Package 'DPQ'

Title: Density, Probability, Quantile ('DPQ') Computations
Description: Computations for approximations and alternatives for the 'DPQ' (Density (pdf), Probability (cdf) and Quantile) functions for probability distributions in R. Primary focus is on (central and non-central) beta, gamma and related distributions such as the chi-squared, F, and t. -- For several distribution functions, provide functions implementing formulas from Johnson, Kotz, and Kemp (1992) <doi:10.1002/bimj.4710360207> and Johnson, Kotz, and Balakrishnan (1995) for discrete or continuous distributions respectively. This is for the use of researchers in these numerical approximation implementations, notably for my own use in order to improve standard R pbeta(), qgamma(), ..., etc: {'"dpq"'-functions}.
Authors: Martin Maechler [aut, cre] , Morten Welinder [ctb] (pgamma C code, see PR#7307, Jan. 2005; further pdhyper()), Wolfgang Viechtbauer [ctb] (dtWV(), 2002), Ross Ihaka [ctb] (src/qchisq_appr.c), Marius Hofert [ctb] (lsum(), lssum()), R-core [ctb] (src/{dpq.h, algdiv.c, pnchisq.c, bd0.c}), R Foundation [cph] (src/qchisq-appr.c)
Maintainer: Martin Maechler <[email protected]>
License: GPL (>= 2)
Version: 0.5-9-1
Built: 2024-11-02 19:14:06 UTC
Source: https://github.com/r-forge/specfun

Help Index


Density, Probability, Quantile ('DPQ') Computations

Description

Computations for approximations and alternatives for the 'DPQ' (Density (pdf), Probability (cdf) and Quantile) functions for probability distributions in R. Primary focus is on (central and non-central) beta, gamma and related distributions such as the chi-squared, F, and t. – For several distribution functions, provide functions implementing formulas from Johnson, Kotz, and Kemp (1992) <doi:10.1002/bimj.4710360207> and Johnson, Kotz, and Balakrishnan (1995) for discrete or continuous distributions respectively. This is for the use of researchers in these numerical approximation implementations, notably for my own use in order to improve standard R pbeta(), qgamma(), ..., etc: {'"dpq"'-functions}.

Details

The DESCRIPTION file:

Package: DPQ
Title: Density, Probability, Quantile ('DPQ') Computations
Version: 0.5-9-1
Date: 2024-11-02
VersionNote: Last CRAN: 0.5-9 on 2024-08-23; 0.5-8 on 2023-11-30; 0.5-7 on 2023-11-03
Authors@R: c(person("Martin","Maechler", role=c("aut","cre"), email="[email protected]", comment = c(ORCID = "0000-0002-8685-9910")) , person("Morten", "Welinder", role = "ctb", comment = "pgamma C code, see PR#7307, Jan. 2005; further pdhyper()") , person("Wolfgang", "Viechtbauer", role = "ctb", comment = "dtWV(), 2002") , person("Ross", "Ihaka", role = "ctb", comment = "src/qchisq_appr.c") , person("Marius", "Hofert", role = "ctb", comment = "lsum(), lssum()") , person("R-core", email = "[email protected]", role = "ctb", comment = "src/{dpq.h, algdiv.c, pnchisq.c, bd0.c}") , person("R Foundation", role = "cph", comment = "src/qchisq-appr.c") )
Description: Computations for approximations and alternatives for the 'DPQ' (Density (pdf), Probability (cdf) and Quantile) functions for probability distributions in R. Primary focus is on (central and non-central) beta, gamma and related distributions such as the chi-squared, F, and t. -- For several distribution functions, provide functions implementing formulas from Johnson, Kotz, and Kemp (1992) <doi:10.1002/bimj.4710360207> and Johnson, Kotz, and Balakrishnan (1995) for discrete or continuous distributions respectively. This is for the use of researchers in these numerical approximation implementations, notably for my own use in order to improve standard R pbeta(), qgamma(), ..., etc: {'"dpq"'-functions}.
Depends: R (>= 4.0.0)
Imports: stats, graphics, methods, utils, sfsmisc (>= 1.1-14)
Suggests: Rmpfr, DPQmpfr (>= 0.3-1), gmp, MASS, mgcv, scatterplot3d, interp, cobs
SuggestsNote: MASS::fractions() in ex | mgcv, scatt.., .., cobs: some tests/
License: GPL (>= 2)
Encoding: UTF-8
URL: https://specfun.r-forge.r-project.org/, https://r-forge.r-project.org/R/?group_id=611, https://r-forge.r-project.org/scm/viewvc.php/pkg/DPQ/?root=specfun, svn://svn.r-forge.r-project.org/svnroot/specfun/pkg/DPQ
BugReports: https://r-forge.r-project.org/tracker/?atid=2462&group_id=611
Repository: https://r-forge.r-universe.dev
RemoteUrl: https://github.com/r-forge/specfun
RemoteRef: HEAD
RemoteSha: c953b5aa5accf58418aa63e70638b0c0850a9c0d
Author: Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>), Morten Welinder [ctb] (pgamma C code, see PR#7307, Jan. 2005; further pdhyper()), Wolfgang Viechtbauer [ctb] (dtWV(), 2002), Ross Ihaka [ctb] (src/qchisq_appr.c), Marius Hofert [ctb] (lsum(), lssum()), R-core [ctb] (src/{dpq.h, algdiv.c, pnchisq.c, bd0.c}), R Foundation [cph] (src/qchisq-appr.c)
Maintainer: Martin Maechler <[email protected]>

Index of help topics:

.D_0                    Distribution Utilities "dpq"
Bern                    Bernoulli Numbers
DPQ-package             Density, Probability, Quantile ('DPQ')
                        Computations
Ixpq                    Normalized Incomplete Beta Function "Like"
                        'pbeta()'
M_LN2                   Numerical Utilities - Functions, Constants
algdiv                  Compute log(gamma(b)/gamma(a+b)) when b >= 8
b_chi                   Compute E[chi_nu]/sqrt(nu) useful for t- and
                        chi-Distributions
bd0                     Binomial Deviance - Auxiliary Functions for
                        'dgamma()' Etc
bpser                   'pbeta()' 'bpser' series computation
chebyshevPoly           Chebyshev Polynomial Evaluation
dbinom_raw              R's C Mathlib (Rmath) dbinom_raw() Binomial
                        Probability pure R Function
dgamma.R                Gamma Density Function Alternatives
dhyperBinMolenaar       HyperGeometric (Point) Probabilities via
                        Molenaar's Binomial Approximation
dnbinomR                Pure R Versions of R's C (Mathlib) dnbinom()
                        Negative Binomial Probabilities
dnchisqR                Approximations of the (Noncentral) Chi-Squared
                        Density
dntJKBf1                Non-central t-Distribution Density - Algorithms
                        and Approximations
dpsifn                  Psi Gamma Functions Workhorse from R's API
dtWV                    Asymptotic Noncentral t Distribution Density by
                        Viechtbauer
expm1x                  Accurate exp(x) - 1 - x (for smallish |x|)
format01prec            Format Numbers in [0,1] with "Precise" Result
frexp                   Base-2 Representation and Multiplication of
                        Numbers
gam1d                   Compute 1/Gamma(x+1) - 1 Accurately
gamln1                  Compute log( Gamma(x+1) ) Accurately in [-0.2,
                        1.25]
gammaVer                Gamma Function Versions
hyper2binomP            Transform Hypergeometric Distribution
                        Parameters to Binomial Probability
lbetaM                  (Log) Beta and Ratio of Gammas Approximations
lfastchoose             R versions of Simple Formulas for Logarithmic
                        Binomial Coefficients
lgamma1p                Accurate 'log(gamma(a+1))'
lgammaAsymp             Asymptotic Log Gamma Function
log1mexp                Compute log(1 - exp(-a)) and log(1 + exp(x))
                        Numerically Optimally
log1pmx                 Accurate 'log(1+x) - x' Computation
logcf                   Continued Fraction Approximation of Log-Related
                        Power Series
logspace.add            Logspace Arithmetix - Addition and Subtraction
lssum                   Compute Logarithm of a Sum with Signed Large
                        Summands
lsum                    Properly Compute the Logarithm of a Sum (of
                        Exponentials)
newton                  Simple R level Newton Algorithm, Mostly for
                        Didactical Reasons
p1l1                    Numerically Stable p1l1(t) = (t+1)*log(1+t) - t
pbetaRv1                Pure R Implementation of Old pbeta()
pchisqV                 Wienergerm Approximations to (Non-Central)
                        Chi-squared Probabilities
phyper1molenaar         Molenaar's Normal Approximations to the
                        Hypergeometric Distribution
phyperAllBin            Compute Hypergeometric Probabilities via
                        Binomial Approximations
phyperApprAS152         Normal Approximation to cumulative Hyperbolic
                        Distribution - AS 152
phyperBin.1             HyperGeometric Distribution via Approximate
                        Binomial Distribution
phyperBinMolenaar       HyperGeometric Distribution via Molenaar's
                        Binomial Approximation
phyperIbeta             Pearson's incomplete Beta Approximation to the
                        Hyperbolic Distribution
phyperPeizer            Peizer's Normal Approximation to the Cumulative
                        Hyperbolic
phyperR                 R-only version of R's original phyper()
                        algorithm
phyperR2                Pure R version of R's C level phyper()
phypers                 The Four (4) Symmetric 'phyper()' Calls
pl2curves               Plot 2 Noncentral Distribution Curves for
                        Visual Comparison
pnbetaAppr2             Noncentral Beta Probabilities
pnchi1sq                (Probabilities of Non-Central Chi-squared
                        Distribution for Special Cases
pnchisq                 (Approximate) Probabilities of Non-Central
                        Chi-squared Distribution
pnormAsymp              Asymptotic Approxmation of (Extreme Tail)
                        'pnorm()'
pnormL_LD10             Bounds for 1-Phi(.) - Mill's Ratio related
                        Bounds for pnorm()
pntR                    Non-central t Probability Distribution -
                        Algorithms and Approximations
pow                     X to Power of Y - R C API 'R_pow()'
pow1p                   Accurate (1+x)^y, notably for small |x|
ppoisErr                Direct Computation of 'ppois()' Poisson
                        Distribution Probabilities
pt_Witkovsky_Tab1       Viktor Witosky's Table_1 pt() Examples
qbetaAppr               Compute (Approximate) Quantiles of the Beta
                        Distribution
qbinomR                 Pure R Implementation of R's qbinom() with
                        Tuning Parameters
qchisqAppr              Compute Approximate Quantiles of the
                        Chi-Squared Distribution
qgammaAppr              Compute (Approximate) Quantiles of the Gamma
                        Distribution
qnbinomR                Pure R Implementation of R's qnbinom() with
                        Tuning Parameters
qnchisqAppr             Compute Approximate Quantiles of Noncentral
                        Chi-Squared Distribution
qnormAppr               Approximations to 'qnorm()', i.e., z_alpha
qnormAsymp              Asymptotic Approximation to Outer Tail of
                        qnorm()
qnormR                  Pure R version of R's 'qnorm()' with
                        Diagnostics and Tuning Parameters
qntR                    Pure R Implementation of R's qt() / qnt()
qpoisR                  Pure R Implementation of R's qpois() with
                        Tuning Parameters
qtAppr                  Compute Approximate Quantiles of the
                        (Non-Central) t-Distribution
qtR                     Pure R Implementation of R's C-level
                        t-Distribution Quantiles 'qt()'
qtU                     'uniroot()'-based Computing of t-Distribution
                        Quantiles
r_pois                  Compute Relative Size of i-th term of Poisson
                        Distribution Series
rexpm1                  TOMS 708 Approximation REXP(x) of expm1(x) =
                        exp(x) - 1
stirlerr                Stirling's Error Function - Auxiliary for
                        Gamma, Beta, etc

An important goal is to investigate diverse algorithms and approximations of R's own density (d*()), probability (p*()), and quantile (q*()) functions, notably in “border” cases where the traditional published algorithms have shown to be suboptimal, not quite accurate, or even useless.

Examples are border cases of the beta distribution, or non-central distributions such as the non-central chi-squared and t-distributions.

Author(s)

Principal author and maintainer: Martin Maechler <[email protected]>

See Also

The package DPQmpfr, which builds on this package and on Rmpfr.

Examples

## Show problem in R's non-central t-distrib. density (and approximations):
example(dntJKBf)

Compute log(gamma(b)/gamma(a+b)) when b >= 8

Description

Computes

algdiv(a,b):=logΓ(b)Γ(a+b)=logΓ(b)logΓ(a+b)=lgamma(b) - lgamma(a+b)\code{algdiv(a,b)} := \log \frac{\Gamma(b)}{\Gamma(a+b)} = \log \Gamma(b) - \log\Gamma(a+b) = \code{lgamma(b) - lgamma(a+b)}

in a numerically stable way.

This is an auxiliary function in R's (TOMS 708) implementation of pbeta(), aka the incomplete beta function ratio.

Usage

algdiv(a, b)

Arguments

a, b

numeric vectors which will be recycled to the same length.

Details

Note that this is also useful to compute the Beta function

B(a,b)=Γ(a)Γ(b)Γ(a+b).B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}.

Clearly,

logB(a,b)=logΓ(a)+algdiv(a,b)=logΓ(a)logQab(a,b)\log B(a,b) = \log\Gamma(a) + \mathrm{algdiv(a,b)} = \log\Gamma(a) - \mathrm{logQab}(a,b)

In our ‘../tests/qbeta-dist.R’ we look into computing log(pB(p,q))\log(p B(p,q)) accurately for pqp \ll q .

We are proposing a nice solution there.
How is this related to algdiv() ?

Additionally, we have defined

Qab=Qa,b:=Γ(a+b),Γ(b),Qab = Q_{a,b} := \frac{\Gamma(a+b),\Gamma(b)},

such that logQab(a,b):=logQab(a,b)\code{logQab(a,b)} := \log Qab(a,b) fulfills simply

logQab(a,b)=algdiv(a,b)\code{logQab(a,b)} = - \code{algdiv(a,b)}

see logQab_asy.

Value

a numeric vector of length max(length(a), length(b)) (if neither is of length 0, in which case the result has length 0 as well).

Author(s)

Didonato, A. and Morris, A., Jr, (1992); algdiv()'s C version from the R sources, authored by the R core team; C and R interface: Martin Maechler

References

Didonato, A. and Morris, A., Jr, (1992) Algorithm 708: Significant digit computation of the incomplete beta function ratios, ACM Transactions on Mathematical Software 18, 360–373.

See Also

gamma, beta; my own logQab_asy().

Examples

Qab <- algdiv(2:3, 8:14)
cbind(a = 2:3, b = 8:14, Qab) # recycling with a warning

## algdiv()  and my  logQab_asy()  give *very* similar results for largish b:
all.equal( -   algdiv(3, 100),
           logQab_asy(3, 100), tolerance=0) # 1.283e-16 !!
(lQab <- logQab_asy(3, 1e10))
## relative error
1 + lQab/ algdiv(3, 1e10) # 0 (64b F 30 Linux; 2019-08-15)

## in-and outside of "certified" argument range {b >= 8}:
a. <- c(1:3, 4*(1:8))/32
b. <- seq(1/4, 20, by=1/4)
ad <- t(outer(a., b., algdiv))
## direct computation:
f.algdiv <- function(a,b) lgamma(b) - lgamma(a+b)
ad.d <- t(outer(a., b., f.algdiv))

matplot (b., ad.d, type = "o", cex=3/4,
         main = quote(log(Gamma(b)/Gamma(a+b)) ~"  vs.  algdiv(a,b)"))
mtext(paste0("a[1:",length(a.),"] = ",
        paste0(paste(head(paste0(formatC(a.*32), "/32")), collapse=", "), ", .., 1")))
matlines(b., ad,   type = "l", lwd=4, lty=1, col=adjustcolor(1:6, 1/2))
abline(v=1, lty=3, col="midnightblue")
# The larger 'b', the more accurate the direct formula wrt algdiv()
all.equal(ad[b. >= 1,], ad.d[b. >= 1,]       )# 1.5e-5
all.equal(ad[b. >= 2,], ad.d[b. >= 2,], tol=0)# 3.9e-9
all.equal(ad[b. >= 4,], ad.d[b. >= 4,], tol=0)# 4.6e-13
all.equal(ad[b. >= 6,], ad.d[b. >= 6,], tol=0)# 3.0e-15
all.equal(ad[b. >= 8,], ad.d[b. >= 8,], tol=0)# 2.5e-15 (not much better)

Compute E[χν]/νE[\chi_\nu] / \sqrt{\nu} useful for t- and chi-Distributions

Description

bχ(ν):=E[χ(ν)]/ν=2/νΓ((ν+1)/2)Γ(ν/2),b_\chi(\nu) := E[\chi(\nu)] / \sqrt{\nu} = \frac{\sqrt{2/\nu}\Gamma((\nu+1)/2)}{\Gamma(\nu/2)},

where χ(ν)\chi(\nu) denotes a chi-distributed random variable, i.e., the square of a chi-squared variable, and Γ(z)\Gamma(z) is the Gamma function, gamma() in R.

This is a relatively important auxiliary function when computing with non-central t distribution functions and approximations, specifically see Johnson et al.(1994), p.520, after (31.26a), e.g., our pntJW39().

Its logarithm,

lbχ(ν):=log(2/νΓ((ν+1)/2)Γ(ν/2)),lb_\chi(\nu) := log\bigl(\frac{\sqrt{2/\nu}\Gamma((\nu+1)/2)}{\Gamma(\nu/2)}\bigr),

is even easier to compute via lgamma and log, and I have used Maple to derive an asymptotic expansion in 1ν\frac{1}{\nu} as well.

Note that lbχ(ν)lb_\chi(\nu) also appears in the formula for the t-density (dt) and distribution (tail) functions.

Usage

b_chi     (nu, one.minus = FALSE, c1 = 341, c2 = 1000)
b_chiAsymp(nu, order = 2, one.minus = FALSE)
#lb_chi    (nu, ......) # not yet
lb_chiAsymp(nu, order)

c_dt(nu)       # warning("FIXME: current c_dt() is poor -- base it on lb_chi(nu) !")
c_dtAsymp(nu)  # deprecated in favour of lb_chi(nu)
c_pt(nu)       # warning("use better c_dt()") %---> FIXME deprecate even stronger ?

Arguments

nu

non-negative numeric vector of degrees of freedom.

one.minus

logical indicating if 1b()1 - b() should be returned instead of b()b().

c1, c2

boundaries for different approximation intervals used:
for 0 < nu <= c1, internal b1() is used,
for c1 < nu <= c2, internal b2() is used, and
for c2 < nu, the b_chiAsymp() function is used, (and you can use that explicitly, also for smaller nu).

FIXME: c1 and c2 were defined when the only asymptotic expansion known to me was the order = 2 one. A future version of b_chi will very likely use b_chiAsymp(*, order) for higher orders, and the c1 and c2 arguments will change, possibly be abolished.

order

the polynomial order in 1ν\frac{1}{\nu} of the asymptotic expansion of bχ(ν)b_\chi(\nu) for ν\nu\to\infty.

The default, order = 2 corresponds to the order you can get out of the Abramowitz and Stegun (6.1.47) formula. Higher order expansions were derived using Maple by Martin Maechler in 2002, see below, but implemented in b_chiAsymp() only in 2018.

Details

One can see that b_chi() has the properties of a CDF of a continuous positive random variable: It grows monotonely from bχ(0)=0b_\chi(0) = 0 to (asymptotically) one. Specifically, for large nu, b_chi(nu) = b_chiAsymp(nu) and

1bχ(ν)14ν.1 - b_\chi(\nu) \sim \frac{1}{4\nu}.

More accurately, derived from Abramowitz and Stegun, 6.1.47 (p.257) for a= 1/2, b=0,

Γ(z+1/2)/Γ(z)(z)(11/(8z)+1/(128z2)+O(1/z3)),\Gamma(z + 1/2) / \Gamma(z) \sim \sqrt(z)*(1 - 1/(8z) + 1/(128 z^2) + O(1/z^3)),

and applied for bχ(ν)b_\chi(\nu) with z=ν/2z = \nu/2, we get

bχ(ν)1(1/(4ν)(11/(8ν))+O(ν3)),b_\chi(\nu) \sim 1 - (1/(4\nu) * (1 - 1/(8\nu)) + O(\nu^{-3})),

which has been implemented in b_chiAsymp(*, order=2) in 1999.

Even more accurately, Martin Maechler, used Maple to derive an asymptotic expansion up to order 15, here reported up to order 5, namely with r:=14νr := \frac{1}{4\nu},

bχ(ν)=cχ(r)=1r+12r2+52r3218r43998r5+O(r6).b_\chi(\nu) = c_\chi(r) = 1 - r + \frac{1}{2}r^2 + \frac{5}{2}r^3 - \frac{21}{8}r^4 - \frac{399}{8}r^5 + O(r^6).

Value

a numeric vector of the same length as nu.

Author(s)

Martin Maechler

References

Johnson, Kotz, Balakrishnan (1995) Continuous Univariate Distributions, Vol 2, 2nd Edition; Wiley; Formula on page 520, after (31.26a)

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain.

See Also

The t-distribution (base R) page pt; our pntJW39().

Examples

curve(b_chi, 0, 20); abline(h=0:1, v=0, lty=3)
r <- curve(b_chi, 1e-10, 1e5, log="x")
with(r, lines(x, b_chi(x, one.minus=TRUE), col = 2))

## Zoom in to c1-region
rc1 <- curve(b_chi, 340.5, 341.5, n=1001)# nothing to see
e <- 1e-3; curve(b_chi, 341-e, 341+e, n=1001) # nothing
e <- 1e-5; curve(b_chi, 341-e, 341+e, n=1001) # see noise, but no jump
e <- 1e-7; curve(b_chi, 341-e, 341+e, n=1001) # see float "granularity"+"jump"

## Zoom in to c2-region
rc2 <- curve(b_chi, 999.5, 1001.5, n=1001) # nothing visible
e <- 1e-3; curve(b_chi, 1000-e, 1000+e, n=1001) # clear small jump
c2 <- 1500
e <- 1e-3; curve(b_chi(x,c2=c2), c2-e, c2+e, n=1001)# still
## - - - -
c2 <- 3000
e <- 1e-3; curve(b_chi(x,c2=c2), c2-e, c2+e, n=1001)# ok asymp clearly better!!
curve(b_chiAsymp, add=TRUE, col=adjustcolor("red", 1/3), lwd=3)
if(requireNamespace("Rmpfr")) {
 xm <- Rmpfr::seqMpfr(c2-e, c2+e, length.out=1000)

}
## - - - -
c2 <- 4000
e <- 1e-3; curve(b_chi(x,c2=c2), c2-e, c2+e, n=1001)# ok asymp clearly better!!
curve(b_chiAsymp, add=TRUE, col=adjustcolor("red", 1/3), lwd=3)

grCol <- adjustcolor("forest green", 1/2)
curve(b_chi,                    1/2, 1e11, log="x")
curve(b_chiAsymp, add = TRUE, col = grCol, lwd = 3)
## 1-b(nu) ~= 1/(4 nu) a power function <==> linear in log-log scale:
curve(b_chi(x, one.minus=TRUE), 1/2, 1e11, log="xy")
curve(b_chiAsymp(x, one.minus=TRUE), add = TRUE, col = grCol, lwd = 3)

Bernoulli Numbers

Description

Return the nn-th Bernoulli number BnB_n, (or Bn+B_n^+, see the reference), where B1=+12B_1 = + \frac 1 2.

Usage

Bern(n, verbose = getOption("verbose", FALSE))

Arguments

n

integer, n0n \ge 0.

verbose

logical indicating if computation should be traced.

Value

The number BnB_n of type numeric.

A side effect is the caching of computed Bernoulli numbers in the hidden environment .bernoulliEnv.

Author(s)

Martin Maechler

References

https://en.wikipedia.org/wiki/Bernoulli_number

See Also

Bernoulli in Rmpfr in arbitrary precision via Riemann's ζ\zeta function.

The next version of package gmp is to contain BernoulliQ(), providing exact Bernoulli numbers as big rationals (class "bigq").

Examples

(B.0.10 <- vapply(0:10, Bern, 1/2))
## [1]  1.00000000 +0.50000000  0.16666667  0.00000000 -0.03333333  0.00000000
## [7]  0.02380952  0.00000000 -0.03333333  0.00000000  0.07575758
if(requireNamespace("MASS")) {
  print( MASS::fractions(B.0.10) )
  ## 1  +1/2   1/6    0  -1/30     0  1/42     0 -1/30     0  5/66
}

pbeta() 'bpser' series computation

Description

Compute the bpser series approximation of pbeta, the incomplete beta function. Note that when b is integer valued, the series is a sum of b+1b+1 terms.

Usage

bpser(a, b, x, log.p = FALSE, eps = 1e-15, verbose = FALSE, warn = TRUE)

Arguments

a, b

numeric and non-negative, the two shape parameters of the beta distribution.

x

numeric vector of abscissa values in [0,1][0,1].

log.p

a logical if log(prob) should be returned, allowing to avoid underflow much farther “out in the tails”.

eps

series convergence (and other) tolerance, a small positive number.

verbose

a logical indicating if some intermediate results should be printed to the console.

warn

a logical indicating if bpser() computation problems should be warned about in addition to return a non-zero error code.

Value

a list with components

r

the resulting numeric vector.

ier

an integer vector of the same length as x, providing one error code for the computation in each r[i].

Author(s)

Martin Maechler, ported to DPQ; R-Core team for the code in R.

References

TOMS 708, see pbeta

See Also

R's pbeta; DPQ's pbetaRv1(), and Ixpq(); Rmpfr's pbetaI

Examples

with(bpser(100000, 11, (0:64)/64), # all 0 {last one "wrongly"}
     stopifnot(r == c(rep(0, 64), 1), err == 0))
bp1e5.11L <- bpser(100000, 11, (0:64)/64, log.p=TRUE)# -> 2 "underflow to -Inf" warnings!
pbe <- pbeta((0:64)/64, 100000, 11, log.p=TRUE)

## verbose=TRUE showing info on number of terms / iterations
ps11.5 <- bpser(100000, 11.5, (0:64)/64, log.p=TRUE, verbose=TRUE)

Chebyshev Polynomial Evaluation

Description

Provides (evaluation of) Chebyshev polynomials, given their coefficients vector coef (using 2c02 c_0, i.e., 2*coef[1] as the base R mathlib chebyshev*() functions. Specifically, the following sum is evaluated:

j=0ncjTj(x)\sum_{j=0}^n c_j T_j(x)

where c0:=c_0 :=coef[1] and cj:=c_j :=coef[j+1] for j1j \ge 1. n:=n := chebyshev_nc(coef, .) is the maximal degree and hence one less than the number of terms, and Tj()T_j() is the Chebyshev polynomial (of the first kind) of degree jj.

