R <= 4.0.x: qp <- qnormR(lp, lower.tail=FALSE, log.p=TRUE, version="4.0.x") ## asymptotically correct approximation : qpA <- sqrt(- 2* lp) ##^ col2 <- c("black", adjustcolor(2, 0.6)) col3 <- c(col2, adjustcolor(4, 0.6)) ## instead of going toward infinity, it converges at 9.834030e+07 : matplot(-lp, cbind(qs, qp, qpA), type="l", log="xy", lwd = c(1,1,3), col=col3, main = "Poorness of qnorm(lp, lower.tail=FALSE, log.p=TRUE)", ylab = "qnorm(lp, ..)", axes=FALSE) sfsmisc::eaxis(1); sfsmisc::eaxis(2) legend("top", c("truth", "qnorm(.) = qnormR(., \"4.0.x\")", "asymp. approx"), lwd=c(1,1,3), lty=1:3, col=col3, bty="n") rM <- cbind(lp, qs, 1 - cbind(relE.qnorm=qp, relE.approx=qpA)/qs) rM[ which(1:nrow(rM) %% 20 == 1) ,]
qR <- curve(qnormR, n = 2^11) abline(h=0, v=0:1, lty=3, col=adjustcolor(1, 1/2)) with(qR, all.equal(y, qnorm(x), tol=0)) # currently shows TRUE with(qR, all.equal(pnorm(y), x, tol=0)) # currently: mean rel. diff.: 2e-16 stopifnot(with(qR, all.equal(pnorm(y), x, tol = 1e-14))) (ver.qn <- eval(formals(qnormR)$version)) # the possible versions (doExtras <- DPQ:::doExtras()) # TRUE e.g. if interactive() lp <- - 4^(1:30) # effect of 'trace = *' : qpAll <- sapply(ver.qn, function (V) qnormR(lp, log.p=TRUE, trace=doExtras, version = V)) head(qpAll) # the "1.0" versions underflow quickly .. cAdj <- adjustcolor(palette(), 1/2) matplot(-lp, -qpAll, log="xy", type="l", lwd=3, col=cAdj, axes=FALSE, main = "- qnormR(lp, log.p=TRUE, version = * )") sfsmisc::eaxis(1, nintLog=15, sub=2); sfsmisc::eaxis(2) lines(-lp, sqrt(-2*lp), col=cAdj[ncol(qpAll)+1]) leg <- as.expression(c(paste("version=", ver.qn), quote(sqrt(-2 %.% lp)))) matlines(-lp, -qpAll[,2:3], lwd=6, col=cAdj[2:3]) legend("top", leg, bty='n', col=cAdj, lty=1:3, lwd=2) ## Showing why/where R's qnorm() was poor up to 2020: log.p=TRUE extreme tail ##% MM: more TODO? --> ~/R/MM/NUMERICS/dpq-functions/qnorm-extreme-bad.R qs <- 2^seq(0, 155, by=1/8) lp <- pnorm(qs, lower.tail=FALSE, log.p=TRUE) ## The inverse of pnorm() fails BADLY for extreme tails: ## this is identical to qnorm(..) in R <= 4.0.x: qp <- qnormR(lp, lower.tail=FALSE, log.p=TRUE, version="4.0.x") ## asymptotically correct approximation : qpA <- sqrt(- 2* lp) ##^ col2 <- c("black", adjustcolor(2, 0.6)) col3 <- c(col2, adjustcolor(4, 0.6)) ## instead of going toward infinity, it converges at 9.834030e+07 : matplot(-lp, cbind(qs, qp, qpA), type="l", log="xy", lwd = c(1,1,3), col=col3, main = "Poorness of qnorm(lp, lower.tail=FALSE, log.p=TRUE)", ylab = "qnorm(lp, ..)", axes=FALSE) sfsmisc::eaxis(1); sfsmisc::eaxis(2) legend("top", c("truth", "qnorm(.) = qnormR(., \"4.0.x\")", "asymp. approx"), lwd=c(1,1,3), lty=1:3, col=col3, bty="n") rM <- cbind(lp, qs, 1 - cbind(relE.qnorm=qp, relE.approx=qpA)/qs) rM[ which(1:nrow(rM) %% 20 == 1) ,]
A pure R implementation of R's C API (‘Mathlib’ specifically)
qnt()
function which computes (non-central) t quantiles.
The simple inversion (of pnt()
) scheme has seen to be deficient,
even in cases where pnt()
, i.e., R's pt(.., ncp=*)
does not loose accuracy.
qntR1(p, df, ncp, lower.tail = TRUE, log.p = FALSE, pnt = stats::pt, accu = 1e-13, eps = 1e-11) qntR (p, df, ncp, lower.tail = TRUE, log.p = FALSE, pnt = stats::pt, accu = 1e-13, eps = 1e-11)
qntR1(p, df, ncp, lower.tail = TRUE, log.p = FALSE, pnt = stats::pt, accu = 1e-13, eps = 1e-11) qntR (p, df, ncp, lower.tail = TRUE, log.p = FALSE, pnt = stats::pt, accu = 1e-13, eps = 1e-11)
p , df , ncp
|
vectors of probabilities, degrees of freedom, and
non-centrality parameter; see |
lower.tail , log.p
|
logical; see |
pnt |
a |
accu |
a non-negative number, the “accu”racy desired in the "root finding" loop. |
eps |
a non-negative number, used for determining the start interval for the root finding. |
numeric vector of t quantiles, properly recycled in (p, df, ncp)
.
Martin Maechler
Our qtU()
and qtAppr()
; non-central density and probability
approximations in dntJKBf
, and e.g., pntR
.
Further, R's qt
.