Usage

chebyshevPoly(coef, nc = chebyshev_nc(coef, eta), eta = .Machine$double.eps/20)

chebyshev_nc(coef, eta = .Machine$double.eps/20)
chebyshevEval(x, coef,
              nc = chebyshev_nc(coef, eta), eta = .Machine$double.eps/20)

Arguments

coef

a numeric vector of coefficients for the Chebyshev polynomial.

nc

the maximal degree, i.e., one less than the number of polynomial terms to use; typically use the default.

eta

a positive number; typically keep the default.

x

for chebyshevEval(): numeric vector of abscissa values at which the polynomial should be evaluated. Typically x values are inside the interval [1,1][-1, 1].

Value

chebyshevPoly() returns function(x) which computes the values of the underlying Chebyshev polynomial at x.

chebyshev_nc() returns an integer, and chebyshevEval(x, coef) returns a numeric “like” x with the values of the polynomial at x.

Author(s)

R Core team, notably Ross Ihaka; Martin Maechler provided the R interface.

References

https://en.wikipedia.org/wiki/Chebyshev_polynomials

See Also

polyn.eval() from CRAN package sfsmisc; as one example of many more.

Examples

## The first 5 (base) Chebyshev polynomials:
T0 <- chebyshevPoly(2)  # !! 2, not 1
T1 <- chebyshevPoly(0:1)
T2 <- chebyshevPoly(c(0,0,1))
T3 <- chebyshevPoly(c(0,0,0,1))
T4 <- chebyshevPoly(c(0,0,0,0,1))
curve(T0(x), -1,1, col=1, lwd=2, ylim=c(-1,1))
abline(h=0, lty=2)
curve(T1(x), col=2, lwd=2, add=TRUE)
curve(T2(x), col=3, lwd=2, add=TRUE)
curve(T3(x), col=4, lwd=2, add=TRUE)
curve(T4(x), col=5, lwd=2, add=TRUE)

(Tv <- vapply(c(T0=T0, T1=T1, T2=T2, T3=T3, T4=T4),
              function(Tp) Tp(-1:1), numeric(3)))
x <- seq(-1,1, by = 1/64)
stopifnot(exprs = {
   all.equal(chebyshevPoly(1:5)(x),
             0.5*T0(x) + 2*T1(x) + 3*T2(x) + 4*T3(x) + 5*T4(x))
   all.equal(unname(Tv), rbind(c(1,-1), c(1:-1,0:1), rep(1,5)))# warning on rbind()
})

R's C Mathlib (Rmath) dbinom_raw() Binomial Probability pure R Function

Description

A pure R implementation of R's C API (‘Mathlib’ specifically) dbinom_raw() function which computes binomial probabilities and is continuous in x, i.e., also “works” for non-integer x.

Usage

dbinom_raw (x, n, p, q = 1-p, log = FALSE,
            version = c("2008", "R4.4"),
            verbose = getOption("verbose"))

Arguments

x

vector with values typically in 0:n, but here allowed to non-integer values.

n

called size in R's dbinom().

p

called prob in R's dbinom(), the success probability, hence in [0,1][0, 1].

q

mathemtically the same as 1p1 - p, but may be (much) more accurate, notably when small.

log

logical indicating if the log() of the resulting probability should be returned; useful notably in case the probability itself would underflow to zero.

version

a character string; originally, "2008" was the only option. Still the default currently, this may change in the future.

verbose

integer indicating the amount of verbosity of diagnostic output, 0 means no output, 1 more, etc.

Value

numeric vector of the same length as x which may have to be thought of recycled along n, p and/or q.

Author(s)

R Core and Martin Maechler

See Also

Note that our CRAN package Rmpfr provides dbinom, an mpfr-accurate function to be used used instead of R's or this pure R version relying bd0() and stirlerr() where the latter currently only provides accurate double precision accuracy.

Examples

for(n in c(3, 10, 27, 100, 500, 2000, 5000, 1e4, 1e7, 1e10)) {
 x <- if(n <= 2000) 0:n else round(seq(0, n, length.out=2000))
 p <- 3/4
 stopifnot(all.equal(dbinom_raw(x, n, p, q=1-p) -> dbin,
                     dbinom    (x, n, p), tolerance = 1e-13))# 1.636e-14 (Apple clang 14.0.3)
 stopifnot(all.equal(dbin, dbinom_raw(x, n, p, q=1-p, version = "R4.4") -> dbin44,
                     tolerance = 1e-13))
 cat("n = ", n, ": ", (aeq <- all.equal(dbin44, dbin, tolerance = 0)), "\n")
 if(n < 3000) stopifnot(is.character(aeq)) # check that dbin44 is "better" ?!
}

n <- 1024 ; x <- 0:n
plot(x, dbinom_raw(x, n, p, q=1-p) - dbinom(x, n, p), type="l", main = "|db_r(x) - db(x)|")
plot(x, dbinom_raw(x, n, p, q=1-p) / dbinom(x, n, p) - 1, type="b", log="y",
     main = "rel.err.  |db_r(x / db(x) - 1)|")

Approximations of the (Noncentral) Chi-Squared Density

Description

Compute the density function f(x,)f(x, *) of the (noncentral) chi-squared distribution.

Usage

dnchisqR     (x, df, ncp, log = FALSE,
              eps = 5e-15, termSml = 1e-10, ncpLarge = 1000)
dnchisqBessel(x, df, ncp, log = FALSE)
dchisqAsym   (x, df, ncp, log = FALSE)
dnoncentchisq(x, df, ncp, kmax = floor(ncp/2 + 5 * (ncp/2)^0.5))

Arguments

x

non-negative numeric vector.

df

degrees of freedom (parameter), a positive number.

ncp

non-centrality parameter δ\delta; ....

log

logical indicating if the result is desired on the log scale.

eps

positive convergence tolerance for the series expansion: Terms are added while term * q > (1-q)*eps, where q is the term's multiplication factor.

termSml

positive tolerance: in the series expansion, terms are added to the sum as long as they are not smaller than termSml * sum even when convergence according to eps had occured. This was not part of the original C code, but was added later for safeguarding against infinite loops, from PR#14105, e.g., for dchisq(2000, 2, 1000).

ncpLarge

in the case where mid underflows to 0, when log is true, or ncp >= ncpLarge, use a central approximation. In theory, an optimal choice of ncpLarge would not be arbitrarily set at 1000 (hardwired in R's dchisq() here), but possibly also depend on x or df.

kmax

the number of terms in the sum for dnoncentchisq().

Details

dnchisqR() is a pure R implementation of R's own C implementation in the sources, ‘R/src/nmath/dnchisq.c’, additionally exposing the three “tuning parameters” eps, termSml, and ncpLarge.

dnchisqBessel() implements Fisher(1928)'s exact closed form formula based on the Bessel function InuI_{nu}, i.e., R's besselI() function; specifically formula (29.4) in Johnson et al. (1995).

dchisqAsym() is the simple asymptotic approximation from Abramowitz and Stegun's formula 26.4.27, p. 942.

dnoncentchisq() uses the (typically defining) infinite series expansion directly, with truncation at kmax, and terms tkt_k which are products of a Poisson probability and a central chi-square density, i.e., terms t.k := dpois(k, lambda = ncp/2) * dchisq(x, df = 2*k + df) for k = 0, 1, ..., kmax.

Value

numeric vector similar to x, containing the (logged if log=TRUE) values of the density f(x,)f(x,*).

Note

These functions are mostly of historical interest, notably as R's dchisq() was not always very accurate in the noncentral case, i.e., for ncp > 0.

Note

R's dchisq() is typically more uniformly accurate than the approximations nowadays, apart from dnchisqR() which should behave the same. There may occasionally exist small differences between dnchisqR(x, *) and dchisq(x, *) for the same parameters.

Author(s)

Martin Maechler, April 2008

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain.

Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions Vol~2, 2nd ed.; Wiley; chapter 29, Section 3 Distribution, (29.4), p. 436.

See Also

R's own dchisq().

Examples

x <- sort(outer(c(1,2,5), 2^(-4:5)))
fRR <- dchisq  (x, 10, 2)
f.R <- dnchisqR(x, 10, 2)
all.equal(fRR, f.R, tol = 0) # 64bit Lnx (F 30): 1.723897e-16
stopifnot(all.equal(fRR, f.R, tol = 4e-15))

Binomial Deviance – Auxiliary Functions for dgamma() Etc

Description

The “binomial deviance” function bd0(x, M) := D0(x,M):=Md0(x/M)D_0(x,M) := M \cdot d_0(x/M), where d0(r):=rlog(r)+1rd_0(r) := r\log(r) + 1-r.

Mostly, pure R transcriptions of the C code utility functions for dgamma(), dbinom(), dpois(), dt(), and similar “base” density functions by Catherine Loader.
These have extra arguments with defaults that correspond to R's Mathlib C code hardwired cutoffs and tolerances.

Usage

dpois_raw(x, lambda, log=FALSE,
          version, 
          small.x__lambda = .Machine$double.eps,
          ## the defaults for version will probably change in the future
          bd0.delta = 0.1,
          ## optional arguments of log1pmx() :
          tol_logcf = 1e-14, eps2 = 0.01, minL1 = -0.79149064, trace.lcf = verbose,
          logCF = if (is.numeric(x)) logcf else logcfR,
          verbose = FALSE)

dpois_simpl (x, lambda, log=FALSE)
dpois_simpl0(x, lambda, log=FALSE)

bd0(x, np,
    delta = 0.1, maxit = as.integer(-1100 / log2(delta)),
    s0 = .Machine$double.xmin,
    verbose = getOption("verbose"))
bd0C(x, np, delta = 0.1, maxit = 1000L, version = "R4.0", verbose = getOption("verbose"))
# "simple" log1pmx() based versions :
bd0_p1l1d1(x, M, tol_logcf = 1e-14, ...)
bd0_p1l1d (x, M, tol_logcf = 1e-14, ...)
bd0_l1pm  (x, M, tol_logcf = 1e-14, ...)

ebd0 (x, M, verbose = getOption("verbose"), ...) # experimental, may disappear !!
ebd0C(x, M, verbose = getOption("verbose"))

Arguments

x

numeric (or number-alike such as "mpfr").

lambda, np, M

each numeric (or number-alike ..); distribution parameters.

log

logical indicating if the log-density should be returned, otherwise the density at x.

verbose

logical indicating if some information about the computations are to be printed.

small.x__lambda

positive number; for dpois_raw(x, lambda), when x/lambda is not larger than small.x__lambda, the direct log poisson formula is used instead of ebd0(), bd0() or stirlerr().

delta, bd0.delta

a non-negative number <1< 1 (practically required to be .99\le .99), a cutoff for bd0() where a continued fraction series expansion is used when xM<delta(x+M)|x - M| < delta*(x+M).

tol_logcf, eps2, minL1, trace.lcf, logCF, ...

optional tuning arguments passed to log1pmx(), and to its options passed to logcf().

maxit

the number of series expansion terms to be used in bd0() when xM|x-M| is small. The default is kk such that δ2k2102252\delta^{2k} \le 2^{-1022-52}, i.e., will underflow to zero.

s0

the very small s0s_0 determining that bd0() = s already before the locf series expansion.

version

a character string specifying the version of bd0()bd0() to use.

Details

bd0():

Loader's “Binomial Deviance” function; for x,M>0x, M > 0 (where the limit x0x \to 0 is allowed). In the case of dbinom, xx are integers (and M=npM = n p), but in general x is real.

bd0(x,M):=MD0(xM),bd_0(x,M) := M \cdot D_0\bigl(\frac{x}{M}\bigr),

where D0(u):=ulog(u)+1u=u(log(u)1)+1D_0(u) := u \log(u) + 1-u = u(\log(u) - 1) + 1. Hence

bd0(x,M)=M(xM(log(xM)1)+1)=xlog(xM)x+M.bd_0(x,M) = M \cdot \bigl(\frac{x}{M}(\log(\frac{x}{M}) -1) +1 \bigr) = x \log(\frac{x}{M}) - x + M.

A different way to rewrite this from Martyn Plummer, notably for important situation when xMM\left|x-M \right| \ll M, is using t:=(xM)/Mt := (x-M)/M (and t1\left|t \right| \ll 1 for that situation), equivalently, xM=1+t\frac{x}{M} = 1+t. Using tt,

bd0(x,M)=log(1+t)tM=M[(t+1)(log(1+t)1)+1]=M[(t+1)log(1+t)t]=Mp1l1(t),bd_0(x,M) = \log(1+t) - t \cdot M = M \cdot [(t+1)(\log(1+t) - 1) + 1] = M \cdot [(t+1) \log(1+t) - t] = M \cdot p_1l_1(t),

and

p1l1(t):=(t+1)log(1+t)t=t22t36...p_1l_1(t) := (t+1)\log(1+t) - t = \frac{t^2}{2} - \frac{t^3}{6} ...

where the Taylor series expansion is useful for small t|t|.

Note that bd0(x, M) now also works when x and/or M are arbitrary-accurate mpfr-numbers (package Rmpfr).

bd0C() interfaces to C code which corresponds to R's C Mathlib (Rmath) bd0().

Value

a numeric vector “like” x; in some cases may also be an (high accuracy) "mpfr"-number vector, using CRAN package Rmpfr.

ebd0() (R code) and ebd0C() (interface to C code) are experimental, meant to be precision-extended version of bd0(), returning (yh, yl) (high- and low-part of y, the numeric result). In order to work for long vectors x, yh, yl need to be list components; hence we return a two-column data.frame with column names "yh" and "yl".

Author(s)

Martin Maechler

References

C. Loader (2000), see dbinom's documentation.

Our package vignette log1pmx, bd0, stirlerr - Probability Computations in R.

See Also

stirlerr for Stirling's error function, complementing bd0() for computation of Gamma, Beta, Binomial and Poisson probabilities. dgamma, dpois.

Examples

x <- 800:1200
bd0x1k <- bd0(x, np = 1000)
plot(x, bd0x1k, type="l", ylab = "bd0(x, np=1000)")
bd0x1kC <- bd0C(x, np = 1000)
lines(x, bd0x1kC, col=2)
bd0.1d1 <- bd0_p1l1d1(x, 1000)
bd0.1d  <- bd0_p1l1d (x, 1000)
bd0.1pm <- bd0_l1pm  (x, 1000)
stopifnot(exprs = {
    all.equal(bd0x1kC, bd0x1k,  tol=1e-14) # even tol=0 currently ..
    all.equal(bd0x1kC, bd0.1d1, tol=1e-14)
    all.equal(bd0x1kC, bd0.1d , tol=1e-14)
    all.equal(bd0x1kC, bd0.1pm, tol=1e-14)
})

str(log1pmx) ##--> play with  { tol_logcf, eps2, minL1, trace.lcf, logCF }

ebd0x1k <- ebd0 (x, 1000)
exC     <- ebd0C(x, 1000)
stopifnot(all.equal(exC, ebd0x1k, tol=4e-16))
lines(x, rowSums(ebd0x1k), col=adjustcolor(4, 1/2), lwd=4)

x <- 0:250
dp   <- dpois    (x, 48, log=TRUE)# R's 'stats' pkg function
dp.r <- dpois_raw(x, 48, log=TRUE)
all.equal(dp, dp.r, tol = 0) # on Linux 64b, see TRUE
stopifnot(all.equal(dp, dp.r, tol = 1e-14))
## dpois_raw()  versions:
(vers <- eval(formals(dpois_raw)$version))
mv <- sapply(vers, function(v) dpois_raw(x, 48, version=v))
matplot(x, mv, type="h", log="y", main="dpois_raw(x, 48, version=*)") # "fine"

if(all(mv[,"ebd0_C1"] == mv[,"ebd0_v1"])) {
    cat("versions 'ebd0_C1' and 'ebd0_v1' are identical for lambda=48\n")
    mv <- mv[, vers != "ebd0_C1"]
}
## now look at *relative* errors -- need "Rmpfr" for "truth"
if(requireNamespace("Rmpfr")) {

    dM <- Rmpfr::dpois(Rmpfr::mpfr(x, 256), 48)
    asN <- Rmpfr::asNumeric
    relE <- asN(mv / dM - 1)
    cols <- adjustcolor(1:ncol(mv), 1/2)

    mtit <- "relative Errors of dpois_raw(x, 48, version = * )"
    matplot(x, relE, type="l", col=cols, lwd=3, lty=1, main=mtit)
    legend("topleft", colnames(mv), col=cols, lwd=3, bty="n")

    matplot(x, abs(relE), ylim=pmax(1e-18, range(abs(relE))), type="l", log="y",
            main=mtit, col=cols, lwd=2, lty=1, yaxt="n")
    sfsmisc::eaxis(2)
    legend("bottomright", colnames(mv), col=cols, lwd=2, bty="n", ncol=3)
    ee <- c(.5, 1, 2)* 2^-52; eC <- quote(epsilon[C])
    abline(h=ee, lty=2, col="gray", lwd=c(1,2,1))
    axis(4, at=ee[2:3], expression(epsilon[C], 2 * epsilon[C]), col="gray", las=1)
    par(new=TRUE)
    plot(x, asN(dM), type="h", col=adjustcolor("darkgreen", 1/3), axes=FALSE, ann=FALSE)
    stopifnot(abs(relE) < 8e-13) # seen 2.57e-13
}# Rmpfr

Gamma Density Function Alternatives

Description

dgamma.R() is aimed to be an R level “clone” of R's C level implementation dgamma (from package stats).

Usage

dgamma.R(x, shape, scale = 1, log,
         dpois_r_args = list())

Arguments

x

non-negative numeric vector.

shape

non-negative shape parameter of the Gamma distribution.

scale

positive scale parameter; note we do not see the need to have a rate parameter as the standard R function.

log

logical indicating if the result is desired on the log scale.

dpois_r_args

a list of optional arguments for dpois_raw(); not much checked, must be specified correctly.

Value

numeric vector of the same length as x (which may have to be thought of recycled along shape and/or scale.

Author(s)

Martin Maechler

See Also

(As R's C code) this depends crucially on the “workhorse” function dpois_raw().

Examples

xy  <- curve(dgamma  (x, 12), 0,30) # R's dgamma()
xyR <- curve(dgamma.R(x, 12, dpois_r_args = list(verbose=TRUE)), add=TRUE,
             col = adjustcolor(2, 1/3), lwd=3)
stopifnot(all.equal(xy, xyR, tolerance = 4e-15)) # seen 7.12e-16
## TODO: check *vectorization* in x --> add tests/*.R				___ TODO ___


## From R's  <R>/tests/d-p-q-r-tst-2.R -- replacing dgamma() w/ dgamma.R()
## PR#17577 - dgamma(x, shape)  for shape < 1 (=> +Inf at x=0) and very small x
stopifnot(exprs = {
    all.equal(dgamma.R(2^-1027, shape = .99 , log=TRUE), 7.1127667376, tol=1e-10)
    all.equal(dgamma.R(2^-1031, shape = 1e-2, log=TRUE), 702.8889158,  tol=1e-10)
    all.equal(dgamma.R(2^-1048, shape = 1e-7, log=TRUE), 710.30007699, tol=1e-10)
    all.equal(dgamma.R(2^-1048, shape = 1e-7, scale = 1e-315, log=TRUE),
              709.96858768, tol=1e-10)
})
## R's dgamma() gave all Inf in R <= 3.6.1 [and still there in 32-bit Windows !]

HyperGeometric (Point) Probabilities via Molenaar's Binomial Approximation

Description

Compute hypergeometric (point) probabilities via Molenaar's binomial approximation, hyper2binomP().

Usage

dhyperBinMolenaar(x, m, n, k, log = FALSE)

Arguments

x

(vector of) the number of white balls drawn without replacement from an urn which contains both black and white balls.

m

the number of white balls in the urn.

n

the number of black balls in the urn.

k

the number of balls drawn from the urn, hence in 0,1,,m+n0,1,\dots, m+n.

log

logical indication if the logarithm log(P) should be returned (instead of PP).

Value

a numeric vector, with the length the maximum of the lengths of x, m, n, k.

Author(s)

Martin Maechler

References

See those in phyperBinMolenaar.

See Also

hyper2binomP(); R's own dhyper() which uses more sophisticated computations.

Examples

## The function is simply defined as
function (x, m, n, k, log = FALSE)
  dbinom(x, size = k, prob = hyper2binomP(x, m, n, k), log = log)

Pure R Versions of R's C (Mathlib) dnbinom() Negative Binomial Probabilities

Description

Compute pure R implementations of R's C Mathlib (Rmath) dnbinom() binomial probabilities, allowing to see the effect of the cutoff eps.

Usage

dnbinomR  (x, size, prob, log = FALSE, eps = 1e-10)
dnbinom.mu(x, size, mu,   log = FALSE, eps = 1e-10)

Arguments

x, size, prob, mu, log

see R's dnbinom().

eps

non-negative number specifying the cutoff for “small x/size”, in which case the 2-term approximation from Abramowitz and Stegun, 6.1.47 (p.257) is preferable to the dbinom() based evaluation.

Value

numeric vector of the same length as x which may have to be thought of recycled along size and prob or mu.

Author(s)

R Core and Martin Maechler

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain.

See Also

dbinom_raw; Note that our CRAN package Rmpfr provides dnbinom, dbinom and more, where mpfr-accurate functions are used instead of R's (and our pure R version of) bd0() and stirlerr().

Examples

stopifnot( dnbinomR(0, 1, 1) == 1 )
 size <- 1000 ; x <- 0:size
 dnb <- dnbinomR(x, size, prob = 5/8, log = FALSE, eps = 1e-10)
 plot(x, dnb, type="b")
 all.equal(dnb, dnbinom(x, size, prob = 5/8)) ## mean rel. diff: 0.00017...

 dnbm <- dnbinom.mu(x, size, mu = 123, eps = 1e-10)
 all.equal(dnbm, dnbinom(x, size, mu = 123)) #  Mean relative diff: 0.00069...

Non-central t-Distribution Density - Algorithms and Approximations

Description

dntJKBf1 implements the summation formulas of Johnson, Kotz and Balakrishnan (1995), (31.15) on page 516 and (31.15') on p.519, the latter being typo-corrected for a missing factor 1/j!1 / j!.

dntJKBf() is Vectorize(dntJKBf1, c("x","df","ncp")), i.e., works vectorized in all three main arguments x, df and ncp.

The functions .dntJKBch1() and .dntJKBch() are only there for didactical reasons allowing to check that indeed formula (31.15') in the reference is missing a j!j! factor in the denominator.

The dntJKBf*() functions are written to also work with arbitrary precise numbers of class "mpfr" (from package Rmpfr) as arguments.

Usage

dntJKBf1(x, df, ncp, log = FALSE, M = 1000)
dntJKBf (x, df, ncp, log = FALSE, M = 1000)

## The "checking" versions, only for proving correctness of formula:
.dntJKBch1(x, df, ncp, log = FALSE, M = 1000, check=FALSE, tol.check = 1e-7)
.dntJKBch (x, df, ncp, log = FALSE, M = 1000, check=FALSE, tol.check = 1e-7)

Arguments

x, df, ncp

see R's dt(); note that each can be of class "mpfr".

log

as in dt(), a logical indicating if log(f(x,))\log(f(x,*)) should be returned instead of f(x,)f(x,*).

M

the number of terms to be used, a positive integer.

check

logical indicating if checks of the formula equalities should be done.

tol.check

tolerance to be used for all.equal() when check is true.

Details

How to choose M optimally has not been investigated yet and is probably also a function of the precision of the first three arguments (see getPrec from Rmpfr).

Note that relatedly, R's source code ‘R/src/nmath/dnt.c’ has claimed from 2003 till 2014 but wrongly that the noncentral t density f(x,)f(x, *) was

    f(x, df, ncp) =
 	df^(df/2) * exp(-.5*ncp^2) /
 	(sqrt(pi)*gamma(df/2)*(df+x^2)^((df+1)/2)) *
 	   sum_{k=0}^Inf  gamma((df + k + df)/2)*ncp^k / prod(1:k)*(2*x^2/(df+x^2))^(k/2) .

These functions (and this help page) prove that it was wrong.

Value

a number for dntJKBf1() and .dntJKBch1().

a numeric vector of the same length as the maximum of the lengths of x, df, ncp for dntJKBf() and .dntJKBch().

Author(s)

Martin Maechler

References

Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions Vol~2, 2nd ed.; Wiley; chapter 31, Section 5 Distribution Function, p.514 ff

See Also

R's dt; (an improved version of) Viechtbauer's proposal: dtWV.