## example where qt() and qntR() "fail" {warnings; --> Inf} lp <- seq(-30, -24, by=1/4) summary(p <- exp(lp)) (qp <- qntR( p, df=35, ncp=-7, lower.tail=FALSE)) qp2 <- qntR(lp, df=35, ncp=-7, lower.tail = FALSE, log.p=TRUE) all.equal(qp, qp2)## same warnings, same values
## example where qt() and qntR() "fail" {warnings; --> Inf} lp <- seq(-30, -24, by=1/4) summary(p <- exp(lp)) (qp <- qntR( p, df=35, ncp=-7, lower.tail=FALSE)) qp2 <- qntR(lp, df=35, ncp=-7, lower.tail = FALSE, log.p=TRUE) all.equal(qp, qp2)## same warnings, same values
A pure R implementation, including many tuning parameter arguments, of R's own Rmathlib C code algorithm, but with more flexibility.
It is using Vectorize(qpoisR1, *)
where the hidden
qpoisR1
works for numbers (aka ‘scalar’, length one)
arguments only, the same as the C code.
qpoisR(p, lambda, lower.tail = TRUE, log.p = FALSE, yLarge = 4096, # was hard wired to 1e5 incF = 1/64, # was hard wired to .001 iShrink = 8, # was hard wired to 100 relTol = 1e-15,# was hard wired to 1e-15 pfEps.n = 8, # was hard wired to 64: "fuzz to ensure left continuity" pfEps.L = 2, # was hard wired to 64: " " .. fpf = 4, # *MUST* be >= 1 (did not exist previously) trace = 0)
qpoisR(p, lambda, lower.tail = TRUE, log.p = FALSE, yLarge = 4096, # was hard wired to 1e5 incF = 1/64, # was hard wired to .001 iShrink = 8, # was hard wired to 100 relTol = 1e-15,# was hard wired to 1e-15 pfEps.n = 8, # was hard wired to 64: "fuzz to ensure left continuity" pfEps.L = 2, # was hard wired to 64: " " .. fpf = 4, # *MUST* be >= 1 (did not exist previously) trace = 0)
p , lambda , lower.tail , log.p
|
|
yLarge |
a positive number; in R up to 2021, was internally
hardwired to |
incF |
a positive “increment factor” (originally hardwired to
0.001), used only when |
iShrink |
a positive increment shrinking factor, used only when
|
relTol |
originally hard wired to 1e-15, defines the convergence
tolerance for the search iterations when |
pfEps.n , pfEps.L
|
positive factors defining “fuzz to ensure
left continuity”, both originally hardwired to p <- p * (1 - 64 *.Machine$double.eps) Now, |
fpf |
a number larger than |
trace |
logical (or integer) specifying if (and how much) output should be produced from the algorithm. |
The defaults and exact meaning of the algorithmic tuning arguments from
yLarge
to fpf
were experimentally determined are subject to change.
a numeric vector like p
recycled to the common lengths of p
and lambda
.
Martin Maechler
x <- 10*(15:25) Pp <- ppois(x, lambda = 100, lower.tail = FALSE) # no cancellation qPp <- qpois(Pp, lambda = 100, lower.tail=FALSE) table(x == qPp) # all TRUE ? ## future: if(getRversion() >= "4.2") stopifnot(x == qPp) # R-devel qpRp <- qpoisR(Pp, lambda = 100, lower.tail=FALSE) all.equal(x, qpRp, tol = 0) stopifnot(all.equal(x, qpRp, tol = 1e-15))
x <- 10*(15:25) Pp <- ppois(x, lambda = 100, lower.tail = FALSE) # no cancellation qPp <- qpois(Pp, lambda = 100, lower.tail=FALSE) table(x == qPp) # all TRUE ? ## future: if(getRversion() >= "4.2") stopifnot(x == qPp) # R-devel qpRp <- qpoisR(Pp, lambda = 100, lower.tail=FALSE) all.equal(x, qpRp, tol = 0) stopifnot(all.equal(x, qpRp, tol = 1e-15))
Compute quantiles (inverse distribution values) for the non-central t distribution. using Johnson,Kotz,.. p.521, formula (31.26 a) (31.26 b) & (31.26 c)
Note that qt(.., ncp=*)
did not exist yet in 1999, when MM
implemented qtAppr()
.
qtNappr()
approximates t-quantiles for large df
, i.e., when
close to the Gaussian / normal distribution, using up to 4 asymptotic
terms from Abramowitz & Stegun 26.7.5 (p.949).
qtAppr (p, df, ncp, lower.tail = TRUE, log.p = FALSE, method = c("a", "b", "c")) qtNappr(p, df, lower.tail = TRUE, log.p=FALSE, k)
qtAppr (p, df, ncp, lower.tail = TRUE, log.p = FALSE, method = c("a", "b", "c")) qtNappr(p, df, lower.tail = TRUE, log.p=FALSE, k)
p |
vector of probabilities. |
df |
degrees of freedom |
ncp |
non-centrality parameter |
lower.tail , log.p
|
logical, see, e.g., |
method |
a string specifying the approximation method to be used. |
k |
an integer in {0,1,2,3,4}, choosing the number of terms in |
numeric vector of length length(p + df + ncp)
with approximate t-quantiles.
Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions Vol~2, 2nd ed.; Wiley; chapter 31, Section 6 Approximation, p.519 ff
Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover; formula (26.7.5), p.949; https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain.
Our qtU()
; several non-central density and probability
approximations in dntJKBf
, and e.g., pntR
.