Examples

tt <-  seq(0, 10, length.out = 21)
ncp <- seq(0,  6, length.out = 31)
dt3R   <- outer(tt, ncp, dt,     df = 3)
dt3JKB <- outer(tt, ncp, dntJKBf, df = 3)
all.equal(dt3R, dt3JKB) # Lnx(64-b): 51 NA's in dt3R

x <- seq(-1,12, by=1/16)
fx <- dt(x, df=3, ncp=5)
re1 <- 1 - .dntJKBch(x, df=3, ncp=5) / fx ; summary(warnings()) # slow, with warnings
op <- options(warn = 2) # (=> warning == error, for now)
re2 <- 1 -  dntJKBf (x, df=3, ncp=5) / fx  # faster, no warnings
stopifnot(all.equal(re1[!is.na(re1)], re2[!is.na(re1)], tol=1e-6))
head( cbind(x, fx, re1, re2) , 20)
matplot(x, log10(abs(cbind(re1, re2))), type = "o", cex = 1/4)

## One of the numerical problems in "base R"'s non-central t-density:
options(warn = 0) # (factory def.)
x <- 2^seq(-12, 32, by=1/8) ; df <- 1/10
dtm <- cbind(dt(x, df=df,           log=TRUE),
             dt(x, df=df, ncp=df/2, log=TRUE),
             dt(x, df=df, ncp=df,   log=TRUE),
             dt(x, df=df, ncp=df*2, log=TRUE)) #.. quite a few warnings:
summary(warnings())
matplot(x, dtm, type="l", log = "x", xaxt="n",
        main = "dt(x, df=1/10, log=TRUE) central and noncentral")
sfsmisc::eaxis(1)
legend("right", legend=c("", paste0("ncp = df",c("/2","","*2"))),
       lty=1:4, col=1:4, bty="n")

(doExtras <- DPQ:::doExtras()) # TRUE e.g. if interactive()
(ncp <- seq(0, 12, by = if(doExtras) 3/4 else 2))
names(ncp) <- nnMs <- paste0("ncp=", ncp)
tt  <- seq(0, 5, by =  1)
dt3R <- outer(tt, ncp, dt,   df = 3)
if(requireNamespace("Rmpfr")) withAutoprint({
   mt  <- Rmpfr::mpfr(tt , 128)
   mcp <- Rmpfr::mpfr(ncp, 128)
   system.time(
       dt3M <- outer(mt, mcp, dntJKBf, df = 3,
                     M = if(doExtras) 1024 else 256)) # M=1024: 7 sec [10 sec on Winb]
   relE <- Rmpfr::asNumeric(sfsmisc::relErrV(dt3M, dt3R))
   relE[tt != 0, ncp != 0]
})

## all.equal(dt3R, dt3V, tol=0) # 1.2e-12

 # ---- using MPFR high accuracy arithmetic (too slow for routine testing) ---
## no such kink here:
x. <- if(requireNamespace("Rmpfr")) Rmpfr::mpfr(x, 256) else x
system.time(dtJKB <- dntJKBf(x., df=df, ncp=df, log=TRUE)) # 43s, was 21s and only 7s ???
lines(x, dtJKB, col=adjustcolor(3, 1/2), lwd=3)
options(op) # reset to prev.

## Relative Difference / Approximation errors :
plot(x, 1 - dtJKB / dtm[,3], type="l", log="x")
plot(x, 1 - dtJKB / dtm[,3], type="l", log="x", xaxt="n", ylim=c(-1,1)*1e-3); sfsmisc::eaxis(1)
plot(x, 1 - dtJKB / dtm[,3], type="l", log="x", xaxt="n", ylim=c(-1,1)*1e-7); sfsmisc::eaxis(1)
plot(x, abs(1 - dtJKB / dtm[,3]), type="l", log="xy", axes=FALSE, main =
     "dt(*, 1/10, 1/10, log=TRUE) relative approx. error",
     sub= paste("Copyright (C) 2019  Martin Maechler  --- ", R.version.string))
for(j in 1:2) sfsmisc::eaxis(j)

Distribution Utilities "dpq"

Description

Utility functions for "dpq"-computations, parelling those in R's own C source ‘<Rsource>/src/nmath/dpq.h’, (“dpq” := density–probability–quantile).

Usage

.D_0(log.p) # prob/density == 0   (for log.p=FALSE)
.D_1(log.p) # prob         == 1     "       "

.DT_0(lower.tail, log.p) # == 0  when (lower.tail=TRUE, log.p=FALSE)
.DT_1(lower.tail, log.p) # == 1  when     "                "

.D_Lval(p, lower.tail) # p    {L}ower
.D_Cval(p, lower.tail) # 1-p  {C}omplementary

.D_val (x, log.p)  #     x  in pF(x,..)
.D_qIv (p, log.p)  #     p  in qF(p,..)
.D_exp (x, log.p)  # exp(x)        unless log.p where it's  x
.D_log (p, log.p)  #     p           "      "     "    "   log(p)
.D_Clog(p, log.p)  #   1-p           "      "     "    "   log(1-p) == log1p(-)

.D_LExp(x, log.p)  ## [log](1 - exp(-x))     == log1p(- .D_qIv(x))) even more stable

.DT_val (x, lower.tail, log.p) # := .D_val(.D_Lval(x, lower.tail), log.p) ==    x  in pF
.DT_Cval(x, lower.tail, log.p) # := .D_val(.D_Cval(x, lower.tail), log.p) ==  1-x  in pF

.DT_qIv (p, lower.tail, log.p) # := .D_Lval(.D_qIv(p))	==    p	 in qF
.DT_CIv (p, lower.tail, log.p) # := .D_Cval(.D_qIv(p))	==  1-p  in qF

.DT_exp (x, lower.tail, log.p) #  exp( x )
.DT_Cexp(x, lower.tail, log.p) #  exp(1-x)

.DT_log (p, lower.tail, log.p) # log ( p )  in qF
.DT_Clog(p, lower.tail, log.p) # log (1-p)  in qF
.DT_Log (p, lower.tail)        # log ( p )  in qF(p,..,log.p=TRUE)

Arguments

x

numeric vector.

p

(log) probability–like numeric vector.

lower.tail

logical; if true, probabilities are P[Xx]P[X \le x], otherwise upper tail probabilities, P[X>x]P[X > x].

log.p

logical; if true, probabilities pp are given as log(p)\log(p) in argument p.

Value

Typically a numeric vector “as” x or p, respectively.

Author(s)

Martin Maechler

See Also

log1mexp() which is called from .D_LExp() and .DT_Log().

Examples

FT <- c(FALSE, TRUE)
stopifnot(exprs = {
    .D_0(log.p = FALSE) ==    (0)
    .D_0(log.p = TRUE ) == log(0)
    identical(c(1,0), vapply(FT, .D_1, double(1)))
})

## all such functions in package DPQ:
eDPQ <- as.environment("package:DPQ")
ls.str(envir=eDPQ, pattern = "^[.]D", all.names=TRUE)
(nD <- local({ n <- names(eDPQ); n[startsWith(n, ".D")] }))
trimW <- function(ch) sub(" +$","", sub("^ +","", ch))
writeLines(vapply(sort(nD), function(nm) {
    B <- deparse(eDPQ[[nm]])
    sprintf("%31s := %s", trimW(sub("function ", nm, B[[1]])),
            paste(trimW(B[-1]), collapse=" "))
                  }, ""))

do.lowlog <- function(Fn, ...) {
    stopifnot(is.function(Fn),
              all(c("lower.tail", "log.p") %in% names(formals(Fn)))) 
    FT <- c(FALSE, TRUE) ; cFT <- c("F", "T")
    L <- lapply(FT, function(lo) sapply(FT, function(lg) Fn(..., lower.tail=lo, log.p=lg)))
    r <- simplify2array(L)
    `dimnames<-`(r, c(rep(list(NULL), length(dim(r)) - 2L),
                      list(log.p = cFT, lower.tail = cFT)))
}
do.lowlog(.DT_0)
do.lowlog(.DT_1)
do.lowlog(.DT_exp, x = 1/4) ; do.lowlog(.DT_exp, x = 3/4)
do.lowlog(.DT_val, x = 1/4) ; do.lowlog(.DT_val, x = 3/4)
do.lowlog(.DT_Cexp, x = 1/4) ; do.lowlog(.DT_Cexp, x = 3/4)
do.lowlog(.DT_Cval, x = 1/4) ; do.lowlog(.DT_Cval, x = 3/4)
do.lowlog(.DT_Clog, p = (1:3)/4) # w/ warn
do.lowlog(.DT_log,  p = (1:3)/4) # w/ warn
do.lowlog(.DT_qIv,  p = (1:3)/4)

## unfinished: FIXME, the above is *not* really checking
stopifnot(exprs = {

})

Psi Gamma Functions Workhorse from R's API

Description

Log Gamma derivatives, Psi Gamma functions. dpsifn() is an R interface to the R API function R_dpsifn().

Usage

dpsifn(x, m, deriv1 = 0L, k2 = FALSE)

Arguments

x

numeric vector.

m

number of derivatives to return, an integer >= 0.

deriv1

“start” derivative ....

k2

a logical specifying if kode = 2 should be applied.

Details

dpsifn() is the underlying “workhorse” of R's own digamma, trigamma and (generalized) psigamma functions.

It is useful, e.g., when several derivatives of logΓ=\log\Gamma=lgamma are desired. It computes and returns length-m sequence (1)k+1/Γ(k+1)ψ(k)(x)(-1)^{k+1} / \Gamma(k+1) \cdot \psi^{(k)}(x) for k=n,n+1,,n+m1k = n, n+1,\ldots, n+m-1, where n=n=deriv1, and ψ(k)(x)\psi^{(k)}(x) is the k-th derivative of ψ(x)\psi(x), i.e., psigamma(x,k). For more details, see the comments in ‘src/nmath/polygamma.c’.

Value

A numeric lx×ml_x \times m matrix (where lx=l_x=length(x)) of scaled ψ(k)(x)\psi^{(k)}(x) values. The matrix has attributes

underflow

of lxl_x integer counts of the number of under- and over-flows, in computing the corresponding i-th matrix column for x[i].

ierr

length-lxl_x integer vector of error codes, where 0 is normal/successful.

Author(s)

Martin Maechler (R interface); R Core et al., see digamma.

References

See those in psigamma

See Also

digamma, trigamma, psigamma.

Examples

x <- seq(-3.5, 6, by=1/4)
dpx <- dpsifn(x, m = if(getRversion() >= "4.2") 7 else 5)
dpx # in R <= 4.2.1, see that sometimes the 'nz' (under-over-flow count) was uninitialized !!
j <- -1L+seq_len(nrow(dpx)); (fj <- (-1)^(j+1)*gamma(j+1))
## mdpsi <- cbind(di =   digamma(x),      -dpx[1,],
## 	       tri=  trigamma(x),       dpx[2,],
## 	       tetra=psigamma(x,2),  -2*dpx[3,],
## 	       penta=psigamma(x,3),   6*dpx[4,],
## 	       hexa =psigamma(x,4), -24*dpx[5,],
## 	       hepta=psigamma(x,5), 120*dpx[6,],
## 	       octa =psigamma(x,6),-720*dpx[7,])
## cbind(x, ie=attr(dpx,"errorCode"), round(mdpsi, 4))
str(psig <- outer(x, j, psigamma))
dpsi <- t(fj * (`attributes<-`(dpx, list(dim=dim(dpx)))))
if(getRversion() >= "4.2") {
      print( all.equal(psig, dpsi, tol=0) )# -> see 1.185e-16
  stopifnot( all.equal(psig, dpsi, tol=1e-15) )
} else { # R <= 4.1.x; dpsifn(x, ..) *not* ok for x < 0
  i <- x >= 0
      print( all.equal(psig[i,], dpsi[i,], tol=0) )# -> see 1.95e-16
  stopifnot( all.equal(psig[i,], dpsi[i,], tol=1e-15) )
}

Asymptotic Noncentral t Distribution Density by Viechtbauer

Description

Compute the density function f(x)f(x) of the t distribution with df degrees of freedom and non-centrality parameter ncp, according to Wolfgang Viechtbauer's proposal in 2002. This is an asymptotic formula for “large” df=ν= \nu, or mathematically ν\nu \to \infty.

Usage

dtWV(x, df, ncp = 0, log = FALSE)

Arguments

x

numeric vector.

df

degrees of freedom (>0> 0, maybe non-integer). df = Inf is allowed.

ncp

non-centrality parameter δ\delta; If omitted, use the central t distribution.

log

logical; if TRUE, log(f(x))log(f(x)) is returned instead of f(x)f(x).

Details

The formula used is “asymptotic”: Resnikoff and Lieberman (1957), p.1 and p.25ff, proposed to use recursive polynomials for (integer !) degrees of freedom f=1,2,,20f = 1,2,\dots, 20, and then, for df=f>20= f > 20, use the asymptotic approximation which Wolfgang Viechtbauer proposed as a first version of a non-central t density for R (when dt() did not yet have an ncp argument).

Value

numeric vector of density values, properly recycled in (x, df, ncp).

Author(s)

Wolfgang Viechtbauer (2002) post to R-help (https://stat.ethz.ch/pipermail/r-help/2002-October/026044.html), and Martin Maechler (log argument; tweaks, notably recycling).

References

Resnikoff, George J. and Lieberman, Gerald J. (1957) Tables of the non-central t-distribution; Technical report no. 32 (LIE ONR 32), April 1, 1957; Applied Math. and Stat. Lab., Stanford University. https://statistics.stanford.edu/technical-reports/tables-non-central-t-distribution-density-function-cumulative-distribution

See Also

dt, R's (C level) implementation of the (non-central) t density; dntJKBf, for Johnson et al.'s summation formula approximation.

Examples

tt <- seq(0, 10, len = 21)
ncp <- seq(0, 6, len = 31)
dt3R  <- outer(tt, ncp, dt  , df = 3)
dt3WV <- outer(tt, ncp, dtWV, df = 3)
all.equal(dt3R, dt3WV) # rel.err 0.00063
dt25R  <- outer(tt, ncp, dt  , df = 25)
dt25WV <- outer(tt, ncp, dtWV, df = 25)
all.equal(dt25R, dt25WV) # rel.err 1.1e-5

x <- -10:700
fx  <- dt  (x, df = 22, ncp =100)
lfx <- dt  (x, df = 22, ncp =100, log=TRUE)
lfV <- dtWV(x, df = 22, ncp =100, log=TRUE)

head(lfx, 20) # shows that R's dt(*, log=TRUE) implementation is "quite suboptimal"

## graphics
opa <- par(no.readonly=TRUE)
par(mar=.1+c(5,4,4,3), mgp = c(2, .8,0))
plot(fx ~ x, type="l")
par(new=TRUE) ; cc <- c("red", adjustcolor("orange", 0.4))
plot(lfx ~ x, type = "o", pch=".", col=cc[1], cex=2, ann=FALSE, yaxt="n")
sfsmisc::eaxis(4, col=cc[1], col.axis=cc[1], small.args = list(col=cc[1]))
lines(x, lfV, col=cc[2], lwd=3)
dtt1 <- "      dt"; dtt2 <- "(x, df=22, ncp=100"; dttL <- paste0(dtt2,", log=TRUE)")
legend("right", c(paste0(dtt1,dtt2,")"), paste0(c(dtt1,"dtWV"), dttL)),
       lty=1, lwd=c(1,1,3), col=c("black", cc), bty = "n")
par(opa) # reset

Accurate exp(x) - 1 - x (for smallish |x|)

Description

Compute ex1x=e^x - 1 - x = exp(x) - 1 - x accurately, notably for small x|x|.

The last two entries in cutx[] denote boundaries where expm1x(x) uses direct formulas. For nC <- length(cutx), exp(x) - 1 - x is used for abs(x) >= cutx[nC], and when abs(x) < cutx[nC] expm1(x) - x is used for abs(x) >= cutx[nC-1].

Usage

expm1x(x, cutx = c( 4.4e-8, 0.1, 0.385, 1.1, 2),
             k = c(2,      9,  12,    17))

expm1xTser(x, k)

Arguments

x

numeric-alike vector; goal is to work for mpfr-numbers too.

cutx

increasing positive numeric vector of cut points defining intervals in which the computations will differ.

k

for

exp1mx():

increasing vector of integers with length(k) == length(cutx) + 2, denoting the order of Taylor polynomial approximation by expm1xTser(.,k) to expm1x(.).

exp1mxTser():

an integer 1\ge 1, where the Taylor polynomial approximation has degree k+1k + 1.

Value

a vector like x containing (approximations to) exx1e^x - x - 1.

Author(s)

Martin Maechler

See Also

expm1(x) for computing ex1e^x - 1 is much more widely known, and part of the ISO C standards now.

Examples

## a symmetric set of negative and positive
x <- unique(c(2^-seq(-3/8, 54, by = 1/8), seq(7/8, 3, by = 1/128)))
x <- x0 <- sort(c(-x, 0, x)) # negative *and* positive

## Mathematically,  expm1x() = exp(x) - 1 - x  >= 0  (and == 0 only at x=0):
em1x <- expm1x(x)
stopifnot(em1x >= 0, identical(x == 0, em1x == 0))

plot (x, em1x, type='b', log="y")
lines(x, expm1(x)-x, col = adjustcolor(2, 1/2), lwd = 3) ## should nicely cover ..
lines(x, exp(x)-1-x, col = adjustcolor(4, 1/4), lwd = 5) ## should nicely cover ..
cuts <- c(4.4e-8, 0.10, 0.385, 1.1, 2)[-1] # *not* drawing 4.4e-8
v <- c(-rev(cuts), 0, cuts); stopifnot(!is.unsorted(v))
abline(v = v, lty = 3, col=adjustcolor("gray20", 1/2))

stopifnot(diff(em1x[x <= 0]) <= 0)
stopifnot(diff(em1x[x >= 0]) >= 0)

## direct formula - may be really "bad" :
expm1x.0 <- function(x) exp(x) -1 - x
## less direct formula - improved (but still not universally ok):
expm1x.1 <- function(x) expm1(x)  - x

ax <- abs(x) # ==> show negative and positive x on top of each other
plot (ax, em1x, type='l', log="xy", xlab = "|x|  (for negative and positive x)")
lines(ax, expm1(x)-x, col = adjustcolor(2, 1/2), lwd = 3) ## see problem at very left
lines(ax, exp(x)-1-x, col = adjustcolor(4, 1/4), lwd = 5) ## see huge problems for |x| < ~10^{-7}
legend("topleft", c("expm1x(x)", "expm1(x) - x", "exp(x) - 1 - x"), bty="n",
       col = c(1,2,4), lwd = c(1,3,5))

## -------------------- Relative error of Taylor series approximations :
twoP <- seq(-0.75, 54, by = 1/8)
x <- 2^-twoP
x <- sort(c(-x,x)) # negative *and* positive
e1xAll <- cbind(expm1x.0 = expm1x.0(x),
                expm1x.1 = expm1x.1(x),
                vapply(1:15, \(k) expm1xTser(x, k=k), x))
colnames(e1xAll)[-(1:2)] <- paste0("k=",1:15)
head(e1xAll)
## TODO  plot !!

Format Numbers in [0,1] with "Precise" Result

Description

Format numbers in [0,1] with “precise” result, notably using "1-.." if needed.

Usage

format01prec(x, digits = getOption("digits"), width = digits + 2,
             eps = 1e-06, ...,
             FUN = function(x, ...) formatC(x, flag = "-", ...))

Arguments

x

numbers in [0,1]; (still works if not)

digits

number of digits to use; is used as FUN(*, digits = digits) or FUN(*, digits = digits - 5) depending on x or eps.

width

desired width (of strings in characters), is used as FUN(*, width = width) or FUN(*, width = width - 2) depending on x or eps.

eps

small positive number: Use '1-' for those x which are in (1eps,1](1-eps, 1]. The author has claimed in the last millennium that (the default) 1e-6 is optimal.

...

optional further arguments passed to FUN(x, digits, width, ...).

FUN

a function used for format()ing; must accept both a digits and width argument.

Value

a character vector of the same length as x.

Author(s)

Martin Maechler, 14 May 1997

See Also

formatC, format.pval.

Examples

## Show that format01prec()  does reveal more precision :
cbind(format      (1 - 2^-(16:24)),
      format01prec(1 - 2^-(16:24)))

## a bit more variety
e <- c(2^seq(-24,0, by=2), 10^-(7:1))
ee <- sort(unique(c(e, 1-e)))
noquote(ff <- format01prec(ee))
data.frame(ee, format01prec = ff)

Base-2 Representation and Multiplication of Numbers

Description

Both are R versions of C99 (and POSIX) standard C (and C++) mathlib functions of the same name.

frexp(x) computes base-2 exponent e and “mantissa”, or fraction r, such that x=r2ex = r * 2^e, where r[0.5,1)r \in [0.5, 1) (unless when x is in c(0, -Inf, Inf, NaN) where r == x and e is 0), and ee is integer valued.

ldexp(f, E) is the inverse of frexp(): Given fraction or mantissa f and integer exponent E, it returns x=f2Ex = f * 2^E. Viewed differently, it's the fastest way to multiply or divide (double precision) numbers with 2E2^E.

Usage

frexp(x)
ldexp(f, E)

Arguments

x

numeric (coerced to double) vector.

f

numeric fraction (vector), in [0.5,1)[0.5, 1).

E

integer valued, exponent of 2, i.e., typically in (-1024-50):1024, otherwise the result will underflow to 0 or overflow to +/- Inf.

Value

frexp returns a list with named components r (of type double) and e (of type integer).

Author(s)

Martin Maechler

References

On unix-alikes, typically man frexp and man ldexp

See Also

Vaguely relatedly, log1mexp(), lsum, logspace.add.

Examples

set.seed(47)
x <- c(0, 2^(-3:3), (-1:1)/0,
       rlnorm(2^12, 10, 20) * sample(c(-1,1), 512, replace=TRUE))
head(x, 12)
which(!(iF <- is.finite(x))) # 9 10 11
rF <- frexp(x)
sapply(rF, summary) # (nice only when x had no NA's ..)
data.frame(x=x[!iF], lapply(rF, `[`, !iF))
##  by C.99/POSIX  'r' should be the same as 'x'  for these,
##      x    r e
## 1 -Inf -Inf 0
## 2  NaN  NaN 0
## 3  Inf  Inf 0
## but on Windows, we've seen  3 NA's :
ar <- abs(rF$r)
ldx <- with(rF, ldexp(r, e))
stopifnot(exprs = {
  0.5 <= ar[iF & x != 0]
  ar[iF] < 1
  is.integer(rF$e)
  all.equal(x[iF], ldx[iF], tol= 4*.Machine$double.eps)
  ## but actually, they should even be identical, well at least when finite
  identical(x[iF], ldx[iF])
})

Compute 1/Gamma(x+1) - 1 Accurately

Description

Computes 1/Γ(a+1)11/\Gamma(a+1) - 1 accurately in [0.5,1.5][-0.5, 1.5] for numeric argument a; For "mpfr" numbers, the precision is increased intermediately such that a+1a+1 should not lose precision.

FIXME: "Pure-R" implementation is in ‘ ~/R/Pkgs/DPQ/TODO_R_versions_gam1_etc.R

Usage

gam1d(a, warnIf = TRUE, verbose = FALSE)

Arguments

a

a numeric or numeric-alike, typically inheriting from class "mpfr".

warnIf

logical if a warning should be signalled when a is not in the “proper” range [0.5,1.5][-0.5, 1.5].

verbose

logical indicating if some output from C code execution should be printed to the console.

Details

https://dlmf.nist.gov/ states the well-know Taylor series for

1Γ(z)=k=1ckzk\frac{1}{\Gamma(z)} = \sum_{k=1}^\infty c_k z^k

with c1=1c_1 = 1, c2=γc_2 = \gamma, (Euler's gamma, γ=0.5772...\gamma = 0.5772..., with recursion ck=(γck1ζ(2)ck2...+(1)kζ(k1)c1)/(k1)c_k = (\gamma c_{k-1} - \zeta(2) c_{k-2} ... +(-1)^k \zeta(k-1) c_1) /(k-1).

Hence,

1Γ(z+1)=z+1+k=2ck(z+1)k\frac{1}{\Gamma(z+1)} = z+1 + \sum_{k=2}^\infty c_k (z+1)^k

1Γ(z+1)1=z+γ(z+1)2+k=3ck(z+1)k\frac{1}{\Gamma(z+1)} -1 = z + \gamma*(z+1)^2 + \sum_{k=3}^\infty c_k (z+1)^k

Consequently, for ζk:=ζ(k)\zeta_k := \zeta(k), c3=(γ2ζ2)/2c_3 = (\gamma^2 - \zeta_2)/2, c4=γ3/6γζ2/2+ζ3/3c_4 = \gamma^3/6 - \gamma \zeta_2/2 + \zeta_3/3.

  gam <- Const("gamma", 128)
  z <- Rmpfr::zeta(mpfr(1:7, 128))
  (c3 <- (gam^2 -z[2])/2)                       # -0.655878071520253881077019515145
  (c4 <- (gam*c3 - z[2]*c2 + z[3])/3)           # -0.04200263503409523552900393488
  (c4 <- gam*(gam^2/6 - z[2]/2) + z[3]/3)
  (c5 <- (gam*c4 - z[2]*c3 + z[3]*c2 - z[4])/4) # 0.1665386113822914895017007951
  (c5 <- (gam^4/6 - gam^2*z[2] + z[2]^2/2 + gam*z[3]*4/3 - z[4])/4)

Value

a numeric-alike vector like a.

Author(s)

Martin Maechler building on C code of TOMS 708

References

TOMS 708, see pbeta

See Also

gamma.

Examples

g1 <- function(u) 1/gamma(u+1) - 1
u <- seq(-.5, 1.5, by=1/16); set.seed(1); u <- sample(u) # permuted (to check logic)

g11   <- vapply(u, gam1d, 1)
gam1d. <- gam1d(u)
stopifnot( all.equal(g1(u), g11) )
stopifnot( identical(g11, gam1d.) )

## Comparison of g1() and gam1d(), slightly extending the [-.5, 1.5] interval:
u <- seq(-0.525, 1.525, length.out = 2001)
mg1 <- cbind(g1 = g1(u), gam1d = gam1d(u))
clr <- adjustcolor(1:2, 1/2)
matplot(u, mg1, type = "l", lty = 1, lwd=1:2, col=clr) # *no* visual difference
## now look at *relative* errors
relErrV <- sfsmisc::relErrV
relE <- relErrV(mg1[,"gam1d"], mg1[,"g1"])
plot(u, relE, type = "l")
plot(u, abs(relE), type = "l", log = "y",
     main = "|rel.diff|  gam1d() vs 'direct' 1/gamma(u+1) - 1")

## now {Rmpfr} for "truth" :
if(requireNamespace("Rmpfr")) withAutoprint({
    asN  <- Rmpfr::asNumeric; mpfr <- Rmpfr::mpfr
    gam1M <- g1(mpfr(u, 512)) # "cheap": high precision avoiding "all" cancellation
    relE <- asN(relErrV(gam1M, gam1d(u)))
    plot(relE ~ u, type="l", ylim = c(-1,1) * 2.5e-15,
         main = expression("Relative Error of " ~~ gam1d(u) %~~% frac(1, Gamma(u+1)) - 1))
    grid(lty = 3); abline(v = c(-.5, 1.5), col = adjustcolor(4, 1/2), lty=2, lwd=2)
})


if(requireNamespace("Rmpfr") && FALSE) { 
  
## Comparison using Rmpfr; slightly extending the [-.5, 1.5] interval:
##	{relErrV(), mpfr(), asN() defined above}

u <- seq(-0.525, 1.525, length.out = 2001)
gam1M <- gam1(mpfr(u, 128))
relE <- asN(relErrV(gam1M, gam1d(u)))

plot(relE ~ u, type="l", ylim = c(-1,1) * 2.5e-15,
     main = expression("Relative Error of " ~~ gam1d(u) == frac(1, Gamma(u+1)) - 1))
grid(lty = 3); abline(v = c(-.5, 1.5), col = adjustcolor(4, 1/2), lty=2, lwd=2)

## what about the direct formula -- how bad is it really ?
relED <- asN(relErrV(gam1M, g1(u)))

plot(relE ~ u, type="l", ylim = c(-1,1) * 1e-14,
     main = expression("Relative Error of " ~~ gam1d(u) == frac(1, Gamma(u+1)) - 1))
lines(relED ~ u, col = adjustcolor(2, 1/2), lwd = 2)
# mtext("comparing with direct formula   1/gamma(u+1) - 1")
legend("top", c("gam1d(u)", "1/gamma(u+1) - 1"), col = 1:2, lwd=1:2, bty="n")
## direct is clearly *worse* , but not catastrophical
}

Compute log( Gamma(x+1) ) Accurately in [-0.2, 1.25]

Description

Computes logΓ(a+1)\log \Gamma(a+1) accurately notably when a1|a| \ll 1. Specifically, it uses high (double precision) accuracy rational approximations for 0.2a1.25-0.2 \le a \le 1.25.