Further, R's qt
.
qts <- function(p, df) { cbind(qt = qt(p, df=df) , qtN0 = qtNappr(p, df=df, k=0) , qtN1 = qtNappr(p, df=df, k=1) , qtN2 = qtNappr(p, df=df, k=2) , qtN3 = qtNappr(p, df=df, k=3) , qtN4 = qtNappr(p, df=df, k=4) ) } p <- (0:100)/100 ii <- 2:100 # drop p=0 & p=1 where q*(p, .) == +/- Inf df <- 100 # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< qsp1c <- qts(p, df = df) matplot(p, qsp1c, type="l") # "all on top" (dq <- (qsp1c[,-1] - qsp1c[,1])[ii,]) matplot(p[ii], dq, type="l", col=2:6, main = paste0("difference qtNappr(p,df) - qt(p,df), df=",df), xlab=quote(p)) matplot(p[ii], pmax(abs(dq), 1e-17), log="y", type="l", col=2:6, main = paste0("abs. difference |qtNappr(p,df) - qt(p,df)|, df=",df), xlab=quote(p)) legend("bottomright", paste0("k=",0:4), col=2:6, lty=1:5, bty="n") matplot(p[ii], abs(dq/qsp1c[ii,"qt"]), log="y", type="l", col=2:6, main = sprintf("rel.error qtNappr(p, df=%g, k=*)",df), xlab=quote(p)) legend("left", paste0("k=",0:4), col=2:6, lty=1:5, bty="n") df <- 2000 # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< qsp1c <- qts(p, df=df) (dq <- (qsp1c[,-1] - qsp1c[,1])[ii,]) matplot(p[ii], dq, type="l", col=2:6, main = paste0("difference qtNappr(p,df) - qt(p,df), df=",df), xlab=quote(p)) legend("top", paste0("k=",0:4), col=2:6, lty=1:5) matplot(p[ii], pmax(abs(dq), 1e-17), log="y", type="l", col=2:6, main = paste0("abs.diff. |qtNappr(p,df) - qt(p,df)|, df=",df), xlab=quote(p)) legend("right", paste0("k=",0:4), col=2:6, lty=1:5, bty="n") matplot(p[ii], abs(dq/qsp1c[ii,"qt"]), log="y", type="l", col=2:6, main = sprintf("rel.error qtNappr(p, df=%g, k=*)",df), xlab=quote(p)) legend("left", paste0("k=",0:4), col=2:6, lty=1:5, bty="n")
qts <- function(p, df) { cbind(qt = qt(p, df=df) , qtN0 = qtNappr(p, df=df, k=0) , qtN1 = qtNappr(p, df=df, k=1) , qtN2 = qtNappr(p, df=df, k=2) , qtN3 = qtNappr(p, df=df, k=3) , qtN4 = qtNappr(p, df=df, k=4) ) } p <- (0:100)/100 ii <- 2:100 # drop p=0 & p=1 where q*(p, .) == +/- Inf df <- 100 # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< qsp1c <- qts(p, df = df) matplot(p, qsp1c, type="l") # "all on top" (dq <- (qsp1c[,-1] - qsp1c[,1])[ii,]) matplot(p[ii], dq, type="l", col=2:6, main = paste0("difference qtNappr(p,df) - qt(p,df), df=",df), xlab=quote(p)) matplot(p[ii], pmax(abs(dq), 1e-17), log="y", type="l", col=2:6, main = paste0("abs. difference |qtNappr(p,df) - qt(p,df)|, df=",df), xlab=quote(p)) legend("bottomright", paste0("k=",0:4), col=2:6, lty=1:5, bty="n") matplot(p[ii], abs(dq/qsp1c[ii,"qt"]), log="y", type="l", col=2:6, main = sprintf("rel.error qtNappr(p, df=%g, k=*)",df), xlab=quote(p)) legend("left", paste0("k=",0:4), col=2:6, lty=1:5, bty="n") df <- 2000 # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< qsp1c <- qts(p, df=df) (dq <- (qsp1c[,-1] - qsp1c[,1])[ii,]) matplot(p[ii], dq, type="l", col=2:6, main = paste0("difference qtNappr(p,df) - qt(p,df), df=",df), xlab=quote(p)) legend("top", paste0("k=",0:4), col=2:6, lty=1:5) matplot(p[ii], pmax(abs(dq), 1e-17), log="y", type="l", col=2:6, main = paste0("abs.diff. |qtNappr(p,df) - qt(p,df)|, df=",df), xlab=quote(p)) legend("right", paste0("k=",0:4), col=2:6, lty=1:5, bty="n") matplot(p[ii], abs(dq/qsp1c[ii,"qt"]), log="y", type="l", col=2:6, main = sprintf("rel.error qtNappr(p, df=%g, k=*)",df), xlab=quote(p)) legend("left", paste0("k=",0:4), col=2:6, lty=1:5, bty="n")
qt()
A pure R implementation of R's Mathlib own C-level qt()
function.
qtR()
is simply defined as
qtR <- Vectorize(qtR1, c("p","df"))
where in qtR1(p, df, *)
both p
and df
must be of length one.
qtR1(p, df, lower.tail = TRUE, log.p = FALSE, eps = 1e-12, d1_accu = 1e-13, d1_eps = 1e-11, itNewt = 10L, epsNewt = 1e-14, logNewton = log.p, verbose = FALSE) qtR (p, df, lower.tail = TRUE, log.p = FALSE, eps = 1e-12, d1_accu = 1e-13, d1_eps = 1e-11, itNewt = 10L, epsNewt = 1e-14, logNewton = log.p, verbose = FALSE)
qtR1(p, df, lower.tail = TRUE, log.p = FALSE, eps = 1e-12, d1_accu = 1e-13, d1_eps = 1e-11, itNewt = 10L, epsNewt = 1e-14, logNewton = log.p, verbose = FALSE) qtR (p, df, lower.tail = TRUE, log.p = FALSE, eps = 1e-12, d1_accu = 1e-13, d1_eps = 1e-11, itNewt = 10L, epsNewt = 1e-14, logNewton = log.p, verbose = FALSE)
p , df
|
vectors of probabilities and degrees of freedom, see |
lower.tail , log.p
|
logical; see |
eps |
non-negative tolerance for checking if |
d1_accu , d1_eps
|
non-negative tolerances only for the |
itNewt |
integer, the maximal number of final Newton(-Raphson) steps. |
epsNewt |
non-negative convergence tolerance for the final Newton steps. |
logNewton |
logical, in case of |
verbose |
logical indicating if diagnostic console output should be produced. |
numeric vector of t quantiles, properly recycled in (p, df)
.