Usage

gamln1(a, warnIf = TRUE)

Arguments

a

a numeric or numeric-alike, typically inheriting from class "mpfr".

warnIf

logical if a warning should be signalled when a is not in the “proper” range [0.2,1.25][-0.2, 1.25].

Details

It uses ap(a)/q(a)-a * p(a)/q(a) for a<0.6a < 0.6, where pp and qq are polynomials of degree 6 with coefficient vectors p=[p0p1p6]p = [p_0 p_1 \dots p_6] and qq,

    p <- c( .577215664901533, .844203922187225, -.168860593646662,
	    -.780427615533591, -.402055799310489, -.0673562214325671,
	    -.00271935708322958)
    q <- c( 1, 2.88743195473681, 3.12755088914843, 1.56875193295039,
	      .361951990101499, .0325038868253937, 6.67465618796164e-4)
  

Similarly, for a0.6a \ge 0.6, x:=a1x := a - 1, the result is xr(x)/s(x)x * r(x)/s(x), with 5th degree polynomials r()r() and s()s() and coefficient vectors

    r <- c(.422784335098467, .848044614534529, .565221050691933,
           .156513060486551, .017050248402265, 4.97958207639485e-4)
    s <- c( 1 , 1.24313399877507, .548042109832463,
           .10155218743983, .00713309612391, 1.16165475989616e-4)
  

Value

a numeric-alike vector like a.

Author(s)

Martin Maechler building on C code of TOMS 708

References

TOMS 708, see pbeta

See Also

lgamma1p() for different algorithms to compute logΓ(a+1)\log \Gamma(a+1), notably when outside the interval [0.2,1.35][-0.2, 1.35]. Package DPQmpfr's lgamma1pM() provides very precise such computations. lgamma() (and gamma() (same page)).

Examples

lg1 <- function(u) lgamma(u+1) # the simple direct form
## The curve, zeros at  u=0 & u=1:
curve(lg1, -.2, 1.25, col=2, lwd=2, n=999)
title("lgamma(x + 1)"); abline(h=0, v=0:1, lty=3)

u <- (-16:100)/80 ; set.seed(1); u <- sample(u) # permuted (to check logic)
g11   <- vapply(u, gamln1, numeric(1))
gamln1. <- gamln1(u)
stopifnot( identical(g11, gamln1.) )
stopifnot( all.equal(lg1(u), g11) )

u <- (-160:1000)/800
relE <- sfsmisc::relErrV(gamln1(u), lg1(u))
plot(u, relE, type="l", main = expression("rel.diff." ~~ gamln1(u) %~~% lgamma(u+1)))
plot(u, abs(relE), type="l", log="y", yaxt="n",
     main = expression("|rel.diff.|" ~~ gamln1(u) %~~% lgamma(u+1)))
sfsmisc::eaxis(2)


if(requireNamespace("DPQmpfr")) withAutoprint({
  ## Comparison using Rmpfr; extending the [-.2, 1.25] interval a bit
  u <- seq(-0.225, 1.31, length.out = 2000)
  lg1pM <- DPQmpfr::lgamma1pM(Rmpfr::mpfr(u, 128))
  relE <- Rmpfr::asNumeric(sfsmisc::relErrV(lg1pM, gamln1(u, warnIf=FALSE)))

  plot(relE ~ u, type="l", ylim = c(-1,1) * 2.3e-15,
       main = expression("relative error of " ~~ gamln1(u) == log( Gamma(u+1) )))
  grid(lty = 3); abline(v = c(-.2, 1.25), col = adjustcolor(4, 1/2), lty=2, lwd=2)
  ## well... TOMS 708 gamln1() is good (if "only" 14 digits required

  ## what about the direct formula -- how bad is it really ?
  relED <- Rmpfr::asNumeric(sfsmisc::relErrV(lg1pM, lg1(u)))
  lines(relED ~ u, col = adjustcolor(2, 1/2))
  ## amazingly, the direct formula is partly (around -0.2 and +0.4) even better than gamln1() !

  plot(abs(relE) ~ u, type="l", log = "y", ylim = c(7e-17, 1e-14),
       main = expression("|relative error| of " ~~ gamln1(u) == log( Gamma(u+1) )))
  grid(lty = 3); abline(v = c(-.2, 1.25), col = adjustcolor(4, 1/2), lty=2, lwd=2)
  relED <- Rmpfr::asNumeric(sfsmisc::relErrV(lg1pM, lg1(u)))
  lines(abs(relED) ~ u, col = adjustcolor(2, 1/2))
})

Gamma Function Versions

Description

Provide different variants or versions of computing the Gamma (Γ\Gamma) function.

Usage

gammaVer(x, version, stirlerrV = c("R3", "R4..1", "R4.4_0"), traceLev = 0L)

Arguments

x

numeric vector of absissa value for the Gamma function.

version

integer in {1,2,..,5} specifying which variant is desired.

stirlerrV

a string, specifying the stirlerr() version/variant to use.

traceLev

non-negative integer indicating the amount of diagnostic “tracing” output to the console during computation.

Details

All of these are good algorithms to compute Γ(x)\Gamma(x) (for real xx), and indeed correspond to the versions R's implementation of gamma(x) over time. More specifically, the current version numbers correspond to

  1. . TODO

  2. .

  3. .

  4. Used in R from ... up to versions 4.3.z

  5. Possibly to be used in R 4.4.z and newer.

The stirlerrV must be a string specifying the version of stirlerr() to be used:

"R3":

the historical version, used in all R version up to R 4.3.z.

"R4..1":

only started using lgamma1p(n) instead of lgamma(n + 1.) in stirlerr(n) for n15n \le 15, in the direct formula.

"R4.4_0":

uses 10 cutoffs instead 4, and these are larger to gain accuracy.

Value

numeric vector as x

Author(s)

Martin Maechler

References

.... TODO ....

See Also

gamma(), R's own Gamma function.

Examples

xx <- seq(-4, 10, by=1/2)
gx <- sapply(1:5, gammaVer, x=xx)
gamx <- gamma(xx)
cbind(xx, gx, gamma=gamx)
apply(gx, 2, all.equal, target=gamx, tol = 0) # typically: {T,T,T,T, 1.357e-16}
stopifnot( apply(gx, 2, all.equal, target = gamx, tol = 1e-14))
                                                 # even 2e-16 (Lnx, 64b, R 4.2.1)

Transform Hypergeometric Distribution Parameters to Binomial Probability

Description

Transform the three parameters of the hypergeometric distribution function to the probability parameter of the “corresponding” binomial distribution.

Usage

hyper2binomP(x, m, n, k)

Arguments

x, m, n, k

see dhyper.

Value

a number, the binomial probability.

References

See those in phyperBinMolenaar.

See Also

phyper, pbinom.

dhyperBinMolenaar(), phyperBinMolenaar.1(), *.2(), etc, all of which are crucially based on hyper2binomP().

Examples

hyper2binomP(3,4,5,6) # 0.38856

## The function is simply defined as
function (x, m, n, k) {
    N <- m + n
    p <- m/N
    N.n <- N - (k - 1)/2
    (m - x/2)/N.n - k * (x - k * p - 1/2)/(6 * N.n^2)
 }

Normalized Incomplete Beta Function "Like" pbeta()

Description

Computes the normalized incomplete beta function, in pure R code, derived from Nico Temme's Maple code for computing Table 1 in Gil et al (2023).

It uses a continued fraction, similarly to bfrac() in the TOMS 708 algorithm underlying R's pbeta().

Usage

Ixpq(x, l_x, p, q, tol = 3e-16, it.max = 100L, plotIt = FALSE)

Arguments

x

numeric

l_x

1 - x; may be specified with higher precision (e.g., when x1x \approx 1, 1x1-x suffers from cancellation).

p, q

the two shape parameters of the beta distribution.

tol

positive number, the convergence tolerance for the continued fraction computation.

it.max

maximal number of continued fraction steps.

plotIt

a logical, if true, plots show the relative approximation errors in each step.

Value

a vector like x or l_x with corresponding pbeta(x, *) values.

Author(s)

Martin Maechler; based on original Maple code by Nico Temme.

References

Gil et al. (2023)

See Also

pbeta, pbetaRv1(), ..

Examples

x <- seq(0, 1, by=1/16)
r <- Ixpq(x, 1-x, p = 4, q = 7, plotIt = TRUE)
cbind(x, r)
## and "test" ___FIXME__

(Log) Beta and Ratio of Gammas Approximations

Description

Compute log(beta(a,b)) in a simple (fast) or asymptotic way. The asymptotic case is based on the asymptotic Γ\Gamma (gamma) ratios, provided in Qab_terms() and logQab_asy().

lbeta_asy(a,b, ..) is simply lgamma(a) - logQab_asy(a, b, ..).

Usage

lbetaM   (a, b, k.max = 5, give.all = FALSE)
lbeta_asy(a, b, k.max = 5, give.all = FALSE)
lbetaMM  (a, b, cutAsy = 1e-2, verbose = FALSE)

 betaI(a, n)
lbetaI(a, n)

logQab_asy(a, b, k.max = 5, give.all = FALSE)
Qab_terms(a, k)

Arguments

a, b, n

the Beta parameters, see beta; n must be a positive integer and “small”.

k.max, k

for lbeta*() and logQab_asy(): the number of terms to be used in the series expansion of Qab_terms(), currently must be in 0,1,..,5{0, 1, .., 5}.

give.all

logical indicating if all terms should be returned (as columns of a matrix) or just the result.

cutAsy

cutoff value from where to switch to asymptotic formula.

verbose

logical (or integer) indicating if and how much monitoring information should be printed to the console.

Details

All lbeta*() functions compute log(beta(a,b)).

We use Qab=Qab(a,b)Qab = Qab(a,b) for

Qa,b:=Γ(a+b)Γ(b),Q_{a,b} := \frac{\Gamma(a + b)}{\Gamma(b)},

which is numerically challenging when bb becomes large compared to a, or aba \ll b.

With the beta function

B(a,b)=Γ(a)Γ(b)Γ(a+b)=Γ(a)Qab,B(a,b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)} = \frac{\Gamma(a)}{Qab},

and hence

logB(a,b)=logΓ(a)+logΓ(b)logΓ(a+b)=logΓ(a)logQab,\log B(a,b) = \log\Gamma(a) + \log\Gamma(b) - \log\Gamma(a+b) = \log\Gamma(a) - \log Qab,

or in R, lbeta(a,b) := lgamma(a) - logQab(a,b).

Indeed, typically everything has to be computed in log scale, as both Γ(b)\Gamma(b) and Γ(a+b)\Gamma(a+b) would overflow numerically for large bb. Consequently, we use logQab*(), and for the large bb case logQab_asy() specifically,

logQab(a,b):=log(Qab(a,b)).\code{logQab(a,b)} := \log( Qab(a,b) ).

The 5 polynomial terms in Qab_terms() have been derived by the author in 1997, but not published, about getting asymptotic formula for Γ\Gamma ratios, related to but different than formula (6.1.47) in Abramowitz and Stegun.

We also have a vignette about this, but really the problem has been adressed pragmatically by the authors of TOMS 708, see the ‘References’ in pbeta, by their routine algdiv() which also is available in our package DPQ, algdiv(a,b)=logQab(a,b)\code{algdiv}(a,b) = - \code{logQab}(a,b). Note that this is related to computing qbeta() in boundary cases. See also algdiv() ‘Details’.

Value

a fast or simple (approximate) computation of lbeta(a,b).

Author(s)

Martin Maechler

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain; Formula (6.1.47), p.257

See Also

R's beta function; algdiv().

Examples

(r  <- logQab_asy(1, 50))
(rF <- logQab_asy(1, 50, give.all=TRUE))
r == rF # all TRUE:  here, even the first approx. is good!
(r2  <- logQab_asy(5/4, 50))
(r2F <- logQab_asy(5/4, 50, give.all=TRUE))
r2 == r2F # TRUE only first entry "5"
(r2F.3 <- logQab_asy(5/4, 50, k=3, give.all=TRUE))

## Check relation to Beta(), Gamma() functions:
a <- 1.1 * 2^(-6:4)
b <- 1001.5
rDlgg <- lgamma(a+b) - lgamma(b) # suffers from cancellation for small 'a'
rDlgb <- lgamma(a) - lbeta(a, b) #    (ditto)
ralgd <- - algdiv(a,b)
rQasy <- logQab_asy(a, b)
cbind(a, rDlgg, rDlgb, ralgd, rQasy)
all.equal(rDlgg, rDlgb, tolerance = 0) # 3.0e-14
all.equal(rDlgb, ralgd, tolerance = 0) # 1.2e-16
all.equal(ralgd, rQasy, tolerance = 0) # 4.1e-10
all.equal(rQasy, rDlgg, tolerance = 0) # 3.5e-10

stopifnot(exprs = {
    all.equal(rDlgg, rDlgb, tolerance = 1e-12) # 3e-14 {from cancellations!}
    all.equal(rDlgb, ralgd, tolerance = 1e-13) # 1e-16
    all.equal(ralgd, rQasy, tolerance = 2e-9) # 4.1e-10
    all.equal(rQasy, rDlgg, tolerance = 2e-9) # 3.5e-10
    all.equal(lgamma(a)-lbeta(a, 2*b), logQab_asy(a, 2*b), tolerance =1e-10)# 1.4e-11
    all.equal(lgamma(a)-lbeta(a, b/2), logQab_asy(a, b/2), tolerance = 1e-7)# 1.2e-8
})
if(requireNamespace("Rmpfr")) withAutoprint({
  aM <- Rmpfr::mpfr(a, 512)
  bM <- Rmpfr::mpfr(b, 512)
  rT <- lgamma(aM+bM) - lgamma(bM) # "True" i.e. accurate values
  relE <- Rmpfr::asNumeric(sfsmisc::relErrV(rT, cbind(rDlgg, rDlgb, ralgd, rQasy)))
  cbind(a, signif(relE,4))
  ##          a      rDlgg      rDlgb      ralgd      rQasy
  ##  0.0171875  4.802e-12  3.921e-16  4.145e-17 -4.260e-16
  ##  0.0343750  1.658e-12  1.509e-15 -1.011e-17  1.068e-16
  ##  0.0687500 -2.555e-13  6.853e-16 -1.596e-17 -1.328e-16
  ##  0.1375000  1.916e-12 -7.782e-17  3.905e-17 -7.782e-17
  ##  0.2750000  1.246e-14  7.001e-17  7.001e-17 -4.686e-17
  ##  0.5500000 -2.313e-13  5.647e-17  5.647e-17 -6.040e-17
  ##  1.1000000 -9.140e-14 -1.298e-16 -1.297e-17 -1.297e-17
  ##  2.2000000  9.912e-14  2.420e-17  2.420e-17 -9.265e-17
  ##  4.4000000  1.888e-14  6.810e-17 -4.873e-17 -4.873e-17
  ##  8.8000000 -7.491e-15  1.004e-16 -1.638e-17 -4.118e-13
  ## 17.6000000  2.222e-15  1.207e-16  3.974e-18 -6.972e-10

## ==>  logQab_asy() is very good _here_ as long as  a << b
})

R versions of Simple Formulas for Logarithmic Binomial Coefficients

Description

Provide R versions of simple formulas for computing the logarithm of (the absolute value of) binomial coefficients, i.e., simpler, more direct formulas than what (the C level) code of R's lchoose() computes.

Usage

lfastchoose(n, k)
 f05lchoose(n, k)

Arguments

n

a numeric vector.

k

a integer valued numeric vector.

Value

a numeric vector with the same attributes as n + k.

Author(s)

Martin Maechler

See Also

lchoose.

Examples

lfastchoose # function(n, k) lgamma(n + 1) - lgamma(k + 1) - lgamma(n - k + 1)
f05lchoose  # function(n, k) lfastchoose(n = floor(n + 0.5), k = floor(k + 0.5))

## interesting cases ?

Accurate log(gamma(a+1))

Description

Compute

lΓ1(a):=logΓ(a+1)=log(aΓ(a))=loga+logΓ(a),l\Gamma_1(a) := \log\Gamma(a+1) = \log(a\cdot \Gamma(a)) = \log a + \log \Gamma(a),

which is “in principle” the same as log(gamma(a+1)) or lgamma(a+1), accurately also for (very) small aa (0<a<0.5)(0 < a < 0.5).

Usage

lgamma1p (a, tol_logcf = 1e-14, f.tol = 1, ...)	
lgamma1p.(a, cutoff.a = 1e-6, k = 3)		
lgamma1p_series(x, k)               		
lgamma1pC(x)

Arguments

a, x

a numeric vector.

tol_logcf

for lgamma1p(): a non-negative number passed to logcf() (and log1pmx() which calls logcf()).

f.tol

numeric (factor) used in log1pmx(*, tol_logcf = f.tol * tol_logcf).

...

further optional arguments passed on to log1pmx().

cutoff.a

for lgamma1p.(): a positive number indicating the cutoff to switch from ...

k

an integer, the number of terms in the series expansion used internally; currently for

lgamma1p.():

k3k \le 3

lgamma1p_series():

k15k \le 15

Details

lgamma1p() is an R translation of the function (in Fortran) in Didonato and Morris (1992) which uses a 40-degree polynomial approximation.

lgamma1p.(u) for small u|u| uses up to 4 terms of

Γ(1+u)=1+u(γE+a0u+a1u2+a2u3)+O(u5),\Gamma(1+u) = 1 + u*(-\gamma_E + a_0 u + a_1 u^2 + a_2 u^3) + O(u^5),

where a0:=(ψ(1)+ψ(1)2)/2=(π2/6+γE2)/2a_0 := (\psi'(1) + \psi(1)^2)/2 = (\pi^2/6 + \gamma_E^2)/2, and a1a_1 und a2a_2 are similarly determined. Then log1p(.) of the Γ(1+u)1\Gamma(1+u) - 1 approximation above is used.

lgamma1p_series(x, k) is a Taylor series approximation of order k, directly of lΓ1(a):=logΓ(a+1)l\Gamma_1(a) := \log \Gamma(a+1) (mostly via Maple), which starts as γEx+π2x2/12+-\gamma_E x + \pi^2 x^2/ 12 + \dots, where γE\gamma_E is Euler's constant 0.5772156649.

lgamma1pC() is an interface to R's C API (‘Mathlib’ / ‘Rmath.h’) function lgamma1p().

Value

a numeric vector with the same attributes as a.

Author(s)

Morten Welinder (C code of Jan 2005, see R's bug issue PR#7307) for lgamma1p().

Martin Maechler, notably for lgamma1p_series() which works with package Rmpfr but otherwise may be much less accurate than Morten's 40 term series!

References

Didonato, A. and Morris, A., Jr, (1992) Algorithm 708: Significant digit computation of the incomplete beta function ratios. ACM Transactions on Mathematical Software, 18, 360–373; see also pbeta.

See Also

Yet another algorithm, fully double precision accurate in [0.2,1.25][-0.2, 1.25], is provided by gamln1().

log1pmx, log1p, pbeta.

Examples

curve(lgamma1p, -1.25, 5, n=1001, col=2, lwd=2)
abline(h=0, v=-1:0, lty=c(2,3,2), lwd=c(1, 1/2,1))
for(k in 1:15)
  curve(lgamma1p_series(x, k=k), add=TRUE, col=adjustcolor(paste0("gray",25+k*4), 2/3), lty = 3)

curve(lgamma1p, -0.25, 1.25, n=1001, col=2, lwd=2)
abline(h=0, v=0, lty=2)
for(k in 1:15)
  curve(lgamma1p_series(x, k=k), add=TRUE, col=adjustcolor("gray20", 2/3), lty = 3)

curve(-log(x*gamma(x)), 1e-30, .8, log="xy", col="gray50", lwd = 3,
      axes = FALSE, ylim = c(1e-30,1)) # underflows to zero at x ~= 1e-16
eaxGrid <- function(at.x = 10^(1-4*(0:8)), at.y = at.x) {
    sfsmisc::eaxis(1, sub10 = c(-2, 2), nintLog=16)
    sfsmisc::eaxis(2, sub10 = 2, nintLog=16)
    abline(h = at.y, v = at.x, col = "lightgray", lty = "dotted")
}
eaxGrid()
curve(-lgamma( 1+x), add=TRUE, col="red2", lwd=1/2)# underflows even earlier
curve(-lgamma1p (x), add=TRUE, col="blue") -> lgxy
curve(-lgamma1p.(x), add=TRUE, col=adjustcolor("forest green",1/4),
      lwd = 5, lty = 2)
for(k in 1:15)
  curve(-lgamma1p_series(x, k=k), add=TRUE, col=paste0("gray",80-k*4), lty = 3)
stopifnot(with(lgxy, all.equal(y, -lgamma1pC(x))))

if(requireNamespace("Rmpfr")) { # accuracy comparisons, originally from  ../tests/qgamma-ex.R
    x <- 2^(-(500:11)/8)
    x. <- Rmpfr::mpfr(x, 200)
    ## versions of lgamma1p(x) := lgamma(1+x)
    ## lgamma1p(x) = log gamma(x+1) = log (x * gamma(x)) = log(x) + lgamma(x)
    xct. <- log(x.  * gamma(x.)) # using  MPFR  arithmetic .. no overflow/underflow ...
    xc2. <- log(x.) + lgamma(x.) #  (ditto)

    AllEq <- function(target, current, ...)
        Rmpfr::all.equal(target, current, ...,
                         formatFUN = function(x, ...) Rmpfr::format(x, digits = 9))
    print(AllEq(xct., xc2., tol = 0)) # 2e-57
    rr <- vapply(1:15, function(k) lgamma1p_series(x, k=k), x)
    colnames(rr) <- paste0("k=",1:15)
    relEr <- Rmpfr::asNumeric(sfsmisc::relErrV(xct., rr))
    ## rel.error of direct simple computation:
    relE.D <- Rmpfr::asNumeric(sfsmisc::relErrV(xct., lgamma(1+x)))

    matplot(x, abs(relEr), log="xy", type="l", axes = FALSE,
            main = "|rel.Err(.)| for lgamma(1+x) =~= lgamma1p_series(x, k = 1:15)")
    eaxGrid()
    p2 <- -(53:52); twp <- 2^p2; labL <- lapply(p2, function(p) substitute(2^E, list(E=p)))
    abline(h = twp, lty=3)
    axis(4, at=twp, las=2, line=-1, labels=as.expression(labL), col=NA,col.ticks=NA)
    legend("topleft", paste("k =", 1:15), ncol=3, col=1:6, lty=1:5, bty="n")
    lines(x, abs(relE.D), col = adjustcolor(2, 2/3), lwd=2)
    legend("top", "lgamma(1+x)", col=2, lwd=2)

    ## zoom in:
    matplot(x, abs(relEr), log="xy", type="l", axes = FALSE,
            xlim = c(1e-5, 0.1), ylim = c(1e-17, 1e-10),
            main = "|rel.Err(.)| for lgamma(1+x) =~= lgamma1p_series(x, k = 1:15)")
    eaxGrid(10^(-5:1), 10^-(17:10))
    abline(h = twp, lty=3)
    axis(4, at=twp, las=2, line=-1, labels=as.expression(labL), col=NA,col.ticks=NA)
    legend("topleft", paste("k =", 1:15), ncol=3, col=1:6, lty=1:5, bty="n")
    lines(x, abs(relE.D), col = adjustcolor(2, 2/3), lwd=2)
    legend("right", "lgamma(1+x)", col=2, lwd=2)

} # Rmpfr only

Asymptotic Log Gamma Function

Description

Compute an n-th order asymptotic approximation to log Gamma function, using Bernoulli numbers Bern(k) for k in 1,,2n1, \ldots, 2n.

Usage

lgammaAsymp(x, n)

Arguments

x

numeric vector

n

integer specifying the approximation order.

Value

numeric vector with the same attributes (length() etc) as x, containing approximate lgamma(x) values.

Author(s)

Martin Maechler

See Also

lgamma; the nn-th Bernoulli number Bern(n), and also exact fractions Bernoulli numbers BernoulliQ() from package gmp.

Examples

## The function is currently
lgammaAsymp

Compute log\mathrm{log}(1 - exp\mathrm{exp}(-a)) and log(1+exp(x))\log(1 + \exp(x)) Numerically Optimally

Description

Compute f(a) = log(1 - exp(-a)) quickly and numerically accurately.

log1mexp() is simple pure R code;
log1mexpC() is an interface to R C API (‘Mathlib’ / ‘Rmath.h’) function.

log1pexpC() is an interface to R's ‘Mathlibdouble function log1pexp() which computes log(1+exp(x))\log(1 + \exp(x)), accurately, notably for large xx, say, x>720x > 720.

Usage

log1mexp (x)
log1mexpC(x)
log1pexpC(x)

Arguments

x

numeric vector of positive values.