Martin Maechler
## Inspired from Bugzilla PR#16380 pxy <- curve(pt(-x, df = 1.09, log.p = TRUE), 4e152, 1e156, log="x", n=501) qxy <- curve(-qt(x, df = 1.09, log.p = TRUE), -392, -385, n=501, log="y", col=4, lwd=2) lines(x ~ y, data=pxy, col = adjustcolor(2, 1/2), lwd=5, lty=3) ## now our "pure R" version: qRy <- -qtR(qxy$x, df = 1.09, log.p = TRUE) all.equal(qRy, qxy$y) # "'is.NA' value mismatch: 14 in current 0 in target" for R <= 4.2.1 cbind(as.data.frame(qxy), qRy, D = qxy$y - qRy) plot((y - qRy) ~ x, data = qxy, type="o", cex=1/4) qtR1(.1, .1, verbose=TRUE) pt(qtR(-390.5, df=1.10, log.p=TRUE, verbose=TRUE, itNewt = 100), df=1.10, log.p=TRUE)/-390.5 - 1 ## qt(p= -390.5, df= 1.1, *) -- general case ## -> P=2.55861e-170, neg=TRUE, is_neg_lower=TRUE; -> final P=5.11723e-170 ## usual 'df' case: P_ok:= P_ok1 = TRUE, y=3.19063e-308, P..., !P_ok: log.p2=-390.5, y=3.19063e-308 ## !P_ok && x < -36.04: q=5.87162e+153 ## P_ok1: log-scale Taylor (iterated): ## it= 1, .. d{q}1=exp(lF - dt(q,df,log=T))*(lF - log(P/2)) = -5.03644e+152; n.q=5.36798e+153 ## it= 2, .. d{q}1=exp(lF - dt(q,df,log=T))*(lF - log(P/2)) = 2.09548e+151; n.q=5.38893e+153 ## it= 3, .. d{q}1=exp(lF - dt(q,df,log=T))*(lF - log(P/2)) = 4.09533e+148; n.q=5.38897e+153 ## it= 4, .. d{q}1=exp(lF - dt(q,df,log=T))*(lF - log(P/2)) = 1.5567e+143; n.q=5.38897e+153 ## [1] 0 ## === perfect! pt(qtR(-391, df=1.10, log.p=TRUE, verbose=TRUE), df=1.10, log.p=TRUE)/-391 - 1 # now perfect
## Inspired from Bugzilla PR#16380 pxy <- curve(pt(-x, df = 1.09, log.p = TRUE), 4e152, 1e156, log="x", n=501) qxy <- curve(-qt(x, df = 1.09, log.p = TRUE), -392, -385, n=501, log="y", col=4, lwd=2) lines(x ~ y, data=pxy, col = adjustcolor(2, 1/2), lwd=5, lty=3) ## now our "pure R" version: qRy <- -qtR(qxy$x, df = 1.09, log.p = TRUE) all.equal(qRy, qxy$y) # "'is.NA' value mismatch: 14 in current 0 in target" for R <= 4.2.1 cbind(as.data.frame(qxy), qRy, D = qxy$y - qRy) plot((y - qRy) ~ x, data = qxy, type="o", cex=1/4) qtR1(.1, .1, verbose=TRUE) pt(qtR(-390.5, df=1.10, log.p=TRUE, verbose=TRUE, itNewt = 100), df=1.10, log.p=TRUE)/-390.5 - 1 ## qt(p= -390.5, df= 1.1, *) -- general case ## -> P=2.55861e-170, neg=TRUE, is_neg_lower=TRUE; -> final P=5.11723e-170 ## usual 'df' case: P_ok:= P_ok1 = TRUE, y=3.19063e-308, P..., !P_ok: log.p2=-390.5, y=3.19063e-308 ## !P_ok && x < -36.04: q=5.87162e+153 ## P_ok1: log-scale Taylor (iterated): ## it= 1, .. d{q}1=exp(lF - dt(q,df,log=T))*(lF - log(P/2)) = -5.03644e+152; n.q=5.36798e+153 ## it= 2, .. d{q}1=exp(lF - dt(q,df,log=T))*(lF - log(P/2)) = 2.09548e+151; n.q=5.38893e+153 ## it= 3, .. d{q}1=exp(lF - dt(q,df,log=T))*(lF - log(P/2)) = 4.09533e+148; n.q=5.38897e+153 ## it= 4, .. d{q}1=exp(lF - dt(q,df,log=T))*(lF - log(P/2)) = 1.5567e+143; n.q=5.38897e+153 ## [1] 0 ## === perfect! pt(qtR(-391, df=1.10, log.p=TRUE, verbose=TRUE), df=1.10, log.p=TRUE)/-391 - 1 # now perfect
Currently, R's own qt()
(aka qnt()
in the
non-central case) uses simple inversion of pt
to compute
quantiles in the case where ncp
is specified.
That simple inversion (of pnt()
) has seen to be deficient,
even in cases where pnt()
, i.e., R's pt(.., ncp=*)
does not loose accuracy.
This uniroot()
-based inversion does not suffer from
these deficits in some cases.
qtU()
is simply defined as
qtU <- Vectorize(qtU1, c("p","df","ncp"))
where in qtU1(p, df, ncp, *)
each of (p, df, ncp)
must be of
length one.
qtU1(p, df, ncp, lower.tail = TRUE, log.p = FALSE, interval = c(-10, 10), tol = 1e-05, verbose = FALSE, ...) qtU (p, df, ncp, lower.tail = TRUE, log.p = FALSE, interval = c(-10, 10), tol = 1e-05, verbose = FALSE, ...)
qtU1(p, df, ncp, lower.tail = TRUE, log.p = FALSE, interval = c(-10, 10), tol = 1e-05, verbose = FALSE, ...) qtU (p, df, ncp, lower.tail = TRUE, log.p = FALSE, interval = c(-10, 10), tol = 1e-05, verbose = FALSE, ...)
p , df , ncp
|
vectors of probabilities, degrees of freedom, and
non-centrality parameter; see |
lower.tail , log.p
|
logical; see |
interval |
the interval in which quantiles should be searched;
passed to |
tol |
non-negative convergence tolerance passed to |
verbose |
logical indicating if every call of the objective function should produce a line of console output. |
... |
optional further arguments passed to |
numeric vector of t quantiles, properly recycled in (p, df, ncp)
.
Martin Maechler
uniroot
and pt
are the simple R level
building blocks. The length-1 argument version qtU1()
is short and
simple to understand.
qtU1 # simple definition {with extras only for 'verbose = TRUE'} ## An example, seen to be deficient ## Stephen Berman to R-help, 13 June 2022, ## "Why does qt() return Inf with certain negative ncp values?" q2 <- seq(-3/4, -1/4, by=1/128) pq2 <- pt(q2, 35, ncp=-7, lower.tail=FALSE) ### ==> via qtU(), a simple uniroot() - based inversion of pt() qpqU <- qtU(pq2, 35, ncp=-7, lower.tail=FALSE, tol=1e-10) stopifnot(all.equal(q2, qpqU, tol=1e-9)) # perfect! ## These two currently (2022-06-14) give Inf whereas qtU() works fine qt (9e-12, df=35, ncp=-7, lower.tail=FALSE) # warnings; --> Inf qntR(9e-12, df=35, ncp=-7, lower.tail=FALSE) # (ditto) ## verbose = TRUE shows all calls to pt(): qtU1(9e-12, df=35, ncp=-7, lower.tail=FALSE, verbose=TRUE)
qtU1 # simple definition {with extras only for 'verbose = TRUE'} ## An example, seen to be deficient ## Stephen Berman to R-help, 13 June 2022, ## "Why does qt() return Inf with certain negative ncp values?" q2 <- seq(-3/4, -1/4, by=1/128) pq2 <- pt(q2, 35, ncp=-7, lower.tail=FALSE) ### ==> via qtU(), a simple uniroot() - based inversion of pt() qpqU <- qtU(pq2, 35, ncp=-7, lower.tail=FALSE, tol=1e-10) stopifnot(all.equal(q2, qpqU, tol=1e-9)) # perfect! ## These two currently (2022-06-14) give Inf whereas qtU() works fine qt (9e-12, df=35, ncp=-7, lower.tail=FALSE) # warnings; --> Inf qntR(9e-12, df=35, ncp=-7, lower.tail=FALSE) # (ditto) ## verbose = TRUE shows all calls to pt(): qtU1(9e-12, df=35, ncp=-7, lower.tail=FALSE, verbose=TRUE)
Compute
where lambda
, and
is the -th
partial sum of
.
Questions: As function of
Can this be put in a simple formula, or at least be well
approximated for large and/or large
?
For which (
) is it maximal?
When does become smaller than (f+2i-x)/x = a + b*i ?
NB: This is relevant in computations for non-central chi-squared (and similar non-central distribution functions) defined as weighted sum with “Poisson weights”.
r_pois(i, lambda) r_pois_expr # the R expression() for the asymptotic branch of r_pois() plRpois(lambda, iset = 1:(2*lambda), do.main = TRUE, log = 'xy', type = "o", cex = 0.4, col = c("red","blue"), do.eaxis = TRUE, sub10 = "10")
r_pois(i, lambda) r_pois_expr # the R expression() for the asymptotic branch of r_pois() plRpois(lambda, iset = 1:(2*lambda), do.main = TRUE, log = 'xy', type = "o", cex = 0.4, col = c("red","blue"), do.eaxis = TRUE, sub10 = "10")
i |
integer .. |
lambda |
non-negative number ... |
iset |
..... |
do.main |
|
type |
type of (line) plot, see |
log |
string specifying if (and where) logarithmic scales should be
used, see |
cex |
character expansion factor. |
col |
colors for the two curves. |
do.eaxis |
|
sub10 |
argument for |
r_pois()
is related to our series expansions and approximations
for the non-central chi-squared;
in particular
...........
plRpois()
simply produces a “nice” plot of r_pois(ii, *)
vs ii
.
r_pois()
returns a numeric vector
values.
r_pois_expr()
an expression
.
Martin Maechler, 20 Jan 2004
dpois()
.
plRpois(12) plRpois(120)
plRpois(12) plRpois(120)
Originally REXP()
, now rexpm1()
is a numeric (double
precision) approximation of ,
notably for small
where direct evaluation
looses accuracy through cancellation.
Fully accurate computations of are now known as
expm1(x)
and have been provided by math libraries (for C,
C++, ..) and R, (and are typically more accurate than rexp1()
).
The rexpm1()
approximation
was developed by Didonato & Morris (1986) and uses a minimax rational
approximation for ; the authors say
“accurate to within 2 units of the 14th significant digit”
(top of p.379).
rexpm1(x)
rexpm1(x)
x |
a numeric vector. |
a numeric vector (or array) as x
,
Martin Maechler, for the C to R *vectorized* translation.