Author(s)

Martin Maechler

References

Martin Mächler (2012). Accurately Computing log(1exp(a))\log(1-\exp(-|a|)); https://CRAN.R-project.org/package=Rmpfr/vignettes/log1mexp-note.pdf.

See Also

The log1mexp() function in CRAN package copula, and the corresponding vignette (in the ‘References’).

Examples

l1m.xy <- curve(log1mexp(x), -10, 10, n=1001)
stopifnot(with(l1m.xy, all.equal(y, log1mexpC(x))))

x <- seq(0, 710, length=1+710*2^4); stopifnot(diff(x) == 1/2^4)
l1pm <- cbind(log1p(exp(x)),
              log1pexpC(x))
matplot(x, l1pm, type="l", log="xy") # both look the same
iF <- is.finite(l1pm[,1])
stopifnot(all.equal(l1pm[iF,2], l1pm[iF,1], tol=1e-15))

Accurate log(1+x) - x Computation

Description

Compute

log(1+x)x\log(1+x) - x

accurately also for small xx, i.e., x1|x| \ll 1.

Since April 2021, the pure R code version log1pmx() also works for "mpfr" numbers (from package Rmpfr).

rlog1(x), provided mostly for reference and reproducibility, is used in TOMS Algorithm 708, see e.g. the reference of lgamma1p. and computes minus log1pmx(x), i.e., xlog(1+x)x - \log(1+x), using (argument reduction) and a rational approximation when x[0.39,0.57)x \in [-0.39, 0.57).

Usage

log1pmx (x, tol_logcf = 1e-14, eps2 = 0.01, minL1 = -0.79149064,
         trace.lcf = FALSE,
         logCF = if(is.numeric(x)) logcf else logcfR.)
log1pmxC(x)  # TODO in future: arguments (minL1, eps2, tol_logcf),
             # possibly with *different* defaults (!)
rlog1(x)

Arguments

x

numeric (or, for log1pmx() only, "mpfr" number) vector with values x>1x > -1.

tol_logcf

a non-negative number indicating the tolerance (maximal relative error) for the auxiliary logcf() function.

eps2

non-negative cutoff where the algorithm switches from a few terms, to using logcf() explicitly. Note that for more accurate mpfr-numbers the default eps = .01 is too large, even more so when the tolerance is lowered (from 1e-14).

minL1

negative cutoff, called minLog1Value in Morten Welinder's C code for log1pmx() in ‘R/src/nmath/pgamma.c’, hard coded there to -0.79149064 which seems not optimal for computation of log1pmx(), at least in some cases, and hence the default may be changed in the future. Also, for mpfr numbers, the default -0.79149064 may well be far from optimal.

trace.lcf

logical used in logcf(.., trace=trace.lcf).

logCF

the function to be used as logcf(). The default chooses the pure R logcfR() when x is not numeric, and chooses the C-based logcf() when is.numeric(x) is true.

Details

In order to provide full (double precision) accuracy, the computations happens differently in three regions for xx,

ml=minL1=0.79149064m_l = \code{minL1} = -0.79149064

is the first cutpoint,

x<mlx < m_l or x>1x > 1:

use log1pmx(x) := log1p(x) - x,

x<ϵ2|x| < \epsilon_2:

use t((((2/9y+2/7)y+2/5)y+2/3)yx)t((((2/9 * y + 2/7)y + 2/5)y + 2/3)y - x),

x[ml,1]x \in [ml,1], and xϵ2|x| \ge \epsilon_2:

use t(2ylogcf(y,3,2)x)t(2y logcf(y, 3, 2) - x),

where t:=x2+xt := \frac{x}{2 + x}, and y:=t2y := t^2.

Note that the formulas based on tt are based on the (fast converging) formula

log(1+x)=2(r+r33+r55+),\log(1+x) = 2\left(r + \frac{r^3}{3}+ \frac{r^5}{5} + \ldots\right),

where r:=x/(x+2)r := x/(x+2), see the reference.

log1pmxC() is an interface to R C API (‘Rmathlib’) function.

Value

a numeric vector (with the same attributes as x).

Author(s)

A translation of Morten Welinder's C code of Jan 2005, see R's bug issue PR#7307, parametrized and tuned by Martin Maechler.

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain.
Formula (4.1.29), p.68.

Martin Mächler (2021). log1pmx, ... Computing ... Probabilities in R. (DPQ package vignette)

See Also

logcf, the auxiliary function, lgamma1p which calls log1pmx, log1p; also expm1x)() which computes expm1(x) - x accurately, whereas log1pmx(x) computes log1p(x) - x accurately

Examples

(doExtras <- DPQ:::doExtras()) # TRUE e.g. if interactive()
n1 <- if(doExtras) 1001 else 201
curve(log1pmx, -.9999, 7, n=n1); abline(h=0, v=-1:0, lty=3)
curve(log1pmx, -.1,  .1,  n=n1); abline(h=0, v=0, lty=3)
curve(log1pmx, -.01, .01, n=n1) -> l1xz2; abline(h=0, v=0, lty=3)
## C and R versions correspond closely:
with(l1xz2, stopifnot(all.equal(y, log1pmxC(x), tol = 1e-15)))

e <- if(doExtras) 2^-12 else 2^-8; by.p <- 1/(if(doExtras) 256 else 64)
xd <- c(seq(-1+e, 0+100*e, by=e), seq(by.p, 5, by=by.p)) # length 676 or 5476 if do.X.
plot(xd, log1pmx(xd), type="l", col=2, main = "log1pmx(x)")
abline(h=0, v=-1:0, lty=3)

## --- Compare rexp1() with log1pmx() ----------------------------
x <- seq(-0.5, 5/8, by=1/256)
all.equal(log1pmx(x), -rlog1(x), tol = 0) # 2.838e-16 {|rel.error| <= 1.33e-15}
stopifnot(all.equal(log1pmx(x), -rlog1(x), tol = 1e-14))
## much more closely:
x <- c(-1+1e-9, -1+1/256, -(127:50)/128, (-199:295)/512, 74:196/128)
if(is.unsorted(x)) stop("x must be sorted for plots")
rlog1.x <- rlog1(x)
summary(relD <- sfsmisc::relErrV(log1pmx(x), -rlog1.x))
n.relD <- relD * 2^53
table(n.relD)
## 64-bit Linux F36 (gcc 12.2.1):
## -6  -5  -4  -3  -2  -1   0   2   4   6   8  10  12  14
##  2   3  13  24  79  93 259 120  48  22  14  15   5   1
stopifnot(-10 <= n.relD, n.relD <= 20) # above Lnx: [-6, 14]

if(requireNamespace("Rmpfr")) {
  relE <- Rmpfr::asNumeric(sfsmisc::relErrV(log1pmx(Rmpfr::mpfr(x,128)), -rlog1(x)))
  plot(x, pmax(2^-54, abs(relE)), log="y", type="l", main= "|rel.Err| of rlog1(x)")
  rl1.c <- c(-.39, 0.57, -.18, .18) # the cutoffs used inside rlog1()
  lc <- "gray"
  abline(v = rl1.c, col=lc, lty=2)
  axis(3, at=rl1.c, col=lc, cex.axis=3/4, mgp=c(2,.5,0))
  abline(h= (1:4)*2^-53,  lty=3, col = (cg <- adjustcolor(1, 1/4)))
  axis(4, at=(1:4)*2^-53, labels=expression(frac(epsilon[c],2), epsilon[c],
                                            frac(3,2)*epsilon[c], 2*epsilon[c]),
       cex.axis = 3/4, tcl=-1/4, las = 1, mgp=c(1.5,.5,0), col=cg)
  ## it seems the -.18 +.18 cutoffs should be slightly moved "outside"
}

## much more graphics etc in ../tests/dnbinom-tst.R  (and the vignette, see above)

Continued Fraction Approximation of Log-Related Power Series

Description

Compute a continued fraction approximation to the series (infinite sum)

k=0xki+kd=1i+xi+d+x2i+2d+x3i+3d+\sum_{k=0}^\infty \frac{x^k}{i +k\cdot d} = \frac{1}{i} + \frac{x}{i+d} + \frac{x^2}{i+2*d} + \frac{x^3}{i+3*d} + \ldots

Needed as auxiliary function in log1pmx() and lgamma1p().

Usage

logcfR (x, i, d, eps, maxit = 10000L, trace = FALSE)
logcfR.(x, i, d, eps, maxit = 10000L, trace = FALSE)
logcf  (x, i, d, eps, trace = FALSE)

Arguments

x

numeric vector of values typically less than 1. "mpfr" (of potentially high precision, package Rmpfr) work in logcfR*(x,*).

i

positive numeric

d

non-negative numeric

eps

positive number, the convergence tolerance.

maxit

a positive integer, the maximal number of iterations or terms in the truncated series used.

trace

logical (or non-negative integer in the future) indicating if (and how much) diagnostic output should be printed to the console during the computations.

Details

logcfR.():

a pure R version where the iterations happen vectorized in x, only for those components x[i] they have not yet converged. This is particularly beneficial for not-very-short "mpfr" vectors x, and still conceptually equivalent to the logcfR() version.

logcfR():

a pure R version where each x[i] is treated separately, hence “properly” vectorized, but slowly so.

logcf():

only for numeric x, calls into (a clone of) R's own (non-API currently) logcf() C Rmathlib function.

Value

a numeric-alike vector with the same attributes as x. For the logcfR*() versions, an "mpfr" vector if x is one.

Note

Rescaling is done by (namespace hidden) “global” scalefactor which is 22562^{256}, represented exactly (in double precision).

Author(s)

Martin Maechler, based on R's ‘nmath/pgamma.c’ implementation.

See Also

lgamma1p, log1pmx, and pbeta, whose prinicipal algorithm has evolved from TOMS 708.

Examples

x <- (-2:1)/2
logcf (x, 2,3, eps=1e-7, trace=TRUE) # shows iterations for each x[]
logcfR(x, 2,3, eps=1e-7, trace=TRUE) # 1 line per x[]
logcfR(x, 2,3, eps=1e-7, trace= 2  ) # shows iterations for each x[]

n <- 2049; x <- seq(-1,1, length.out = n)[-n] ; stopifnot(diff(x) == 1/1024)
plot(x, (lcf <- logcf(x, 2,3, eps=1e-12)), type="l", col=2)
lcR <- logcfR (x, 2,3, eps=1e-12); all.equal(lcf, lcR , tol=0)
lcR.<- logcfR.(x, 2,3, eps=1e-12); all.equal(lcf, lcR., tol=0)
stopifnot(exprs = {
  all.equal(lcf, lcR., tol=1e-14)# seen 0 (!)
  all.equal(lcf, lcR,  tol=1e-14)# seen 0 (!) -- failed for a while
})

l32 <- curve(logcf(x, 3,2, eps=1e-7), -3, 1)
abline(h=0,v=1, lty=3, col="gray50")
plot(y~x, l32, log="y", type = "o", main = "logcf(*, 3,2)  in log-scale")

Logspace Arithmetix – Addition and Subtraction

Description

Compute the log(arithm) of a sum (or difference) from the log of terms without causing overflows and without throwing away large handfuls of accuracy.

logspace.add(lx, ly):=

log(exp(lx)+exp(ly))\log (\exp (lx) + \exp (ly))

logspace.sub(lx, ly):=

log(exp(lx)exp(ly))\log (\exp (lx) - \exp (ly))

Usage

logspace.add(lx, ly)
logspace.sub(lx, ly)

Arguments

lx, ly

numeric vectors, typically of the same length, but will be recycled to common length as with other R arithmetic.

Value

a numeric vector of the same length as x+y.

Note

This is really from R's C source code for pgamma(), i.e., ‘<R>/src/nmath/pgamma.c

The function definitions are very simple, logspace.sub() using log1mexp().

Author(s)

Morten Welinder (for R's pgamma()); Martin Maechler

See Also

lsum, lssum; then pgamma()

Examples

set.seed(12)
ly <- rnorm(100, sd= 50)
lx <- ly + abs(rnorm(100, sd=100))  # lx - ly must be positive for *.sub()
stopifnot(exprs = {
   all.equal(logspace.add(lx,ly),
             log(exp(lx) + exp(ly)), tol=1e-14)
   all.equal(logspace.sub(lx,ly),
             log(exp(lx) - exp(ly)), tol=1e-14)
})

Compute Logarithm of a Sum with Signed Large Summands

Description

Properly compute log(x1++xn)\log(x_1 + \ldots + x_n) for given log absolute values lxabs = log(x1),..,log(xn)log(|x_1|),.., log(|x_n|) and corresponding signs signs = sign(x1),..,sign(xn)sign(x_1),.., sign(x_n). Here, xix_i is of arbitrary sign.

Notably this works in many cases where the direct sum would have summands that had overflown to +Inf or underflown to -Inf.

This is a (simpler, vector-only) version of copula:::lssum() (CRAN package copula).

Note that the precision is often not the problem for the direct summation, as R's sum() internally uses "long double" precision on most platforms.

Usage

lssum(lxabs, signs, l.off = max(lxabs), strict = TRUE)

Arguments

lxabs

n-vector of values log(x1),,log(xn)\log(|x_1|), \ldots, \log(|x_n|).

signs

corresponding signs sign(x1),,sign(xn)sign(x_1), \ldots, sign(x_n).

l.off

the offset to substract and re-add; ideally in the order of max(.).

strict

logical indicating if the function should stop on some negative sums.

Value

log(x1+..+xn)==log(sum(x))=log(sum(sign(x)x))==log(sum(sign(x)exp(log(x))))==log(exp(log(x0))sum(signsexp(log(x)log(x0))))==log(x0)+log(sum(signsexp(log(x)log(x0))))==l.off+log(sum(signsexp(lxabsl.off)))log(x_1 + .. + x_n) = = log(sum(x)) = log(sum(sign(x)*|x|)) = = log(sum(sign(x)*exp(log(|x|)))) = = log(exp(log(x0))*sum(signs*exp(log(|x|)-log(x0)))) = = log(x0) + log(sum(signs* exp(log(|x|)-log(x0)))) = = l.off + log(sum(signs* exp(lxabs - l.off )))

Author(s)

Marius Hofert and Martin Maechler (for package copula).

See Also

lsum() which computes an exponential sum in log scale with out signs.

Examples

rSamp <- function(n, lmean, lsd = 1/4, roundN = 16) {
  lax <- sort((1+1e-14*rnorm(n))*round(roundN*rnorm(n, m = lmean, sd = lsd))/roundN)
  sx <- rep_len(c(-1,1), n)
  list(lax=lax, sx=sx, x = sx*exp(lax))
}

set.seed(101)
L1 <- rSamp(1000, lmean = 700) # here, lssum() is not needed (no under-/overflow)
summary(as.data.frame(L1))
ax <- exp(lax <- L1$lax)
hist(lax); rug(lax)
hist( ax); rug( ax)
sx <- L1$sx
table(sx)
(lsSimple <- log(sum(L1$x)))           # 700.0373
(lsS <- lssum(lxabs = lax, signs = sx))# ditto
lsS - lsSimple # even exactly zero (in 64b Fedora 30 Linux which has nice 'long double')
stopifnot(all.equal(700.037327351478, lsS, tol=1e-14), all.equal(lsS, lsSimple))

L2 <- within(L1, { lax <- lax + 10; x <- sx*exp(lax) }) ; summary(L2$x) # some -Inf, +Inf
(lsSimpl2 <- log(sum(L2$ x)))                    # NaN
(lsS2 <- lssum(lxabs = L2$ lax, signs = L2$ sx)) # 710.0373
stopifnot(all.equal(lsS2, lsS + 10, tol = 1e-14))

Properly Compute the Logarithm of a Sum (of Exponentials)

Description

Properly compute log(x1++xn)\log(x_1 + \ldots + x_n). for given log(x1),..,log(xn)log(x_1),..,log(x_n). Here, xi>0x_i > 0 for all ii.

If the inputs are denoted li=log(xi)l_i = log(x_i) for i=1,2,..,ni = 1,2,..,n, we compute log(sum(exp(l[]))), numerically stably.

Simple vector version of copula:::lsum() (CRAN package copula).

Usage

lsum(lx, l.off = max(lx))

Arguments

lx

n-vector of values log(x_1),..,log(x_n).

l.off

the offset to substract and re-add; ideally in the order of the maximum of each column.

Value

log(x1+..+xn)=log(sum(x))=log(sum(exp(log(x))))==log(exp(log(xmax))sum(exp(log(x)log(xmax))))==log(xmax)+log(sum(exp(log(x)log(xmax)))))==lx.max+log(sum(exp(lxlx.max)))log(x_1 + .. + x_n) = log(sum(x)) = log(sum(exp(log(x)))) = = log(exp(log(x_max))*sum(exp(log(x)-log(x_max)))) = = log(x_max) + log(sum(exp(log(x)-log(x_max))))) = = lx.max + log(sum(exp(lx-lx.max)))

Author(s)

Originally, via paired programming: Marius Hofert and Martin Maechler.

See Also

lssum() which computes a sum in log scale with specified (typically alternating) signs.

Examples

## The "naive" version :
lsum0 <- function(lx) log(sum(exp(lx)))

lx1 <- 10*(-80:70) # is easy
lx2 <- 600:750     # lsum0() not ok [could work with rescaling]
lx3 <- -(750:900)  # lsum0() = -Inf - not good enough
m3 <- cbind(lx1,lx2,lx3)
lx6 <- lx5 <- lx4 <- lx3
lx4[149:151] <- -Inf ## = log(0)
lx5[150] <- Inf
lx6[1] <- NA_real_
m6 <- cbind(m3,lx4,lx5,lx6)
stopifnot(exprs = {
  all.equal(lsum(lx1), lsum0(lx1))
  all.equal((ls1 <- lsum(lx1)),  700.000045400960403, tol=8e-16)
  all.equal((ls2 <- lsum(lx2)),  750.458675145387133, tol=8e-16)
  all.equal((ls3 <- lsum(lx3)), -749.541324854612867, tol=8e-16)
  ## identical: matrix-version <==> vector versions
  identical(lsum(lx4), ls3)
  identical(lsum(lx4), lsum(head(lx4, -3))) # the last three were -Inf
  identical(lsum(lx5), Inf)
  identical(lsum(lx6), lx6[1])
  identical((lm3 <- apply(m3, 2, lsum)), c(lx1=ls1, lx2=ls2, lx3=ls3))
  identical(apply(m6, 2, lsum), c(lm3, lx4=ls3, lx5=Inf, lx6=lx6[1]))
})

Simple R level Newton Algorithm, Mostly for Didactical Reasons

Description

Given the function G() and its derivative g(), newton() uses the Newton method, starting at x0, to find a point xp at which G is zero. G() and g() may each depend on the same parameter (vector) z.

Convergence typically happens when the stepsize becomes smaller than eps.

keepAll = TRUE to also get the vectors of consecutive values of x and G(x, z);

Usage

newton(x0, G, g, z,
       xMin = -Inf, xMax = Inf, warnRng = TRUE,
       dxMax = 1000, eps = 0.0001, maxiter = 1000L,
       warnIter = missing(maxiter) || maxiter >= 10L,
       keepAll = NA)

Arguments

x0

numeric start value.

G, g

must be functions, mathematically of their first argument, but they can accept parameters; g() must be the derivative of G.

z

parameter vector for G()G() and g()g(), to be kept fixed.

xMin, xMax

numbers defining the allowed range for x during the iterations; e.g., useful to set to 0 and 1 during quantile search.

warnRng

logical specifying if a warning should be signalled when start value x0 is outside [xMin, xMax] and hence will be changed to one of the boundary values.

dxMax

maximal step size in xx-space. (The default 1000 is quite arbitrary, do set a good maximal step size yourself!)

eps

positive number, the absolute convergence tolerance.

maxiter

positive integer, specifying the maximal number of Newton iterations.

warnIter

logical specifying if a warning should be signalled when the algorithm has not converged in maxiter iterations.

keepAll

logical specifying if the full sequence of x- and G(x,*) values should be kept and returned:

NA,

the default: newton returns a small list of final “data”, with 4 components x=x= x*, G=G(x,z)= G(x*, z), it, and converged.

TRUE:

returns an extended list, in addition containing the vectors x.vec and G.vec.

FALSE:

returns only the xx* value.

Details

Because of the quadrativc convergence at the end of the Newton algorithm, often xx^* satisfies approximately G(x,z)<eps2| G(x*, z)| < eps^2.

newton() can be used to compute the quantile function of a distribution, if you have a good starting value, and provide the cumulative probability and density functions as R functions G and g respectively.

Value

The result always contains the final x-value xx*, and typically some information about convergence, depending on the value of keepAll, see above:

x

the optimal xx^* value (a number).

G

the function value G(x,z)G(x*, z), typically very close to zero.

it

the integer number of iterations used.

convergence

logical indicating if the Newton algorithm converged within maxiter iterations.

x.vec

the full vector of x values, {x0,,x}\{x0,\ldots,x^*\}.

G.vec

the vector of function values (typically tending to zero), i.e., G(x.vec, .) (even when G(x, .) would not vectorize).

Author(s)

Martin Maechler, ca. 2004

References

Newton's Method on Wikipedia, https://en.wikipedia.org/wiki/Newton%27s_method.

See Also

uniroot() is much more sophisticated, works without derivatives and is generally faster than newton().

newton(.) is currently crucially used (only) in our function qchisqN().

Examples

## The most simple non-trivial case :  Computing SQRT(a)
  G <- function(x, a) x^2 - a
  g <- function(x, a) 2*x

  newton(1, G, g, z = 4  ) # z = a -- converges immediately
  newton(1, G, g, z = 400) # bad start, needs longer to converge

## More interesting, and related to non-central (chisq, e.t.) computations:
## When is  x * log(x) < B,  i.e., the inverse function of G = x*log(x) :
xlx <- function(x, B) x*log(x) - B
dxlx <- function(x, B) log(x) + 1

Nxlx <- function(B) newton(B, G=xlx, g=dxlx, z=B, maxiter=Inf)$x
N1   <- function(B) newton(B, G=xlx, g=dxlx, z=B, maxiter = 1)$x
N2   <- function(B) newton(B, G=xlx, g=dxlx, z=B, maxiter = 2)$x

Bs <- c(outer(c(1,2,5), 10^(0:4)))
plot (Bs, vapply(Bs, Nxlx, pi), type = "l", log ="xy")
lines(Bs, vapply(Bs, N1  , pi), col = 2, lwd = 2, lty = 2)
lines(Bs, vapply(Bs, N2  , pi), col = 3, lwd = 3, lty = 3)

BL <- c(outer(c(1,2,5), 10^(0:6)))
plot (BL, vapply(BL, Nxlx, pi), type = "l", log ="xy")
lines(BL, BL, col="green2", lty=3)
lines(BL, vapply(BL, N1  , pi), col = 2, lwd = 2, lty = 2)
lines(BL, vapply(BL, N2  , pi), col = 3, lwd = 3, lty = 3)
## Better starting value from an approximate 1 step Newton:
iL1 <- function(B) 2*B / (log(B) + 1)
lines(BL, iL1(BL), lty=4, col="gray20") ## really better ==> use it as start

Nxlx <- function(B) newton(iL1(B), G=xlx, g=dxlx, z=B, maxiter=Inf)$x
N1   <- function(B) newton(iL1(B), G=xlx, g=dxlx, z=B, maxiter = 1)$x
N2   <- function(B) newton(iL1(B), G=xlx, g=dxlx, z=B, maxiter = 2)$x

plot (BL, vapply(BL, Nxlx, pi), type = "o", log ="xy")
lines(BL, iL1(BL),  lty=4, col="gray20")
lines(BL, vapply(BL, N1  , pi), type = "o", col = 2, lwd = 2, lty = 2)
lines(BL, vapply(BL, N2  , pi), type = "o", col = 3, lwd = 2, lty = 3)
## Manual 2-step Newton
iL2 <- function(B) { lB <- log(B) ; B*(lB+1) / (lB * (lB - log(lB) + 1)) }
lines(BL, iL2(BL), col = adjustcolor("sky blue", 0.6), lwd=6)
##==>  iL2() is very close to true curve
## relative error:
iLtrue <- vapply(BL, Nxlx, pi)
cbind(BL, iLtrue, iL2=iL2(BL), relErL2 = 1-iL2(BL)/iLtrue)
## absolute error (in log-log scale; always positive!):
plot(BL, iL2(BL) - iLtrue, type = "o", log="xy", axes=FALSE)
if(requireNamespace("sfsmisc")) {
  sfsmisc::eaxis(1)
  sfsmisc::eaxis(2, sub10=2)
} else {
  cat("no 'sfsmisc' package; maybe  install.packages(\"sfsmisc\")  ?\n")
  axis(1); axis(2)
}
## 1 step from iL2()  seems quite good:
B. <- BL[-1] # starts at 2
NL2 <- lapply(B., function(B) newton(iL2(B), G=xlx, g=dxlx, z=B, maxiter=1))
str(NL2)
iL3 <- sapply(NL2, `[[`, "x")
cbind(B., iLtrue[-1], iL2=iL2(B.), iL3, relE.3 = 1- iL3/iLtrue[-1])
x. <- iL2(B.)
all.equal(iL3, x. - xlx(x., B.) / dxlx(x.)) ## 7.471802e-8
## Algebraic simplification of one newton step :
all.equal((x.+B.)/(log(x.)+1), x. - xlx(x., B.) / dxlx(x.), tol = 4e-16)
iN1 <- function(x, B) (x+B) / (log(x) + 1)
B <- 12345
iN1(iN1(iN1(B, B),B),B)
Nxlx(B)

Numerical Utilities - Functions, Constants

Description

The DPQ package provides some numeric constants used in some of its distribution computations.

all_mpfr() and any_mpfr() return TRUE iff all (or ‘any’, respectively) of their arguments inherit from class "mpfr" (from package Rmpfr).

logr(x,a) computes log(x / (x + a)) in a numerically stable way.

modf(x) splits each x into integer part (as trunc(x)) and fractional (remainder) part in (1,1)(-1, 1) and corresponds to the R version of the C99 (and POSIX) standard C (and C++) mathlib functions of the same name.

Usage

## Numeric Constants : % mostly in   ../R/beta-fns.R
M_LN2        # = log(2)  = 0.693....
M_SQRT2      # = sqrt(2) = 1.4142...
M_cutoff     # := If |x| > |k| * M_cutoff, then  log[ exp(-x) * k^x ]  =~=  -x
             #  = 3196577161300663808 ~= 3.2e+18
M_minExp     # = log(2) * .Machine$double.min.exp # ~= -708.396..
G_half       # = sqrt(pi) = Gamma( 1/2 )

## Functions :
all_mpfr(...)
any_mpfr(...)
logr(x, a)    # == log(x / (x + a)) -- but numerically smart; x >= 0, a > -x
modf(x)
okLongDouble(lambda = 999, verbose = 0L, tol = 1e-15)

Arguments

...

numeric or "mpfr" numeric vectors.

x, a

number-like, not negative, now may be vectors of length(.) > 1.

lambda

a number, typically in the order of 500–10'000.

verbose

a non-negative integer, if not zero, okLongDouble() prints the intermediate long double computations' results.

tol

numerical tolerance used to determine the accuracy required for near equality in okLongDouble().

Details

all_mpfr(),
all_mpfr() :

test if all or any of their arguments or of class "mpfr" (from package Rmpfr). The arguments are evaluated only until the result is determined, see the example.

logr()

computes log(x/(x+a))\log( x / (x+a) ) in a numerically stable way.

Value

The numeric constant in the first case; a numeric (or "mpfr") vector of appropriate size in the 2nd case.

okLongDouble() returns a logical, TRUE iff the long double arithmetic with expl() and logl() seems to work accurately and consistently for exp(-lambda) and log(lambda).

Author(s)

Martin Maechler

See Also

.Machine

Examples

(Ms <- ls("package:DPQ", pattern = "^M"))
lapply(Ms, function(nm) { cat(nm,": "); print(get(nm)) }) -> .tmp

logr(1:3, a=1e-10)

okLongDouble(verbose=TRUE) # verbose: show (C-level) computations
## typically TRUE, but not e.g. in a valgrinded R-devel of Oct.2019
## Here is typically the "boundary":
rr <- try(uniroot(function(x) okLongDouble(x) - 1/2,
              c(11350, 11400), tol=1e-7, extendInt = "yes"))
str(rr, digits=9) ## seems somewhat platform dependent: now see
## $ root      : num 11376.563
## $ estim.prec: num 9.313e-08
## $ iter      : int 29

set.seed(2021); x <- runif(100, -7,7)
mx <- modf(x)
with(mx, head( cbind(x, i=mx$i, fr=mx$fr) )) # showing the first cases
with(mx, stopifnot(   x == fr + i,
                      i == trunc(x),
               sign(fr) == sign(x)))

Numerically Stable p1l1(t) = (t+1)*log(1+t) - t

Description

The binomial deviance function bd0(x,M) can mathematically be re-written as bd0(x,M)=Mp1l1((xM)/M)bd0(x,M) = M * p1l1((x-M)/M) where we look into providing numerically stable formula for p1l1(t)p1l1(t) as its mathematical formula p1l1(t)=(t+1)log(1+t)tp1l1(t) = (t+1)\log(1+t) - t suffers from cancellation for small t|t|, even when log1p(t) is used instead of log(1+t).

Using a hybrid implementation, p1l1() uses a direct formula, now the stable one in p1l1p(), for t>c\left| t \right| > c and a series approximation for tc\left|t\right| \le c for some cc.

NB: The re-expression log1pmx() is almost perfect; it fixes the cancellation problem entirely (and exposes the fact that log1pmx()'s internal cutoff seems sub optimal.

Usage

p1l1p  (t, ...)
 p1l1.  (t)
 p1l1   (t,    F = t^2/2)
 p1l1ser(t, k, F = t^2/2)
.p1l1ser(t, k, F = t^2/2)

Arguments

t

numeric a-like vector ("mpfr" included), larger (or equal) to -1.

...

optional (tuning) arguments, passed to log1pmx().

k

small positive integer, the number of terms to use in the Taylor series approximation p1l1ser(t,k) of p1l1(t).

F

numeric vector of multiplication factor; must be t^2/2 for the p1l1() function, but can be modified, e.g. in more direct bd0() computations.

Details

for now see in bd0().

Value

numeric vector “as” t.

Author(s)

Martin Maechler

See Also

bd0; our package vignette log1pmx, bd0, stirlerr - Probability Computations in R. dbinom the latter for the C.Loader(2000) reference.

Examples

(doExtras <- DPQ:::doExtras()) # TRUE e.g. if interactive()

t <- seq(-1, 4, by=1/64)
plot(t, p1l1ser(t, 1), type="l")
lines(t, p1l1.(t), lwd=5, col=adjustcolor(1, 1/2)) # direct formula
for(k in 2:6) lines(t, p1l1ser(t, k), col=k)

## zoom in
t <- 2^seq(-59,-1, by=1/4)
t <- c(-rev(t), 0, t)
stopifnot(!is.unsorted(t))
k.s <- 1:12; names(k.s) <- paste0("k=", 1:12)

## True function values: use Rmpfr with 256 bits precision: ---
### eventually move this to ../tests/ & ../vignettes/log1pmx-etc.Rnw
#### FIXME: eventually replace with  if(requireNamespace("Rmpfr")){ ......}
#### =====
if((needRmpfr <- is.na(match("Rmpfr", (srch0 <- search())))))
    require("Rmpfr")
p1l1.T <- p1l1.(mpfr(t, 256)) # "true" values
p1l1.n <- asNumeric(p1l1.T)
all.equal(sapply(k.s, function(k)  p1l1ser(t,k)) -> m.p1l1,
          sapply(k.s, function(k) .p1l1ser(t,k)) -> m.p1l., tolerance = 0)
p1tab <-
    cbind(b1 = bd0(t+1, 1),
          b.10 = bd0(10*t+10,10)/10,
          dirct = p1l1.(t),
          p1l1p = p1l1p(t),
          p1l1  = p1l1 (t),
          sapply(k.s, function(k) p1l1ser(t,k)))
matplot(t, p1tab, type="l", ylab = "p1l1*(t)")
## (absolute) error:
##' legend for matplot()
mpLeg <- function(leg = colnames(p1tab), xy = "top", col=1:6, lty=1:5, lwd=1,
                  pch = c(1L:9L, 0L, letters, LETTERS)[seq_along(leg)], ...)
    legend(xy, legend=leg, col=col, lty=lty, lwd=lwd, pch=pch, ncol=3, ...)

titAbs <- "Absolute errors of p1l1(t) approximations"
matplot(t, asNumeric(p1tab - p1l1.T), type="o", main=titAbs); mpLeg()
i <- abs(t) <= 1/10 ## zoom in a bit
matplot(t[i], abs(asNumeric((p1tab - p1l1.T)[i,])), type="o", log="y",
        main=titAbs, ylim = c(1e-18, 0.003)); mpLeg()
## Relative Error
titR <- "|Relative error| of p1l1(t) approximations"
matplot(t[i], abs(asNumeric((p1tab/p1l1.T - 1)[i,])), type="o", log="y",
        ylim = c(1e-18, 2^-10), main=titR)
mpLeg(xy="topright", bg= adjustcolor("gray80", 4/5))
i <- abs(t) <= 2^-10 # zoom in more
matplot(t[i], abs(asNumeric((p1tab/p1l1.T - 1)[i,])), type="o", log="y",
        ylim = c(1e-18, 1e-9))
mpLeg(xy="topright", bg= adjustcolor("gray80", 4/5))


## Correct number of digits
corDig <- asNumeric(-log10(abs(p1tab/p1l1.T - 1)))
cbind(t, round(corDig, 1))# correct number of digits

matplot(t, corDig, type="o", ylim = c(1,17))
(cN <- colnames(corDig))
legend(-.5, 14, cN, col=1:6, lty=1:5, pch = c(1L:9L, 0L, letters), ncol=2)

## plot() function >>>> using global (t, corDig) <<<<<<<<<
p.relEr <- function(i, ylim = c(11,17), type = "o",
                    leg.pos = "left", inset=1/128,
                    main = sprintf(
                        "Correct #{Digits} in p1l1() approx., notably Taylor(k=1 .. %d)",
                                   max(k.s)))
{
    if((neg <- all(t[i] < 0)))
        t  <- -t
    stopifnot(all(t[i] > 0), length(ylim) == 2) # as we use log="x"
    matplot(t[i], corDig[i,], type=type, ylim=ylim, log="x", xlab = quote(t), xaxt="n",
            main=main)
    legend(leg.pos, cN, col=1:6, lty=1:5, pch = c(1L:9L, 0L, letters), ncol=2,
           bg=adjustcolor("gray90", 7/8), inset=inset)
    t.epsC <- -log10(c(1,2,4)* .Machine$double.eps)
    axis(2, at=t.epsC, labels = expression(epsilon[C], 2*epsilon[C], 4*epsilon[C]),
         las=2, col=2, line=1)
    tenRs <- function(t) floor(log10(min(t))) : ceiling(log10(max(t)))
    tenE <- tenRs(t[i])
    tE <- 10^tenE
    abline (h = t.epsC,
            v = tE, lty=3, col=adjustcolor("gray",.8), lwd=2)
    AX <- if(requireNamespace("sfsmisc")) sfsmisc::eaxis else axis
    AX(1, at= tE, labels = as.expression(
                      lapply(tenE,
                             if(neg)
                                 function(e) substitute(-10^{E}, list(E = e+0))
                             else
                                 function(e) substitute( 10^{E}, list(E = e+0)))))
}

p.relEr(t > 0, ylim = c(1,17))
p.relEr(t > 0) # full positive range
p.relEr(t < 0) # full negative range
if(FALSE) {## (actually less informative):
 p.relEr(i = 0 < t & t < .01)  ## positive small t
 p.relEr(i = -.1 < t & t < 0) ## negative small t
}

## Find approximate formulas for accuracy of k=k*  approximation
d.corrD <- cbind(t=t, as.data.frame(corDig))
names(d.corrD) <- sub("k=", "nC_",  names(d.corrD))

fmod <- function(k, data, cut.y.at = -log10(2 * .Machine$double.eps),
                 good.y = -log10(.Machine$double.eps), # ~ 15.654
                 verbose=FALSE) {
    varNm <- paste0("nC_",k)
    stopifnot(is.numeric(y <- get(varNm, data, inherits=FALSE)),
              is.numeric(t <- data$t))# '$' works for data.frame, list, environment
    i <- 3 <= y & y <= cut.y.at
    i.pos <- i & t > 0
    i.neg <- i & t < 0
    if(verbose) cat(sprintf("k=%d >> y <= %g ==> #{pos. t} = %d ;  #{neg. t} = %d\n",
                            k, cut.y.at, sum(i.pos), sum(i.neg)))
    nCoefLm <- function(x,y) `names<-`(.lm.fit(x=x, y=y)$coeff, c("int", "slp"))
    nC.t <- function(x,y) { cf <- nCoefLm(x,y); c(cf, t.0 = exp((good.y - cf[[1]])/cf[[2]])) }
    cbind(pos = nC.t(cbind(1, log( t[i.pos])), y[i.pos]),
          neg = nC.t(cbind(1, log(-t[i.neg])), y[i.neg]))
}
rr <- sapply(k.s, fmod, data=d.corrD, verbose=TRUE, simplify="array")
stopifnot(rr["slp",,] < 0) # all slopes are negative (important!)
matplot(k.s, t(rr["slp",,]), type="o", xlab = quote(k), ylab = quote(slope[k]))
## fantastcally close to linear in k
## The numbers, nicely arranged
ftable(aperm(rr, c(3,2,1)))
signif(t(rr["t.0",,]),3) # ==> Should be boundaries for the hybrid p1l1()
##           pos      neg
## k=1  6.60e-16 6.69e-16
## k=2  3.65e-08 3.65e-08
## k=3  1.30e-05 1.32e-05
## k=4  2.39e-04 2.42e-04
## k=5  1.35e-03 1.38e-03
## k=6  4.27e-03 4.34e-03
## k=7  9.60e-03 9.78e-03
## k=8  1.78e-02 1.80e-02
## k=9  2.85e-02 2.85e-02
## k=10 4.13e-02 4.14e-02
## k=11 5.62e-02 5.64e-02
## k=12 7.24e-02 7.18e-02

###------------- Well,  p1l1p()  is really basically good enough ... with a small exception:
rErr1k <- curve(asNumeric(p1l1p(x) / p1l1.(mpfr(x, 4096)) - 1), -.999, .999,
                n = if(doExtras) 4000 else 800, col=2, lwd=2)
abline(h = c(-8,-4,-2:2,4,8)* 2^-52, lty=2, col=adjustcolor("gray20", 1/4))
## well, have a "spike" at around -0.8 -- why?

plot(abs(y) ~ x, data = rErr1k, ylim = c(4e-17, max(abs(y))),
     ylab = expression(abs(hat(p)/p - 1)),
     main = "p1l1p(x) -- Relative Error wrt mpfr(*. 4096) [log]",
     col=2, lwd=1.5, type = "b", cex=1/2, log="y", yaxt="n")
sfsmisc::eaxis(2)
eps124 <-  c(1, 2,4,8)* 2^-52
abline(h = eps124, lwd=c(3,1,1,1), lty=c(1,2,2,2), col=adjustcolor("gray20", 1/4))
axLab <- expression(epsilon[c], 2*epsilon[c], 4*epsilon[c], 8*epsilon[c])
axis(4, at = eps124, labels = axLab, col="gray20", las=1)
abline(v= -.791, lty=3, lwd=2, col="blue4") # -.789  from visual ..
##--> The "error" is in log1pmx() which has cutoff minLog1Value = -0.79149064
##--> which is clearly not optimal, at least not for computing p1l1p()

d <- if(doExtras) 1/2048 else 1/512; x <- seq(-1+d, 1, by=d)
p1l1Xct <- p1l1.(mpfr(x, if(doExtras) 4096 else 512))
rEx.5 <- asNumeric(p1l1p(x, minL1 = -0.5) / p1l1Xct - 1)
lines(x, abs(rEx.5), lwd=2.5, col=adjustcolor(4, 1/2)); abline(v=-.5, lty=2,col=4)
rEx.25 <- asNumeric(p1l1p(x, minL1 = -0.25) / p1l1Xct - 1)
lines(x, abs(rEx.25), lwd=3.5, col=adjustcolor(6, 1/2)); abline(v=-.25, lty=2,col=6)
lines(lowess(x, abs(rEx.5),  f=1/20), col=adjustcolor(4,offset=rep(1,4)/3), lwd=3)
lines(lowess(x, abs(rEx.25), f=1/20), col=adjustcolor(6,offset=rep(1,4)/3), lwd=3)

rEx.4 <- asNumeric(p1l1p(x, tol_logcf=1e-15, minL1 = -0.4) / p1l1Xct - 1)
lines(x, abs(rEx.4), lwd=5.5, col=adjustcolor("brown", 1/2)); abline(v=-.25, lty=2,col="brown")

if(needRmpfr && isNamespaceLoaded("Rmpfr"))
    detach("package:Rmpfr")

Pure R Implementation of Old pbeta()

Description

pbetaRv1() is an implementation of the original (“version 1” pbeta() function in R (versions <= 2.2.x), before we started using TOMS 708 bratio() instead, see the current pbeta help page also for references.

pbetaRv1() is basically a manual translation from C to R of the underlying pbeta_raw() C function, see in R's source tree at https://svn.r-project.org/R/branches/R-2-2-patches/src/nmath/pbeta.c

For consistency within R, we are using R's argument names (q, shape1, shape2) instead of C code's (x, pin, qin ).

It is only for the central beta distribution.

Usage

pbetaRv1(q, shape1, shape2, lower.tail = TRUE,
         eps = 0.5 * .Machine$double.eps,
         sml = .Machine$double.xmin,
         verbose = 0)

Arguments

q, shape1, shape2

non-negative numbers, q in [0,1][0,1], see pbeta.

lower.tail

indicating if F(q;)F(q; *) should be returned or the upper tail probability 1F(q)1 - F(q).

eps

the tolerance used to determine congerence. eps has been hard coded in C code to 0.5 * .Machine$double.eps which is equal to 2532^{-53} or 1.110223e-16.

sml

the smallest positive number on the typical platform. The default .Machine$double.xmin is hard coded in the C code (as DBL_MIN), and this is equal to 210222^{-1022} or 2.225074e-308 on all current platforms.

verbose

integer indicating the amount of verbosity of diagnostic output, 0 means no output, 1 more, etc.

Value

a number.

Note

The C code contains
This routine is a translation into C of a Fortran subroutine by W. Fullerton of Los Alamos Scientific Laboratory.

Author(s)

Martin Maechler

References

(From the C code:)

Nancy E. Bosten and E.L. Battiste (1974). Remark on Algorithm 179 (S14): Incomplete Beta Ratio. Communications of the ACM, 17(3), 156–7.

See Also

pbeta.

Examples

all.equal(pbetaRv1(1/4, 2, 3),
          pbeta   (1/4, 2, 3))
set.seed(101)

N <- 1000
x <- sample.int(7, N, replace=TRUE) / 8
a <-   rlnorm(N)
b <- 5*rlnorm(N)
pbt <- pbeta(x, a, b)
for(i in 1:N) {
   stopifnot(all.equal(pbetaRv1(x[i], a[i], b[i]), pbt[i]))
   cat(".", if(i %% 20 == 0) paste0(i, "\n"))
}

Compute Hypergeometric Probabilities via Binomial Approximations

Description

Simple utilities for ease of comparison of the different phyper approximation in package DPQ:

  • phyperAllBinM() computes all four Molenaar binomial approximations to the hypergeometric cumulative distribution function phyper().

  • phyperAllBin() computes Molenaar's four and additionally the other four phyperBin.1(), *.2, *.3, and *.4.

  • .suppHyper(), support of the Hyperbolic, is a simple 1-liner, providing all sensible integer values for the first argument q (or also x) of the hyperbolic probability functions (dhyper() and phyper()), and their approximations (here in DPQ).

Usage

phyperAllBin (m, n, k, q = .suppHyper(m, n, k), lower.tail = TRUE, log.p = FALSE)
phyperAllBinM(m, n, k, q = .suppHyper(m, n, k), lower.tail = TRUE, log.p = FALSE)
.suppHyper(m, n, k)

Arguments

m

the number of white balls in the urn.

n

the number of black balls in the urn.

k

the number of balls drawn from the urn, hence must be in 0,1,,m+n0,1,\dots, m+n.

q

vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls. The default, .suppHyper(m, n, k) provides the full (finite) support.

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].

log.p

logical; if TRUE, probabilities p are given as log(p).

Value

the phyperAllBin*() functions return a numeric matrix, with each column a different approximation to phyper(m,n,k,q, lower.tail, log.p).

Note that the columns of phyperAllBinM() are a subset of those from phyperAllBin().

Author(s)

Martin Maechler

References

See those in phyperBinMolenaar.

See Also

phyperBin.1 etc, and phyperBinMolenaar.

phyper

Examples

.suppHyper # very simple:
stopifnot(identical(.suppHyper, ignore.environment = TRUE,
         function (m, n, k) max(0, k-n):min(k, m)))

phBall <- phyperAllBin (5,15, 7)
phBalM <- phyperAllBinM(5,15, 7)
stopifnot(identical( ## indeed, ph...AllBinM() gives a *subset* of ph...AllBin():
            phBall[, colnames(phBalM)] ,
            phBalM)
         , .suppHyper(5, 15, 7) == 0:5
)

round(phBall, 4)
cbind(q = 0:5, round(-log10(abs(1 - phBall / phyper(0:5, 5,15,7))),  digits=2))

require(sfsmisc)## -->  relErrV() {and eaxis()}: 
qq <-    .suppHyper(20, 47, 31)
phA <- phyperAllBin(20, 47, 31)
rE <- relErrV(target = phyper(qq, 20,47,31), phA)
signif(cbind(qq, rE), 4)
## Relative approximation error [ log scaled ] :
matplot(qq, abs(rE), type="b", log="y", yaxt="n")
eaxis(2)
## ---> approximations useful only "on the right", aka the right tail

Normal Approximation to cumulative Hyperbolic Distribution – AS 152

Description

Compute the normal approximation (via pnorm(.) from AS 152 to the cumulative hyperbolic distribution function phyper().

Usage

phyperApprAS152(q, m, n, k)

Arguments

q

vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls.

m

the number of white balls in the urn.

n

the number of black balls in the urn.

k

the number of balls drawn from the urn, hence must be in 0,1,,m+n0,1,\dots, m+n.

Value

a numeric vector of the same length (etc) as q.

Note

I have Fortran (and C code translated from Fortran) which says

   ALGORITHM AS R77  APPL. STATIST. (1989), VOL.38, NO.1
   Replaces AS 59 and AS 152
   Incorporates AS R86 from vol.40(2)
 

Author(s)

Martin Maechler, 19 Apr 1999

References

Lund, Richard E. (1980) Algorithm AS 152: Cumulative Hypergeometric Probabilities. Journal of the Royal Statistical Society. Series C (Applied Statistics), 29(2), 221–223. doi:10.2307/2986315

Shea, B. (1989) Remark AS R77: A Remark on Algorithm AS 152: Cumulative Hypergeometric Probabilities. JRSS C (Applied Statistics), 38(1), 199–204. doi:10.2307/2347696

Berger, R. (1991) Algorithm AS R86: A Remark on Algorithm AS 152: Cumulative Hypergeometric Probabilities. JRSS C (Applied Statistics), 40(2), 374–375. doi:10.2307/2347606

See Also

phyper

Examples

##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.

## The function is currently defined as
function (q, m, n, k)
{
    kk <- n
    nn <- m
    mm <- m + n
    ll <- q
    mean <- kk * nn/mm
    sig <- sqrt(mean * (mm - nn)/mm * (mm - kk)/(mm - 1))
    pnorm(ll + 1/2, mean = mean, sd = sig)
  }

HyperGeometric Distribution via Approximate Binomial Distribution

Description

Compute hypergeometric cumulative probabilities via (good) binomial distribution approximations. The arguments of these functions are exactly those of R's own phyper().

Usage

phyperBin.1(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
phyperBin.2(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
phyperBin.3(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
phyperBin.4(q, m, n, k, lower.tail = TRUE, log.p = FALSE)

Arguments

q

vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls.

m

the number of white balls in the urn.

n

the number of black balls in the urn.

k

the number of balls drawn from the urn, hence must be in 0,1,,m+n0,1,\dots, m+n.

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].

log.p

logical; if TRUE, probabilities p are given as log(p).

Details

TODO

Value

a numeric vector, with the length the maximum of the lengths of q, m, n, k.

Author(s)

Martin Maechler

See Also

phyper, pbinom

Examples

## The 1st function is
function (q, m, n, k, lower.tail = TRUE, log.p = FALSE)
  pbinom(q, size = k, prob = m/(m + n), lower.tail = lower.tail,
         log.p = log.p)

HyperGeometric Distribution via Molenaar's Binomial Approximation

Description

Compute hypergeometric cumulative probabilities via Molenaar's binomial approximations. The arguments of these functions are exactly those of R's own phyper().

Usage

phyperBinMolenaar.1(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
phyperBinMolenaar.2(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
phyperBinMolenaar.3(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
phyperBinMolenaar.4(q, m, n, k, lower.tail = TRUE, log.p = FALSE)

phyperBinMolenaar  (q, m, n, k, lower.tail = TRUE, log.p = FALSE) # Deprecated !

Arguments

q

vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls.

m

the number of white balls in the urn.

n

the number of black balls in the urn.

k

the number of balls drawn from the urn, hence must be in 0,1,,m+n0,1,\dots, m+n.

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].

log.p

logical; if TRUE, probabilities p are given as log(p).

Details

Molenaar(1970), as cited in Johnson et al (1992), proposed phyperBinMolenaar.1(); the other three are just using the mathematical symmetries of the hyperbolic distribution, swapping kk and mm, and using lower.tail = TRUE or FALSE.

Value

a numeric vector, with the length the maximum of the lengths of q, m, n, k.

Author(s)

Martin Maechler

References

Johnson, N.L., Kotz, S. and Kemp, A.W. (1992) Univariate Discrete Distributions, 2nd ed.; Wiley, doi:10.1002/bimj.4710360207.
Chapter 6, mostly Section 5 Approximations and Bounds, p.256 ff

Johnson, N.L., Kotz, S. and Kemp, A.W. (2005) Univariate Discrete Distributions, 3rd ed.; Wiley; doi:10.1002/0471715816.
Chapter 6, Section 6.5 Approximations and Bounds, p.268 ff

See Also

phyper, the hypergeometric distribution, and R's own “exact” computation. pbinom, the binomial distribution functions.

Our utility phyperAllBin().

Examples

## The first function is simply
function (q, m, n, k, lower.tail = TRUE, log.p = FALSE)
  pbinom(q, size = k, prob = hyper2binomP(q, m, n, k), lower.tail = lower.tail,
        log.p = log.p)

Pearson's incomplete Beta Approximation to the Hyperbolic Distribution

Description

Pearson's incomplete Beta function approximation to the cumulative hyperbolic distribution function phyper(.).

Note that in R, pbeta() provides a version of the incomplete Beta function.

Usage

phyperIbeta(q, m, n, k)

Arguments

q

vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls.

m

the number of white balls in the urn.

n

the number of black balls in the urn.

k

the number of balls drawn from the urn, hence must be in 0,1,,m+n0,1,\dots, m+n.

Value

a numeric vector “like” q with values approximately equal to phyper(q,m,n,k).

Author(s)

Martin Maechler

References

Johnson, Kotz & Kemp (1992): (6.90), p.260 –> Bol'shev (1964)

See Also

phyper.

Examples

## The function is currently defined as
function (q, m, n, k)
{
    Np <- m
    N <- n + m
    n <- k
    x <- q
    p <- Np/N
    np <- n * p
    xi <- (n + Np - 1 - 2 * np)/(N - 2)
    d.c <- (N - n) * (1 - p) + np - 1
    cc <- n * (n - 1) * p * (Np - 1)/((N - 1) * d.c)
    lam <- (N - 2)^2 * np * (N - n) * (1 - p)/((N - 1) * d.c *
        (n + Np - 1 - 2 * np))
    pbeta(1 - xi, lam - x + cc, x - cc + 1)
  }

Molenaar's Normal Approximations to the Hypergeometric Distribution

Description

Compute Molenaar's two normal approximations to the (cumulative hypergeometric distribution phyper().