Didonato, A.R. and Morris, A.H. (1986) Computation of the Incomplete Gamma Function Ratios and their Inverse. ACM Trans. on Math. Softw. 12, 377–393, doi:10.1145/22721.23109; The above is the “flesh” of ‘TOMS 654’:
Didonato, A.R. and Morris, A.H. (1987) Algorithm 654: FORTRAN subroutines for Compute the Incomplete Gamma Function Ratios and their Inverse. ACM Transactions on Mathematical Software 13, 318–319, doi:10.1145/29380.214348.
pbeta
, where the C version of rexpm1()
has been used in
several places, notably in the original TOMS 708 algorithm.
x <- seq(-3/4, 3/4, by=1/1024) plot(x, rexpm1(x)/expm1(x) - 1, type="l", main = "Error wrt expm1()") abline(h = (-8:8)*2^-53, lty=1:2, col=adjustcolor("gray", 1/2)) cb2 <- adjustcolor("blue", 1/2) do.15 <- function(col = cb2) { abline(v = 0.15*(-1:1), lty=3, lwd=c(3,1,3), col=col) axis(1, at=c(-.15, .15), col=cb2, col.axis=cb2) } do.15() op <- par(mar = par("mar") + c(0,0,0,2)) plot(x, abs(rexpm1(x)/expm1(x) - 1),type="l", log = 'y', main = "*Relative* Error wrt expm1() [log scale]")#, yaxt="n" abline(h = (1:9)*2^-53, lty=2, col=adjustcolor("gray", 1/2)) axis(4, at = (1:9)*2^-53, las = 1, labels = expression(2^-53, 2^-52, 3 %*% 2^-53, 2^-51, 5 %*% 2^-53, 6 %*% 2^-53, 7 %*% 2^-53, 2^-50, 9 %*% 2^-53)) do.15() par(op) ## "True" Accuracy comparison of rexpm1() with [OS mathlib based] expm1(): if(require("Rmpfr")) withAutoprint({ xM <- mpfr(x, 128); Xexpm1 <- expm1(xM) REr1 <- asNumeric(rexpm1(x)/Xexpm1 - 1) REe1 <- asNumeric(expm1(x) /Xexpm1 - 1) absC <- function(E) pmax(2^-55, abs(E)) plot(x, absC(REr1), type= "l", log="y", main = "|rel.Error| of exp(x)-1 computations wrt 128-bit MPFR ") lines(x, absC(REe1), col = (c2 <- adjustcolor(2, 3/4))) abline(h = (1:9)*2^-53, lty=2, col=adjustcolor("gray60", 1/2)) do.15() axis(4, mgp=c(2,1/4,0),tcl=-1/8, at=2^-(53:51), labels=expression(2^-53, 2^-52, 2^-51), las=1) legend("topleft", c("rexpm1(x)", " expm1(x)"), lwd=2, col=c("black", c2), bg = "gray90", box.lwd=.1) })
x <- seq(-3/4, 3/4, by=1/1024) plot(x, rexpm1(x)/expm1(x) - 1, type="l", main = "Error wrt expm1()") abline(h = (-8:8)*2^-53, lty=1:2, col=adjustcolor("gray", 1/2)) cb2 <- adjustcolor("blue", 1/2) do.15 <- function(col = cb2) { abline(v = 0.15*(-1:1), lty=3, lwd=c(3,1,3), col=col) axis(1, at=c(-.15, .15), col=cb2, col.axis=cb2) } do.15() op <- par(mar = par("mar") + c(0,0,0,2)) plot(x, abs(rexpm1(x)/expm1(x) - 1),type="l", log = 'y', main = "*Relative* Error wrt expm1() [log scale]")#, yaxt="n" abline(h = (1:9)*2^-53, lty=2, col=adjustcolor("gray", 1/2)) axis(4, at = (1:9)*2^-53, las = 1, labels = expression(2^-53, 2^-52, 3 %*% 2^-53, 2^-51, 5 %*% 2^-53, 6 %*% 2^-53, 7 %*% 2^-53, 2^-50, 9 %*% 2^-53)) do.15() par(op) ## "True" Accuracy comparison of rexpm1() with [OS mathlib based] expm1(): if(require("Rmpfr")) withAutoprint({ xM <- mpfr(x, 128); Xexpm1 <- expm1(xM) REr1 <- asNumeric(rexpm1(x)/Xexpm1 - 1) REe1 <- asNumeric(expm1(x) /Xexpm1 - 1) absC <- function(E) pmax(2^-55, abs(E)) plot(x, absC(REr1), type= "l", log="y", main = "|rel.Error| of exp(x)-1 computations wrt 128-bit MPFR ") lines(x, absC(REe1), col = (c2 <- adjustcolor(2, 3/4))) abline(h = (1:9)*2^-53, lty=2, col=adjustcolor("gray60", 1/2)) do.15() axis(4, mgp=c(2,1/4,0),tcl=-1/8, at=2^-(53:51), labels=expression(2^-53, 2^-52, 2^-51), las=1) legend("topleft", c("rexpm1(x)", " expm1(x)"), lwd=2, col=c("black", c2), bg = "gray90", box.lwd=.1) })
Stirling's approximation (to the factorial or function)
error in
scale is the difference of the left and right hand
side of Stirling's approximation to
,
i.e.,
stirlerr(n) :=
,
where
Partly, pure R transcriptions of the C code utility functions for
dgamma()
, dbinom()
, dpois()
, dt()
,
and similar “base” density functions by Catherine Loader.
These DPQ versions typically have extra arguments with defaults that correspond to R's Mathlib C code hardwired cutoffs and tolerances.
lgammacor(x)
is “the same” as stirlerr(x)
, both
computing accurately, however is only defined for
, and has been crucially used for R's own
lgamma()
and lbeta()
computations.