Usage

phyper1molenaar(q, m, n, k)
phyper2molenaar(q, m, n, k)

Arguments

q

(vector of) the number of white balls drawn without replacement from an urn which contains both black and white balls.

m

the number of white balls in the urn.

n

the number of black balls in the urn.

k

the number of balls drawn from the urn, hence in 0,1,,m+n0,1,\dots,m+n.

Details

Both approximations are from page 261 of Johnson, Kotz & Kemp (1992). phyper1molenaar is formula (6.91)(6.91), and phyper2molenaar is formula (6.92)(6.92).

Value

a numeric vector, with the length the maximum of the lengths of q, m, n, k.

Author(s)

Martin Maechler

References

Johnson, Kotz & Kemp (1992): p.261

See Also

phyper, pnorm.

Examples

## TODO -- maybe see  ../tests/hyper-dist-ex.R

Peizer's Normal Approximation to the Cumulative Hyperbolic

Description

Compute Peizer's extremely good normal approximation to the cumulative hyperbolic distribution.

This implementation corrects a typo in the reference.

Usage

phyperPeizer(q, m, n, k)

Arguments

q

vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls.

m

the number of white balls in the urn.

n

the number of black balls in the urn.

k

the number of balls drawn from the urn, hence must be in 0,1,,m+n0,1,\dots, m+n.

Value

a numeric vector, with the length the maximum of the lengths of q, m, n, k.

Author(s)

Martin Maechler

References

Johnson, Kotz & Kemp (1992): (6.93) & (6.94), p.261 CORRECTED by M.M.

See Also

phyper.

Examples

## The function is defined as

phyperPeizer <- function(q, m, n, k)
{
  ## Purpose: Peizer's extremely good Normal Approx. to cumulative Hyperbolic
  ##  Johnson, Kotz & Kemp (1992):  (6.93) & (6.94), p.261 __CORRECTED__
  ## ----------------------------------------------------------------------
  Np <- m; N <- n + m; n <- k; x <- q
  ## (6.94) -- in proper order!
  nn <- Np			;  n. <- Np     + 1/6
  mm <- N - Np                  ;  m. <- N - Np + 1/6
  r <- n                        ;  r. <- n      + 1/6
  s <- N - n                    ;  s. <- N - n  + 1/6
                                   N. <- N      - 1/6
  A <- x + 1/2                  ;  A. <- x      + 2/3
  B <- Np - x - 1/2             ;  B. <- Np - x - 1/3
  C <- n  - x - 1/2             ;  C. <- n  - x - 1/3
  D <- N - Np - n + x + 1/2     ;  D. <- N - Np - n + x + 2/3

  n <- nn
  m <- mm
  ## After (6.93):
  L <-
    A * log((A*N)/(n*r)) +
    B * log((B*N)/(n*s)) +
    C * log((C*N)/(m*r)) +
    D * log((D*N)/(m*s))
  ## (6.93) :
  pnorm((A.*D. - B.*C.) / abs(A*D - B*C) *
        sqrt(2*L* (m* n* r* s* N.)/
                  (m.*n.*r.*s.*N )))
  # The book wrongly has an extra "2*" before `m* ' (after "2*L* (" ) above
}

R-only version of R's original phyper() algorithm

Description

An R version of the first phyper() algorithm in R, which was used up to svn rev 30227 on 2004-07-09.

Usage

phyperR(q, m, n, k, lower.tail=TRUE, log.p=FALSE)

Arguments

q

vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls.

m

the number of white balls in the urn.

n

the number of black balls in the urn.

k

the number of balls drawn from the urn, hence must be in 0,1,,m+n0,1,\dots, m+n.

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].

log.p

logical; if TRUE, probabilities p are given as log(p).

Value

a numeric vector similar to phyper(q, m, n, k).

Note

The original argument list in C was (x, NR, NB, n) where there were red and black balls in the urn.

Note that we have vectorized a translation to R of the original C code.

Author(s)

Martin Maechler

See Also

phyper and our phyperR2() for the pure R version of the newer (Welinder) phyper() algorithm

Examples

m <- 9:12; n <- 7:10; k <- 10
x <- 0:(k+1) # length 12
## confirmation that recycling + lower.tail, log.p now work:
for(lg in c(FALSE,TRUE))
  for(lt in c(FALSE, TRUE)) {
    cat("(lower.tail = ", lt, " -- log = ", lg,"):\n", sep="")
    withAutoprint({
      (rr <-
           cbind(x, m, n, k, # recycling (to 12 rows)
                 ph  = phyper (x, m, n, k, lower.tail=lt, log.p=lg),
                 phR = phyperR(x, m, n, k, lower.tail=lt, log.p=lg)))
      all.equal(rr[,"ph"], rr[,"phR"], tol = 0)
      ## saw   4.706e-15 1.742e-15 7.002e-12 1.086e-15  [x86_64 Lnx]
      stopifnot(all.equal(rr[,"ph"], rr[,"phR"],
                          tol = if(lg && !lt) 2e-11 else 2e-14))
    })
  }

Pure R version of R's C level phyper()

Description

Use pure R functions to compute (less efficiently and usually even less accurately) hypergeometric (point) probabilities with the same "Welinder"-algorithm as R's C level code has been doing since 2004.

Apart from boundary cases, each phyperR2() call uses one corresponding pdhyper() call.

Usage

phyperR2(q, m, n, k, lower.tail = TRUE, log.p = FALSE, ...)
pdhyper (q, m, n, k,                    log.p = FALSE,
         epsC = .Machine$double.eps, verbose = getOption("verbose"))

Arguments

q

vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls.

m

the number of white balls in the urn.

n

the number of black balls in the urn.

k

the number of balls drawn from the urn, hence must be in 0,1,,m+n0,1,\dots, m+n.

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].

log.p

logical; if TRUE, probabilities p are given as log(p).

...

further arguments, passed to pdhyper().

epsC

a non-negative number, the computer epsilon to be used; effectively a relative convergence tolerance for the while() loop in pdhyper().

verbose

logical indicating if the pdhyper() calls, typically one per phyperR2() call, should show how many terms have been computed and summed up.

Value

a number (as q).

pdhyper(q, m,n,k)

computes the ratio phyper(q, m,n,k) / dhyper(q, m,n,k) but without computing numerator or denominator explicitly.

phyperR2()

(in the non-boundary cases) then just computes the product dhyper(..) * pdhyper(..), of course “modulo” lower.tail and log.p transformations.

Consequently, it typically returns values very close to the corresponding R phyper(q, m,n,k, ..) call.

Note

For now, all arguments of these functions must be of length one.

Author(s)

Martin Maechler, based on R's C code originally provided by Morton Welinder from the Gnumeric project, who thanks Ian Smith for ideas.

References

Morten Welinder (2004) phyper accuracy and efficiency; R bug report PR#6772; https://bugs.r-project.org/show_bug.cgi?id=6772

See Also

phyper

Examples

## same example as phyper()
m <- 10; n <- 7; k <- 8
vapply(0:9, phyperR2, 0.1, m=m, n=n, k=k)  ==  phyper(0:9, m,n,k)
##  *all* TRUE (for 64b FC30)

## 'verbose=TRUE' to see the number of terms used:
vapply(0:9, phyperR2, 0.1, m=m, n=n, k=k,  verbose=TRUE)

## Larger arguments:
k <- 100 ; x <- .suppHyper(k,k,k)
ph  <- phyper (x, k,k,k)
ph1 <- phyperR(x, k,k,k) # ~ old R version
ph2 <- vapply(x, phyperR2, 0.1, m=k, n=k, k=k)
cbind(x, ph, ph1, ph2, rE1 = 1-ph1/ph, rE = 1-ph2/ph)
stopifnot(abs(1 -ph2/ph) < 8e-16) # 64bit FC30: see -2.22e-16 <= rE <= 3.33e-16

## Morten Welinder's example:
(p1R <- phyperR (59, 150, 150, 60, lower.tail=FALSE))
## gave 6.372680161e-14 in "old R";, here -1.04361e-14 (worse!!)
(p1x <-  dhyper ( 0, 150, 150, 60))# is 5.111204798e-22.
(p1N <- phyperR2(59, 150, 150, 60, lower.tail=FALSE)) # .. "perfect"
(p1. <- phyper  (59, 150, 150, 60, lower.tail=FALSE))# R's own
all.equal(p1x, p1N, tol=0) # on Lnx even perfectly
all.equal(p1x, p1., tol=0) # on Lnx even perfectly

The Four (4) Symmetric 'phyper()' Calls

Description

Compute the four (4) symmetric phyper() calls which mathematically would be identical but in practice typically slightly differ numerically.

Usage

phypers(m, n, k, q = .suppHyper(m, n, k), tol = sqrt(.Machine$double.eps))

Arguments

m

the number of white balls in the urn.

n

the number of black balls in the urn.

k

the number of balls drawn from the urn, hence must be in 0,1,,m+n0,1,\dots, m+n.

q

vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls. By default all “non-trivial” abscissa values i.e., for which the mathematical value is strictly inside (0,1)(0,1).

tol

a non-negative number, the tolerance for the all.equal() checks.

Value

a list with components

q

Description of 'comp1'

phyp

a numeric matrix of 4 columns with the 4 different calls to phyper() which are theoretically equivalent because of mathematical symmetry.

Author(s)

Martin Maechler

References

Johnson et al

See Also

R's phyper. In package DPQmpfr, phyperQ() uses (package gmp based) exact rational arithmetic, summing up dhyperQ(), terms computed by chooseZ(), exact (long integer) arithmetic binomial coefficients.

Examples

## The function is defined as
function(m,n,k, q = .suppHyper(m,n,k), tol = sqrt(.Machine$double.eps)) {
    N <- m+n
    pm <- cbind(ph = phyper(q,     m,  n , k), # 1 = orig.
                p2 = phyper(q,     k, N-k, m), # swap m <-> k (keep N = m+n)
                ## "lower.tail = FALSE"  <==>  1 - p..(..)
                Ip2= phyper(m-1-q, N-k, k, m, lower.tail=FALSE),
                Ip1= phyper(k-1-q, n,   m, k, lower.tail=FALSE))

    ## check that all are (approximately) the same :
    stopifnot(all.equal(pm[,1], pm[,2], tolerance=tol),
              all.equal(pm[,2], pm[,3], tolerance=tol),
              all.equal(pm[,3], pm[,4], tolerance=tol))
    list(q = q, phyp = pm)
}


str(phs <- phypers(20, 47, 31))
with(phs, cbind(q, phyp))
with(phs,
     matplot(q, phyp, type = "b"), main = "phypers(20, 47, 31)")

## differences:
with(phs, phyp[,-1] - phyp[,1])
## *relative*
relE <- with(phs, { phM <- rowMeans(phyp); 1 - phyp/phM })
print.table(cbind(q = phs$q, relE / .Machine$double.eps), zero.print = ".")

Plot 2 Noncentral Distribution Curves for Visual Comparison

Description

Plot two noncentral (chi-squared or tt or ..) distribution curves for visual comparison.

Usage

pl2curves(fun1, fun2, df, ncp, log = FALSE,
          from = 0, to = 2 * ncp, p.log = "", n = 2001,
          leg = TRUE, col2 = 2, lwd2 = 2, lty2 = 3, ...)

Arguments

fun1, fun2

function()s, both to be used via curve(), and called with the same 4 arguments, (., df, ncp, log) (the name of the first argument is not specified).

df, ncp, log

parameters to be passed and used in both functions, which hence typically are non-central chi-squared or t density, probability or quantile functions.

from, to

numbers determining the x-range, passed to curve().

p.log

string, passed as curve(...., log = log.p).

n

the number of evaluation points, passed to curve().

leg

logical specifying if a legend() should be drawn.

col2, lwd2, lty2

color, line width and line type for the second curve. (The first curve uses defaults for these graphical properties.)

...

further arguments passed to first curve(..) call.

Value

TODO: inivisible return both curve() results, i.e., (x,y1, y2), possibly as data frame

Author(s)

Martin Maechler

See Also

curve, ..

Examples

p.dnchiBessel <- function(df, ncp, log=FALSE, from=0, to = 2*ncp, p.log="", ...)
{
    pl2curves(dnchisqBessel, dchisq, df=df, ncp=ncp, log=log,
              from=from, to=to, p.log=p.log, ...)
}

  ## TODO the p.dnchiB()  examples  >>>>>> ../tests/chisq-nonc-ex.R <<<

Noncentral Beta Probabilities

Description

pnbetaAppr2() and its inital version pnbetaAppr2v1() provide the “approximation 2” of Chattamvelli and Shanmugam(1997) to the noncentral Beta probability distribution.

pnbetaAS310() is an R level interface to a C translation (and “Rification”) of the AS 310 Fortran implementation.

Usage

pnbetaAppr2(x, a, b, ncp = 0, lower.tail = TRUE, log.p = FALSE)

pnbetaAS310(x, a, b, ncp = 0, lower.tail = TRUE, log.p = FALSE,
            useAS226 = (ncp < 54.),
            errmax = 1e-6, itrmax = 100)

Arguments

x

numeric vector (of quantiles), typically from inside [0,1][0,1].

a, b

the shape parameters of Beta, aka as shape1 and shape2.

ncp

non-centrality parameter.

log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].

useAS226

logical specifying if AS 226 (with R84 and R95 amendments) should be used which is said to be sufficient for small ncp. The default ncp < 54 had been hardwired in AS 310.

errmax

non-negative number determining convergence for AS 310.

itrmax

positive integer number, only if(useAS226) is passed to AS 226.

Value

a numeric vector of (log) probabilities of the same length as x.

Note

The authors in the reference compare AS 310 with Lam(1995), Frick(1990) and Lenth(1987) and state to be better than them. R's current (2019) noncentral beta implementation builds on these, too, with some amendments though; still, pnbetaAS310() may potentially be better, at least in certain corners of the 4-dimensional input space.

Author(s)

Martin Maechler; pnbetaAppr2() in Oct 2007.

References

– not yet implemented –
Gil, A., Segura, J., and Temme, N. M. (2019) On the computation and inversion of the cumulative noncentral beta distribution function. Applied Mathematics and Computation 361, 74–86; doi:10.1016/j.amc.2019.05.014 . Chattamvelli, R., and Shanmugam, R. (1997) Algorithm AS 310: Computing the Non-Central Beta Distribution Function. Journal of the Royal Statistical Society. Series C (Applied Statistics) 46(1), 146–156, for “approximation 2” notably p.154; doi:10.1111/1467-9876.00055 .

Lenth, R. V. (1987) Algorithm AS 226, ..., Frick, H. (1990)'s AS R84, ..., and Lam, M.L. (1995)'s AS R95 : See ‘References’ in R's pbeta page.

See Also

R's own pbeta.

Examples

## Same arguments as for Table 1 (p.151) of the reference
a <- 5*rep(1:3, each=3)
aargs <- cbind(a = a, b = a,
               ncp = rep(c(54, 140, 170), 3),
               x = 1e-4*c(8640, 9000, 9560, 8686, 9000, 9000, 8787, 9000, 9220))
aargs
pnbA2 <- apply(aargs, 1, function(aa) do.call(pnbetaAppr2, as.list(aa)))
pnA310<- apply(aargs, 1, function(aa) do.call(pnbetaAS310, as.list(aa)))
aar2 <- aargs; dimnames(aar2)[[2]] <- c(paste0("shape", 1:2), "ncp", "q")
pnbR  <- apply(aar2,  1, function(aa) do.call(pbeta, as.list(aa)))
range(relD2   <- 1 - pnbA2 /pnbR)
range(relD310 <- 1 - pnA310/pnbR)
cbind(aargs, pnbA2, pnA310, pnbR,
      relD2 = signif(relD2, 3), relD310 = signif(relD310, 3)) # <------> Table 1
stopifnot(abs(relD2)   < 0.009) # max is 0.006286
stopifnot(abs(relD310) < 1e-5 ) # max is 6.3732e-6

## Arguments as for Table 2 (p.152) of the reference :
aarg2 <- cbind(a = c( 10, 10, 15, 20, 20, 20, 30, 30),
               b = c( 20, 10,  5, 10, 30, 50, 20, 40),
               ncp=c(150,120, 80,110, 65,130, 80,130),
               x = c(868,900,880,850,660,720,720,800)/1000)
pnbA2 <- apply(aarg2, 1, function(aa) do.call(pnbetaAppr2, as.list(aa)))
pnA310<- apply(aarg2, 1, function(aa) do.call(pnbetaAS310, as.list(aa)))
aar2 <- aarg2; dimnames(aar2)[[2]] <- c(paste0("shape", 1:2), "ncp", "q")
pnbR  <- apply(aar2,  1, function(aa) do.call(pbeta, as.list(aa)))
range(relD2   <- 1 - pnbA2 /pnbR)
range(relD310 <- 1 - pnA310/pnbR)
cbind(aarg2, pnbA2, pnA310, pnbR,
      relD2 = signif(relD2, 3), relD310 = signif(relD310, 3)) # <------> Table 2
stopifnot(abs(relD2  ) < 0.006) # max is 0.00412
stopifnot(abs(relD310) < 1e-5 ) # max is 5.5953e-6

## Arguments as for Table 3 (p.152) of the reference :
aarg3 <- cbind(a = c( 10, 10, 10, 15, 10, 12, 30, 35),
               b = c(  5, 10, 30, 20,  5, 17, 30, 30),
               ncp=c( 20, 54, 80,120, 55, 64,140, 20),
               x = c(644,700,780,760,795,560,800,670)/1000)
pnbA3 <- apply(aarg3, 1, function(aa) do.call(pnbetaAppr2, as.list(aa)))
pnA310<- apply(aarg3, 1, function(aa) do.call(pnbetaAS310, as.list(aa)))
aar3 <- aarg3; dimnames(aar3)[[2]] <- c(paste0("shape", 1:2), "ncp", "q")
pnbR  <- apply(aar3,  1, function(aa) do.call(pbeta, as.list(aa)))
range(relD2   <- 1 - pnbA3 /pnbR)
range(relD310 <- 1 - pnA310/pnbR)
cbind(aarg3, pnbA3, pnA310, pnbR,
      relD2 = signif(relD2, 3), relD310 = signif(relD310, 3)) # <------> Table 3
stopifnot(abs(relD2  ) < 0.09) # max is 0.06337
stopifnot(abs(relD310) < 1e-4) # max is 3.898e-5

(Probabilities of Non-Central Chi-squared Distribution for Special Cases

Description

Computes probabilities for the non-central chi-squared distribution, in special cases, currently for df = 1 and df = 3, using ‘exact’ formulas only involving the standard normal (Gaussian) cdf Φ()\Phi() and its derivative ϕ()\phi(), i.e., R's pnorm() and dnorm().

Usage

pnchi1sq(q, ncp = 0, lower.tail = TRUE, log.p = FALSE, epsS = .01)
pnchi3sq(q, ncp = 0, lower.tail = TRUE, log.p = FALSE, epsS = .04)

Arguments

q

number ( ‘quantile’, i.e., abscissa value.)

ncp

non-centrality parameter δ\delta; ....

lower.tail, log.p

logical, see, e.g., pchisq().

epsS

small number, determining where to switch from the “small case” to the regular case, namely by defining small <- sqrt(q/ncp) <= epsS.

Details

In the “small case” (epsS above), the direct formulas suffer from cancellation, and we use Taylor series expansions in s:=qs := \sqrt{q}, which in turn use “probabilists'” Hermite polynomials Hen(x)He_n(x).

The default values epsS have currently been determined by experiments as those in the ‘Examples’ below.

Value

a numeric vector “like” q+ncp, i.e., recycled to common length.

Author(s)

Martin Maechler, notably the Taylor approximations in the “small” cases.

References

Johnson et al.(1995), see ‘References’ in pnchisqPearson.

https://en.wikipedia.org/wiki/Hermite_polynomials for the notation.

See Also

pchisq, the (simple and R-like) approximations, such as pnchisqPearson and the wienergerm approximations, pchisqW() etc.

Examples

qq <- seq(9500, 10500, length=1000)
m1 <- cbind(pch = pchisq  (qq, df=1, ncp = 10000),
            p1  = pnchi1sq(qq,       ncp = 10000))
matplot(qq, m1, type = "l"); abline(h=0:1, v=10000+1, lty=3)
all.equal(m1[,"p1"], m1[,"pch"], tol=0) # for now,  2.37e-12

m3 <- cbind(pch = pchisq  (qq, df=3, ncp = 10000),
             p3 = pnchi3sq(qq,       ncp = 10000))
matplot(qq, m3, type = "l"); abline(h=0:1, v=10000+3, lty=3)
all.equal(m3[,"p3"], m3[,"pch"], tol=0) # for now,  1.88e-12

stopifnot(exprs = {
  all.equal(m1[,"p1"], m1[,"pch"], tol=1e-10)
  all.equal(m3[,"p3"], m3[,"pch"], tol=1e-10)
})

### Very small 'x' i.e., 'q' would lead to cancellation: -----------

##  df = 1 ---------------------------------------------------------

qS <- c(0, 2^seq(-40,4, by=1/16))
m1s <- cbind(pch = pchisq  (qS, df=1, ncp = 1)
           , p1.0= pnchi1sq(qS,       ncp = 1, epsS = 0)
           , p1.4= pnchi1sq(qS,       ncp = 1, epsS = 1e-4)
           , p1.3= pnchi1sq(qS,       ncp = 1, epsS = 1e-3)
           , p1.2= pnchi1sq(qS,       ncp = 1, epsS = 1e-2)
        )
cols <- adjustcolor(1:5, 1/2); lws <- seq(4,2, by = -1/2)
abl.leg <- function(x.leg = "topright", epsS = 10^-(4:2), legend = NULL)
{
   abline(h = .Machine$double.eps, v = epsS^2,
          lty = c(2,3,3,3), col= adjustcolor(1, 1/2))
   if(is.null(legend))
     legend <- c(quote(epsS == 0), as.expression(lapply(epsS,
                             function(K) substitute(epsS == KK,
                                                    list(KK = formatC(K, w=1))))))
   legend(x.leg, legend, lty=1:4, col=cols, lwd=lws, bty="n")
}
matplot(qS, m1s, type = "l", log="y" , col=cols, lwd=lws)
matplot(qS, m1s, type = "l", log="xy", col=cols, lwd=lws) ; abl.leg("right")
## ====  "Errors" ===================================================
## Absolute: -------------------------
matplot(qS,     m1s[,1] - m1s[,-1] , type = "l", log="x" , col=cols, lwd=lws)
matplot(qS, abs(m1s[,1] - m1s[,-1]), type = "l", log="xy", col=cols, lwd=lws)
abl.leg("bottomright")
rbind(all     = range(aE1e2 <- abs(m1s[,"pch"] - m1s[,"p1.2"])),
      less.75 = range(aE1e2[qS <= 3/4]))
##            Lnx(F34;i7)  M1mac(BDR)
## all        0 7.772e-16  1.110e-15
## less.75    0 1.665e-16  2.220e-16
stopifnot(aE1e2[qS <= 3/4] <= 4e-16, aE1e2 <= 2e-15) # check
## Relative: -------------------------
matplot(qS,     1 - m1s[,-1]/m1s[,1] , type = "l", log="x",  col=cols, lwd=lws)
abl.leg()
matplot(qS, abs(1 - m1s[,-1]/m1s[,1]), type = "l", log="xy", col=cols, lwd=lws)
abl.leg()
## number of correct digits ('Inf' |--> 17) :
corrDigs <- pmin(round(-log10(abs(1 - m1s[,-1]/m1s[,1])[-1,]), 1), 17)
table(corrDigs > 9.8) # all
range(corrDigs[qS[-1] > 1e-8,  1 ], corrDigs[, 2:4]) # [11.8 , 17]
(min (corrDigs[qS[-1] > 1e-6, 1:2], corrDigs[, 3:4]) -> mi6) # 13
(min (corrDigs[qS[-1] > 1e-4, 1:3], corrDigs[,   4]) -> mi4) # 13.9
stopifnot(exprs = {
   corrDigs >= 9.8
   c(corrDigs[qS[-1] > 1e-8,  1 ], corrDigs[, 2]) >= 11.5
   mi6 >= 12.7
   mi4 >= 13.6
})

##  df = 3 -------------- NOTE:  epsS=0 for small qS is "non-sense" --------

qS <- c(0, 2^seq(-40,4, by=1/16))
ee <- c(1e-3, 1e-2, .04)
m3s <- cbind(pch = pchisq  (qS, df=3, ncp = 1)
           , p1.0= pnchi3sq(qS,       ncp = 1, epsS = 0)
           , p1.3= pnchi3sq(qS,       ncp = 1, epsS = ee[1])
           , p1.2= pnchi3sq(qS,       ncp = 1, epsS = ee[2])
           , p1.1= pnchi3sq(qS,       ncp = 1, epsS = ee[3])
        )
matplot(qS, m3s, type = "l", log="y" , col=cols, lwd=lws)
matplot(qS, m3s, type = "l", log="xy", col=cols, lwd=lws); abl.leg("right", ee)
## ====  "Errors" ===================================================
## Absolute: -------------------------
matplot(qS,     m3s[,1] - m3s[,-1] , type = "l", log="x" , col=cols, lwd=lws)
matplot(qS, abs(m3s[,1] - m3s[,-1]), type = "l", log="xy", col=cols, lwd=lws)
abl.leg("right", ee)
## Relative: -------------------------
matplot(qS,     1 - m3s[,-1]/m3s[,1] , type = "l", log="x",  col=cols, lwd=lws)
abl.leg(, ee)
matplot(qS, abs(1 - m3s[,-1]/m3s[,1]), type = "l", log="xy", col=cols, lwd=lws)
abl.leg(, ee)

(Approximate) Probabilities of Non-Central Chi-squared Distribution

Description

Compute (approximate) probabilities for the non-central chi-squared distribution.

The non-central chi-squared distribution with df=n= n degrees of freedom and non-centrality parameter ncp =λ= \lambda has density

f(x)=fn,λ(x)=eλ/2r=0(λ/2)rr!fn+2r(x)f(x) = f_{n,\lambda}(x) = e^{-\lambda / 2} \sum_{r=0}^\infty \frac{(\lambda/2)^r}{r!}\, f_{n + 2r}(x)

for x0x \ge 0; for more, see R's help page for pchisq.