Note that the example below suggests that R's hardwired default of
nalgm = 5
is unnecessarily losing more than one digit accuracy,
nalgm = 6
seems much better.
stirlerr(n, scheme = c("R3", "R4.4_0"), cutoffs = switch(scheme , R3 = c(15, 35, 80, 500) , R4.4_0 = c(5.25, rep(6.5, 4), 7.1, 7.6, 8.25, 8.8, 9.5, 11, 14, 19, 25, 36, 81, 200, 3700, 17.4e6) ), use.halves = missing(cutoffs), direct.ver = c("R3", "lgamma1p", "MM2", "n0"), order = NA, verbose = FALSE) stirlerrC(n, version = c("R3", "R4..1", "R4.4_0")) stirlerr_simpl(n, version = c("R3", "lgamma1p", "MM2", "n0"), minPrec = 128L) lgammacor(x, nalgm = 5, xbig = 2^26.5)
stirlerr(n, scheme = c("R3", "R4.4_0"), cutoffs = switch(scheme , R3 = c(15, 35, 80, 500) , R4.4_0 = c(5.25, rep(6.5, 4), 7.1, 7.6, 8.25, 8.8, 9.5, 11, 14, 19, 25, 36, 81, 200, 3700, 17.4e6) ), use.halves = missing(cutoffs), direct.ver = c("R3", "lgamma1p", "MM2", "n0"), order = NA, verbose = FALSE) stirlerrC(n, version = c("R3", "R4..1", "R4.4_0")) stirlerr_simpl(n, version = c("R3", "lgamma1p", "MM2", "n0"), minPrec = 128L) lgammacor(x, nalgm = 5, xbig = 2^26.5)
x , n
|
|
verbose |
logical indicating if some information about the computations are to be printed. |
version |
a |
scheme |
a |
cutoffs |
an increasing numeric vector, required to start with
with |
use.halves |
|
direct.ver |
a |
order |
approximation order, |
minPrec |
a positive integer; for |
nalgm |
number of terms to use for Chebyshev polynomial approximation
in |
xbig |
a large positive number; if |
stirlerr()
:Stirling's error, stirlerr(n):=
has asymptotic (
) expansion
and this expansion is used up to remainder
in current (package DPQ)
stirlerr(n)
;
different numbers of terms between different cutoffs for , and
using the direct formula for
, where
is the first
cutoff,
cutoff[1]
.
Note that (new in 2024-01) stirlerr(n, order = k)
will
not use cutoffs
nor the direct formula (with its
direct.ver
), nor halves (use.halves=TRUE
),
and allows .
Tests seem to indicate that for current double precision arithmetic,
only
seem to make sense.
a numeric vector “like” x
; in some cases may also be an
(high accuracy) "mpfr"-number vector, using CRAN package Rmpfr.
lgammacor(x)
originally returned NaN
for all ,
as its Chebyshev polynomial approximation has been constructed for
,
specifically for
where
and
.
Martin Maechler
C. Loader (2000), see dbinom
's documentation.
Our package vignette log1pmx, bd0, stirlerr - Probability Computations in R.
dgamma
,
dpois
.
High precision versions stirlerrM(n)
and
stirlerrSer(n,k)
in package DPQmpfr (via the
Rmpfr and gmp packages).
n <- seq(1, 50, by=1/4) st.n <- stirlerr(n) # now vectorized stopifnot(identical(st.n, sapply(n, stirlerr))) st3. <- stirlerr(n, "R3", direct.ver = "R3") # previous default st3 <- stirlerr(n, "R3", direct.ver = "lgamma1p") # new? default ## for these n, there is *NO* difference: stopifnot(st3 == st3.) plot(n, st.n, type = "b", log="xy", ylab = "stirlerr(n)") st4 <- stirlerr(n, "R4.4_0", verbose = TRUE) # verbose: give info on cases ## order = k = 1:20 terms in series approx: k <- 1:20 stirlOrd <- sapply(k, function(k) stirlerr(n, order = k)) matlines(n, stirlOrd) matplot(n, stirlOrd - st.n, type = "b", cex=1/2, ylim = c(-1,1)/10, log = "x", main = substitute(list(stirlerr(n, order=k) ~~"error", k == 1:mK), list(mK = max(k)))) matplot(n, abs(stirlOrd - st.n), type = "b", cex=1/2, log = "xy", main = "| stirlerr(n, order=k) error |") mtext(paste("k =", deparse(k))) ; abline(h = 2^-(53:51), lty=3, lwd=1/2) colnames(stirlOrd) <- paste0("k=", k) stCn <- stirlerrC(n) all.equal(st.n, stCn, tolerance = 0) # see 6.7447e-14 stopifnot(all.equal(st.n, stCn, tolerance = 1e-12)) stC2 <- stirlerrC(n, version = "R4..1") stC4 <- stirlerrC(n, version = "R4.4_0") ## lgammacor(n) : only defined for n >= 10 lgcor <- lgammacor(n) lgcor6 <- lgammacor(n, nalgm = 6) # more accurate? all.equal(lgcor[n >= 10], st.n[n >= 10], tolerance=0)# .. rel.diff.: 4.687e-14 stopifnot(identical(is.na(lgcor), n < 10), all.equal(lgcor[n >= 10], st.n [n >= 10], tolerance = 1e-12)) ## look at *relative* errors -- need "Rmpfr" for "truth" % Rmpfr / DPQmpfr in 'Suggests' if(requireNamespace("Rmpfr") && requireNamespace("DPQmpfr")) { ## stirlerr(n) uses DPQmpfr::stirlerrM() automagically when n is <mpfr> relErrV <- sfsmisc::relErrV; eaxis <- sfsmisc::eaxis mpfr <- Rmpfr::mpfr; asNumeric <- Rmpfr::asNumeric stM <- stirlerr(mpfr(n, 512)) relE <- asNumeric(relErrV(stM, cbind(st3, st4, stCn, stC4, lgcor, lgcor6, stirlOrd))) matplot(n, pmax(abs(relE),1e-20), type="o", cex=1/2, log="xy", ylim =c(8e-17, 0.1), xaxt="n", yaxt="n", main = quote(abs(relErr(stirlerr(n))))) ## mark "lgcor*" -- lgammacor() particularly ! col.lgc <- adjustcolor(c(2,4), 2/3) matlines(n, abs(relE[,c("lgcor","lgcor6")]), col=col.lgc, lwd=3) lines(n, abs(relE[,"lgcor6"]), col=adjustcolor(4, 2/3), lwd=3) eaxis(1, sub10=2); eaxis(2); abline(h = 2^-(53:51), lty=3, col=adjustcolor(1, 1/2)) axis(1, at=15, col=NA, line=-1); abline(v=c(10,15), lty=2, col=adjustcolor(1, 1/4)) legend("topright", legend=colnames(relE), cex = 3/4, col=1:6, lty=1:5, pch= c(1L:9L, 0L, letters)[seq_len(ncol(relE))]) legend("topright", legend=colnames(relE)[1:6], cex = 3/4, lty=1:5, lwd=3, col=c(rep(NA,4), col.lgc), bty="n") ## Note that lgammacor(x) {default, n=5} is clearly inferior, ## but lgammacor(x, 6) is really good {in [10, 50] at least} }# end if( <Rmpfr> )
n <- seq(1, 50, by=1/4) st.n <- stirlerr(n) # now vectorized stopifnot(identical(st.n, sapply(n, stirlerr))) st3. <- stirlerr(n, "R3", direct.ver = "R3") # previous default st3 <- stirlerr(n, "R3", direct.ver = "lgamma1p") # new? default ## for these n, there is *NO* difference: stopifnot(st3 == st3.) plot(n, st.n, type = "b", log="xy", ylab = "stirlerr(n)") st4 <- stirlerr(n, "R4.4_0", verbose = TRUE) # verbose: give info on cases ## order = k = 1:20 terms in series approx: k <- 1:20 stirlOrd <- sapply(k, function(k) stirlerr(n, order = k)) matlines(n, stirlOrd) matplot(n, stirlOrd - st.n, type = "b", cex=1/2, ylim = c(-1,1)/10, log = "x", main = substitute(list(stirlerr(n, order=k) ~~"error", k == 1:mK), list(mK = max(k)))) matplot(n, abs(stirlOrd - st.n), type = "b", cex=1/2, log = "xy", main = "| stirlerr(n, order=k) error |") mtext(paste("k =", deparse(k))) ; abline(h = 2^-(53:51), lty=3, lwd=1/2) colnames(stirlOrd) <- paste0("k=", k) stCn <- stirlerrC(n) all.equal(st.n, stCn, tolerance = 0) # see 6.7447e-14 stopifnot(all.equal(st.n, stCn, tolerance = 1e-12)) stC2 <- stirlerrC(n, version = "R4..1") stC4 <- stirlerrC(n, version = "R4.4_0") ## lgammacor(n) : only defined for n >= 10 lgcor <- lgammacor(n) lgcor6 <- lgammacor(n, nalgm = 6) # more accurate? all.equal(lgcor[n >= 10], st.n[n >= 10], tolerance=0)# .. rel.diff.: 4.687e-14 stopifnot(identical(is.na(lgcor), n < 10), all.equal(lgcor[n >= 10], st.n [n >= 10], tolerance = 1e-12)) ## look at *relative* errors -- need "Rmpfr" for "truth" % Rmpfr / DPQmpfr in 'Suggests' if(requireNamespace("Rmpfr") && requireNamespace("DPQmpfr")) { ## stirlerr(n) uses DPQmpfr::stirlerrM() automagically when n is <mpfr> relErrV <- sfsmisc::relErrV; eaxis <- sfsmisc::eaxis mpfr <- Rmpfr::mpfr; asNumeric <- Rmpfr::asNumeric stM <- stirlerr(mpfr(n, 512)) relE <- asNumeric(relErrV(stM, cbind(st3, st4, stCn, stC4, lgcor, lgcor6, stirlOrd))) matplot(n, pmax(abs(relE),1e-20), type="o", cex=1/2, log="xy", ylim =c(8e-17, 0.1), xaxt="n", yaxt="n", main = quote(abs(relErr(stirlerr(n))))) ## mark "lgcor*" -- lgammacor() particularly ! col.lgc <- adjustcolor(c(2,4), 2/3) matlines(n, abs(relE[,c("lgcor","lgcor6")]), col=col.lgc, lwd=3) lines(n, abs(relE[,"lgcor6"]), col=adjustcolor(4, 2/3), lwd=3) eaxis(1, sub10=2); eaxis(2); abline(h = 2^-(53:51), lty=3, col=adjustcolor(1, 1/2)) axis(1, at=15, col=NA, line=-1); abline(v=c(10,15), lty=2, col=adjustcolor(1, 1/4)) legend("topright", legend=colnames(relE), cex = 3/4, col=1:6, lty=1:5, pch= c(1L:9L, 0L, letters)[seq_len(ncol(relE))]) legend("topright", legend=colnames(relE)[1:6], cex = 3/4, lty=1:5, lwd=3, col=c(rep(NA,4), col.lgc), bty="n") ## Note that lgammacor(x) {default, n=5} is clearly inferior, ## but lgammacor(x, 6) is really good {in [10, 50] at least} }# end if( <Rmpfr> )