  • R's own historical and current versions, but with more tuning parameters;

Historical relatively simple approximations listed in Johnson, Kotz, and Balakrishnan (1995):

  • Patnaik(1949)'s approximation to the non-central via central chi-squared. Is also the formula 26.4.2726.4.27 in Abramowitz & Stegun, p.942. Johnson et al mention that the approximation error is O(1/(λ))O(1/\sqrt(\lambda)) for λ\lambda \to \infty.

  • Pearson(1959) is using 3 moments instead of 2 as Patnaik (to approximate via a central chi-squared), and therefore better than Patnaik for the right tail; further (in Johnson et al.), the approximation error is O(1/λ)O(1/\lambda) for λ\lambda \to \infty.

  • Abdel-Aty(1954)'s “first approximation” based on Wilson-Hilferty via Gaussian (pnorm) probabilities, is partly wrongly cited in Johnson et al., p.463, eq.(29.61a)(29.61a).

  • Bol'shev and Kuznetzov (1963) concentrate on the case of small ncp λ\lambda and provide an “approximation” via central chi-squared with the same degrees of freedom df, but a modified q (‘x’); the approximation has error O(λ3)O(\lambda^3) for λ0\lambda \to 0 and is from Johnson et al., p.465, eq.(29.62)(29.62) and (29.63)(29.63).

  • Sankaran(1959, 1963) proposes several further approximations base on Gaussian probabilities, according to Johnson et al., p.463. pnchisqSankaran_d() implements its formula (29.61d)(29.61d).

pnchisq():

an R implementation of R's own C pnchisq_raw(), but almost only up to Feb.27, 2004, long before the log.p=TRUE addition there, including logspace arithmetic in April 2014, its finish on 2015-09-01. Currently for historical reference only.

pnchisqV():

a Vectorize()d pnchisq.

pnchisqRC():

R's C implementation as of Aug.2019; but with many more options. Currently extreme cases tend to hang on Winbuilder (?)

pnchisqIT:

....

pnchisqTerms:

....

pnchisqT93:

pure R implementations of approximations when both q and ncp are large, by Temme(1993), from Johnson et al., p.467, formulas (29.71a)(29.71 a), and (29.71b)(29.71 b), using auxiliary functions pnchisqT93a() and pnchisqT93b() respectively, with adapted formulas for the log.p=TRUE cases.

pnchisq_ss():

....

ss:

....

ss2:

....

ss2.:

....

Usage

pnchisq          (q, df, ncp = 0, lower.tail = TRUE, 
                  cutOffncp = 80, itSimple = 110, errmax = 1e-12, reltol = 1e-11,
                  maxit = 10* 10000, verbose = 0, xLrg.sigma = 5)
pnchisqV(x, ..., verbose = 0)

pnchisqRC        (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE,
                  no2nd.call = FALSE,
                  cutOffncp = 80, small.ncp.logspace = small.ncp.logspaceR2015,
                  itSimple = 110, errmax = 1e-12,
                  reltol = 8 * .Machine$double.eps, epsS = reltol/2, maxit = 1e6,
                  verbose = FALSE)
pnchisqAbdelAty  (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
pnchisqBolKuz    (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
pnchisqPatnaik   (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
pnchisqPearson   (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
pnchisqSankaran_d(q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
pnchisq_ss       (x, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, i.max = 10000)
pnchisqTerms     (x, df, ncp,     lower.tail = TRUE, i.max = 1000)

pnchisqT93  (q, df, ncp, lower.tail = TRUE, log.p = FALSE, use.a = q > ncp)
pnchisqT93.a(q, df, ncp, lower.tail = TRUE, log.p = FALSE)
pnchisqT93.b(q, df, ncp, lower.tail = TRUE, log.p = FALSE)

ss   (x, df, ncp, i.max = 10000, useLv = !(expMin < -lambda && 1/lambda < expMax))
ss2  (x, df, ncp, i.max = 10000, eps = .Machine$double.eps)
ss2. (q, df, ncp = 0, errmax = 1e-12, reltol = 2 * .Machine$double.eps,
      maxit = 1e+05, eps = reltol, verbose = FALSE)

Arguments

x

numeric vector (of ‘quantiles’, i.e., abscissa values).

q

number ( ‘quantile’, i.e., abscissa value.)

df

degrees of freedom >0> 0, maybe non-integer.

ncp

non-centrality parameter δ\delta; ....

lower.tail, log.p

logical, see, e.g., pchisq().

i.max

number of terms in evaluation ...

use.a

logical vector for Temme pnchisqT93*() formulas, indicating to use formula ‘a’ over ‘b’. The default is as recommended in the references, but they did not take into account log.p = TRUE situations.

cutOffncp

a positive number, the cutoff value for ncp...

itSimple

...

errmax

absolute error tolerance.

reltol

convergence tolerance for relative error.

maxit

maximal number of iterations.

xLrg.sigma

positive number ...

no2nd.call

logical indicating if a 2nd call is made to the internal function ....

small.ncp.logspace

logical vector or function, indicating if the logspace computations for “small” ncp (defined to fulfill ncp < cutOffncp !).

epsS

small positive number, the convergence tolerance of the ‘simple’ iterations...

verbose

logical or integer specifying if or how much the algorithm progress should be monitored.

...

further arguments passed from pnchisqV() to pnchisq().

useLv

logical indicating if logarithmic scale should be used for λ\lambda computations.

eps

convergence tolerance, a positive number.

Details

pnchisq_ss()

uses si <- ss(x, df, ..) to get the series terms, and returns 2*dchisq(x, df = df +2) * sum(si$s).

ss()

computes the terms needed for the expansion used in pnchisq_ss().

ss2()

computes some simple “statistics” about ss(..).

Value

ss()

returns a list with 3 components

s

the series

i1

location (in s[]) of the first change from 0 to positive.

max

(first) location of the maximal value in the series (i.e., which.max(s)).

Author(s)

Martin Maechler, from May 1999; starting from a post to the S-news mailing list by Ranjan Maitra (@ math.umbc.edu) who showed a version of our pchisqAppr.0() thanking Jim Stapleton for providing it.

References

Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions Vol 2, 2nd ed.; Wiley; chapter 29 Noncentral χ2\chi^2-Distributions; notably Section 8 Approximations, p.461 ff.

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun

See Also

pchisq and the wienergerm approximations for it: pchisqW() etc.

r_pois() and its plot function, for an aspect of the series approximations we use in pnchisq_ss().

Examples

## set of quantiles to use :
qq <- c(.001, .005, .01, .05, (1:9)/10, 2^seq(0, 10, by= 0.5))
## Take "all interesting" pchisq-approximation from our pkg :
pkg <- "package:DPQ"
pnchNms <- c(paste0("pchisq", c("V", "W", "W.", "W.R")),
             ls(pkg, pattern = "^pnchisq"))
pnchNms <- pnchNms[!grepl("Terms$", pnchNms)]
pnchF <- sapply(pnchNms, get, envir = as.environment(pkg))
str(pnchF)
ncps <- c(0, 1/8, 1/2)
pnchR <- as.list(setNames(ncps, paste("ncp",ncps, sep="=")))
for(i.n in seq_along(ncps)) {
  ncp <- ncps[i.n]
  pnF <- if(ncp == 0) pnchF[!grepl("chisqT93", pnchNms)] else pnchF
  pnchR[[i.n]] <- sapply(pnF, function(F)
            Vectorize(F, names(formals(F))[[1]])(qq, df = 3, ncp=ncp))
}
str(pnchR, max=2)
		 

## A case where the non-central P[] should be improved :
## First, the central P[] which is close to exact -- choosing df=2 allows
## truly exact values: chi^2 = Exp(1) !
opal <- palette()
palette(c("black", "red", "green3", "blue", "cyan", "magenta", "gold3", "gray44"))
cR  <- curve(pchisq   (x, df=2,        lower.tail=FALSE, log.p=TRUE), 0, 4000, n=2001)
cRC <- curve(pnchisqRC(x, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE),
             add=TRUE, col=adjustcolor(2,1/2), lwd=3, lty=2, n=2001)
cR0 <- curve(pchisq   (x, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE),
             add=TRUE, col=adjustcolor(3,1/2), lwd=4,        n=2001)
## smart "named list" constructur :
list_ <- function(...)
   `names<-`(list(...), vapply(sys.call()[-1L], as.character, ""))
JKBfn <-list_(pnchisqPatnaik,
              pnchisqPearson,
              pnchisqAbdelAty,
              pnchisqBolKuz,
              pnchisqSankaran_d)
cl. <- setNames(adjustcolor(3+seq_along(JKBfn), 1/2), names(JKBfn))
lw. <- setNames(2+seq_along(JKBfn),                   names(JKBfn))
cR.JKB <- sapply(names(JKBfn), function(nmf) {
  curve(JKBfn[[nmf]](x, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE),
        add=TRUE, col=cl.[[nmf]], lwd=lw.[[nmf]], lty=lw.[[nmf]], n=2001)
})
legend("bottomleft", c("pchisq", "pchisq.ncp=0", "pnchisqRC", names(JKBfn)),
       col=c(palette()[1], adjustcolor(2:3,1/2), cl.),
       lwd=c(1,3,4, lw.), lty=c(1,2,1, lw.))
palette(opal)# revert

all.equal(cRC, cR0, tol = 1e-15) # TRUE [for now]
## the problematic "jump" :
as.data.frame(cRC)[744:750,]
if(.Platform$OS.type == "unix")
  ## verbose=TRUE  may reveal which branches of the algorithm are taken:
  pnchisqRC(1500, df=2, ncp=0, lower.tail=FALSE, log.p=TRUE, verbose=TRUE) #
  ## |-->  -Inf currently

## The *two*  principal cases (both lower.tail = {TRUE,FALSE} !), where
##  "2nd call"  happens *and* is currently beneficial :
dfs <- c(1:2, 5, 10, 20)
pL. <- pnchisqRC(.00001, df=dfs, ncp=0, log.p=TRUE, lower.tail=FALSE, verbose = TRUE)
pR. <- pnchisqRC(   100, df=dfs, ncp=0, log.p=TRUE,                   verbose = TRUE)
## R's own non-central version (specifying 'ncp'):
pL0 <- pchisq   (.00001, df=dfs, ncp=0, log.p=TRUE, lower.tail=FALSE)
pR0 <- pchisq   (   100, df=dfs, ncp=0, log.p=TRUE)
## R's *central* version, i.e., *not* specifying 'ncp' :
pL  <- pchisq   (.00001, df=dfs,        log.p=TRUE, lower.tail=FALSE)
pR  <- pchisq   (   100, df=dfs,        log.p=TRUE)
cbind(pL., pL, relEc = signif(1-pL./pL, 3), relE0 = signif(1-pL./pL0, 3))
cbind(pR., pR, relEc = signif(1-pR./pR, 3), relE0 = signif(1-pR./pR0, 3))

Wienergerm Approximations to (Non-Central) Chi-squared Probabilities

Description

Functions implementing the two Wiener germ approximations to pchisq(), the (non-central) chi-squared distribution, and to qchisq() its inverse, the quantile function.

These have been proposed by Penev and Raykov (2000) who also listed a Fortran implementation.

In order to use them in numeric boundary cases, Martin Maechler has improved the original formulas.

Auxiliary functions:

sW():

The s()s() as in the Wienergerm approximation, but using Taylor expansion when needed, i.e., (x*ncp / df^2) << 1.

qs():

...

z0():

...

z.f():

...

z.s():

...

.................. ..................

Usage

pchisqW. (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE,
          Fortran = TRUE, variant = c("s", "f"))
pchisqV  (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE,
          Fortran = TRUE, variant = c("s", "f"))
pchisqW  (q, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, variant = c("s", "f"))
pchisqW.R(x, df, ncp = 0, lower.tail = TRUE, log.p = FALSE, variant = c("s", "f"),
          verbose = getOption("verbose"))

sW(x, df, ncp)
qs(x, df, ncp, f.s = sW(x, df, ncp), eps1 = 1/2, sMax = 1e+100)
z0(x, df, ncp)
z.f(x, df, ncp)
z.s(x, df, ncp, verbose = getOption("verbose"))

Arguments

q, x

vector of quantiles (main argument, see pchisq).

df

degrees of freedom (non-negative, but can be non-integer).

ncp

non-centrality parameter (non-negative).

lower.tail, log.p

logical, see pchisq.

variant

a character string, currently either "f" for the first or "s" for the second Wienergerm approximation in Penev and Raykov (2000).

Fortran

logical specifying if the Fortran or the C version should be used.

verbose

logical (or integer) indicating if or how much diagnostic output should be printed to the console during the computations.

f.s

a number must be a “version” of s(x,df,ncp)s(x, df, ncp).

eps1

for qs(): use direct approximation instead of h(1 - 1/s) for s < eps1.

sMax

for qs(): cutoff to switch the h(.)h(.) formula for s > sMax.

Details

....TODO... or write vignette

Value

all these functions return numeric vectors according to their arguments.

Note

The exact auxiliary function names etc, are still considered provisional; currently they are exported for easier documentation and use, but may well all disappear from the exported functions or even completely.

Author(s)

Martin Maechler, mostly end of Jan 2004

References

Penev, Spiridon and Raykov, Tenko (2000) A Wiener Germ approximation of the noncentral chi square distribution and of its quantiles. Computational Statistics 15, 219–228. doi:10.1007/s001800000029

Dinges, H. (1989) Special cases of second order Wiener germ approximations. Probability Theory and Related Fields, 83, 5–57.

See Also

pchisq, and other approximations for it: pnchisq() etc.

Examples

## see  example(pnchisqAppr)   which looks at all of the pchisq() approximating functions

Asymptotic Approxmation of (Extreme Tail) 'pnorm()'

Description

Provide the first few terms of the asymptotic series approximation to pnorm()'s (extreme) tail, from Abramawitz and Stegun's 26.2.13 (p.932).

Usage

pnormAsymp(x, k, lower.tail = FALSE, log.p = FALSE)

Arguments

x

positive (at least non-negative) numeric vector.

lower.tail, log.p

logical, see, e.g., pnorm().

k

integer 0\ge 0 indicating how many terms the approximation should use; currently k5k \le 5.

Value

a numeric vector “as” x; see the examples, on how to use it with arbitrary precise mpfr-numbers from package Rmpfr.

Author(s)

Martin Maechler

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain.

See Also

pnormU_S53 for (also asymptotic) upper and lower bounds.

Examples

x <- c((2:10)*2, 25, (3:9)*10, (1:9)*100, (1:8)*1000, (2:4)*5000)
Px <- pnorm(x, lower.tail = FALSE, log.p=TRUE)
PxA <- sapply(setNames(0:5, paste("k =",0:5)),
              pnormAsymp, x=x, lower.tail = FALSE, log.p=TRUE)
## rel.errors :
signif(head( cbind(x, 1 - PxA/Px) , 20))

## Look more closely with high precision computations
if(requireNamespace("Rmpfr")) {
  ## ensure our function uses Rmpfr's dnorm(), etc:
  environment(pnormAsymp) <- asNamespace("Rmpfr")
  environment(pnormU_S53) <- asNamespace("Rmpfr")
  x. <- Rmpfr::mpfr(x, precBits=256)
  Px. <- Rmpfr::pnorm(x., lower.tail = FALSE, log.p=TRUE)
  ## manual, better sapplyMpfr():
  PxA. <- sapply(setNames(0:5, paste("k =",0:5)),
                 pnormAsymp, x=x., lower.tail = FALSE, log.p=TRUE)
  PxA. <- new("mpfrMatrix", unlist(PxA.), Dim=dim(PxA.), Dimnames=dimnames(PxA.))
  PxA2 <- Rmpfr::cbind(pn_dbl = Px, PxA.,
                       pnormU_S53 = pnormU_S53(x=x., lower.tail = FALSE, log.p=TRUE))
  ## rel.errors : note that pnormU_S53() is very slightly better than "k=2":
  print( Rmpfr::roundMpfr(Rmpfr::cbind(x., 1 - PxA2/Px.), precBits = 13), width = 111)
  pch <- c("R", 0:5, "U")
  matplot(x, abs(1 -PxA2/Px.), type="o", log="xy", pch=pch,
          main="pnorm(<tail>) approximations' relative errors - pnormAsymp(*, k=k)")
  legend("bottomleft", colnames(PxA2), col=1:6, pch=pch, lty=1:5, bty="n", inset=.01)
  at1 <- axTicks(1, axp = c(par("xaxp")[1:2], 3))
  axis(1, at=at1)
  abline(h = 1:2* 2^-53, v = at1, lty=3, col=adjustcolor("gray20", 1/2))
  axis(4, las=2, at= 2^-53, label = quote(epsilon[C]), col="gray20")
}

Bounds for 1-Phi(.) – Mill's Ratio related Bounds for pnorm()

Description

Bounds for 1Φ(x)1 - \Phi(x), i.e., pnorm(x, *, lower.tail=FALSE), typically related to Mill's Ratio.

Usage

pnormL_LD10(x, lower.tail = FALSE, log.p = FALSE)
pnormU_S53 (x, lower.tail = FALSE, log.p = FALSE)

Arguments

x

positive (at least non-negative) numeric vector.

lower.tail, log.p

logical, see, e.g., pnorm().

Value

a numeric vector like x

Author(s)

Martin Maechler

References

Lutz Duembgen (2010) Bounding Standard Gaussian Tail Probabilities; arXiv preprint 1012.2063, https://arxiv.org/abs/1012.2063

See Also

pnorm.

Examples

x <- seq(1/64, 10, by=1/64)
px <- cbind(
    lQ = pnorm      (x, lower.tail=FALSE, log.p=TRUE)
  , Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE)
  , Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE))
matplot(x, px, type="l") # all on top of each other

matplot(x, (D <- px[,2:3] - px[,1]), type="l") # the differences
abline(h=0, lty=3, col=adjustcolor(1, 1/2))

## check they are lower and upper bounds indeed :
stopifnot(D[,"Lo"] < 0, D[,"Up"] > 0)

matplot(x[x>4], D[x>4,], type="l") # the differences
abline(h=0, lty=3, col=adjustcolor(1, 1/2))

### zoom out to larger x : [1, 1000]
x <- seq(1, 1000, by=1/4)
px <- cbind(
    lQ = pnorm      (x, lower.tail=FALSE, log.p=TRUE)
  , Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE)
  , Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE))
matplot(x, px, type="l") # all on top of each other
matplot(x, (D <- px[,2:3] - px[,1]), type="l", log="x") # the differences
abline(h=0, lty=3, col=adjustcolor(1, 1/2))

## check they are lower and upper bounds indeed :
table(D[,"Lo"] < 0) # no longer always true
table(D[,"Up"] > 0)
## not even when equality (where it's much better though):
table(D[,"Lo"] <= 0)
table(D[,"Up"] >= 0)

## *relative* differences:
matplot(x, (rD <- 1 - px[,2:3] / px[,1]), type="l", log = "x")
abline(h=0, lty=3, col=adjustcolor(1, 1/2))
## abs()
matplot(x, abs(rD), type="l", log = "xy", axes=FALSE, # NB: curves *cross*
        main = "relative differences 1 - pnormUL(x, *)/pnorm(x,*)")
legend("top", c("Low.Bnd(D10)", "Upp.Bnd(S53)"), bty="n", col=1:2, lty=1:2)
sfsmisc::eaxis(1, sub10 = 2)
sfsmisc::eaxis(2)
abline(h=(1:4)*2^-53, col=adjustcolor(1, 1/4))

### zoom out to LARGE x : ---------------------------

x <- 2^seq(0,    30, by = 1/64)
if(FALSE)## or even HUGE:
   x <- 2^seq(4, 513, by = 1/16)
px <- cbind(
    lQ = pnorm      (x, lower.tail=FALSE, log.p=TRUE)
  , a0 = dnorm(x, log=TRUE)
  , a1 = dnorm(x, log=TRUE) - log(x)
  , Lo = pnormL_LD10(x, lower.tail=FALSE, log.p=TRUE)
  , Up = pnormU_S53 (x, lower.tail=FALSE, log.p=TRUE))
col4 <- adjustcolor(1:4, 1/2)
doLegTit <- function() {
  title(main = "relative differences 1 - pnormUL(x, *)/pnorm(x,*)")
  legend("top", c("phi(x)", "phi(x)/x", "Low.Bnd(D10)", "Upp.Bnd(S53)"),
         bty="n", col=col4, lty=1:4)
}
## *relative* differences are relevant:
matplot(x, (rD <- 1 - px[,-1] / px[,1]), type="l", log = "x",
            ylim = c(-1,1)/2^8, col=col4) ; doLegTit()
abline(h=0, lty=3, col=adjustcolor(1, 1/2))

## abs(rel.Diff)  ---> can use log-log:
matplot(x, abs(rD), type="l", log = "xy", xaxt="n", yaxt="n"); doLegTit()
sfsmisc::eaxis(1, sub10=2)
sfsmisc::eaxis(2, nintLog=12)
abline(h=(1:4)*2^-53, col=adjustcolor(1, 1/4))

## lower.tail=TRUE (w/ log.p=TRUE) works "the same" for x < 0:
x <- - 2^seq(0,    30, by = 1/64)
##   ==
px <- cbind(
    lQ = pnorm   (x, lower.tail=TRUE, log.p=TRUE)
  , a0 = log1mexp(- dnorm(-x, log=TRUE))
  , a1 = log1mexp(-(dnorm(-x, log=TRUE) - log(-x)))
  , Lo = log1mexp(-pnormL_LD10(-x, lower.tail=TRUE, log.p=TRUE))
  , Up = log1mexp(-pnormU_S53 (-x, lower.tail=TRUE, log.p=TRUE)) )
matplot(-x, (rD <- 1 - px[,-1] / px[,1]), type="l", log = "x",
            ylim = c(-1,1)/2^8, col=col4) ; doLegTit()
abline(h=0, lty=3, col=adjustcolor(1, 1/2))

Non-central t Probability Distribution - Algorithms and Approximations

Description

Compute different approximations for the non-central t-Distribution cumulative probability distribution function.

Usage

pntR      (t, df, ncp, lower.tail = TRUE, log.p = FALSE,
           use.pnorm = (df > 4e5 ||
                        ncp^2 > 2*log(2)*1021), # .Machine$double.min.exp = -1022
                                          itrmax = 1000, errmax = 1e-12, verbose = TRUE)
pntR1     (t, df, ncp, lower.tail = TRUE, log.p = FALSE,
           use.pnorm = (df > 4e5 ||
                        ncp^2 > 2*log(2)*1021),
                                          itrmax = 1000, errmax = 1e-12, verbose = TRUE)

pntP94    (t, df, ncp, lower.tail = TRUE, log.p = FALSE,
                                          itrmax = 1000, errmax = 1e-12, verbose = TRUE)
pntP94.1  (t, df, ncp, lower.tail = TRUE, log.p = FALSE,
                                          itrmax = 1000, errmax = 1e-12, verbose = TRUE)

pnt3150   (t, df, ncp, lower.tail = TRUE, log.p = FALSE, M = 1000, verbose = TRUE)
pnt3150.1 (t, df, ncp, lower.tail = TRUE, log.p = FALSE, M = 1000, verbose = TRUE)

pntLrg    (t, df, ncp, lower.tail = TRUE, log.p = FALSE)

pntJW39   (t, df, ncp, lower.tail = TRUE, log.p = FALSE)
pntJW39.0 (t, df, ncp, lower.tail = TRUE, log.p = FALSE)


pntVW13 (t, df, ncp, lower.tail = TRUE, log.p = FALSE,
           keepS = FALSE, verbose = FALSE)

pntGST23_T6  (t, df, ncp, lower.tail = TRUE, log.p = FALSE,
              y1.tol = 1e-8, Mterms = 20, alt = FALSE, verbose = TRUE)
pntGST23_T6.1(t, df, ncp, lower.tail = TRUE, log.p = FALSE,
              y1.tol = 1e-8, Mterms = 20, alt = FALSE, verbose = TRUE)

## *Non*-asymptotic, (at least partly much) better version of R's Lenth(1998) algorithm
pntGST23_1(t, df, ncp, lower.tail = TRUE, log.p = FALSE,
           j0max = 1e4, # for now
           IxpqFUN = Ixpq,
           alt = FALSE, verbose = TRUE, ...)

Arguments

t

vector of quantiles (called q in pt(..)).

df

degrees of freedom (>0> 0, maybe non-integer). df = Inf is allowed.

ncp

non-centrality parameter δ0\delta \ge 0; If omitted, use the central t distribution.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].

use.pnorm

logical indicating if the pnorm() approximation of Abramowitz and Stegun (26.7.10) should be used, which is available as pntLrg().

The default corresponds to R pt()'s own behaviour (which is suboptimal).

itrmax

number of iterations / terms.

errmax

convergence bound for the iterations.

verbose

logical or integer determining the amount of diagnostic print out to the console.

M

positive integer specifying the number of terms to use in the series.

keepS

logical indicating if the function should return a list with component cdf and other informational elements, or just the CDF values directly (by default).

y1.tol

positive tolerance for warning if y:=t2/(t2+df)y:= t^2/(t^2 + df) is too close to 1 (as the formulas use 1/(1y)1/(1-y)).

Mterms

number of summation terms for pntGST23_T6().

j0max

experimental: large integer limiting the summation terms in pntGST23_1() .

IxpqFUN

the (scaled) incomplete beta function Ix(p,q)I_x(p,q) to be used; currently, it defaults to the Ixpq function derived from Nico Temme's Maple code for “Table 1” in Gil et al. (2023).

alt

logical specifying if and how log-scale should be used. Experimental and not-yet-tested.

...

further arguments passed to IxpqFUN().

Details

pntR1():

a pure R version of the (C level) code of R's own pt(), additionally giving more flexibility (via arguments use.pnorm, itrmax, errmax whose defaults here have been hard-coded in R's C code called by pt()).

This implements an improved version of the AS 243 algorithm from Lenth(1989);

R's help on non-central pt() says:

This computes the lower tail only, so the upper tail suffers from cancellation and a warning will be given when this is likely to be significant.

and (in ‘Note:’)

The code for non-zero ncp is principally intended to be used for moderate values of ncp: it will not be highly accurate, especially in the tails, for large values.

pntR():

the Vectorize()d version of pntR1().

pntP94(), pntP94.1():

New versions of pntR1(), pntR(); using the Posten (1994) algorithm. pntP94() is the Vectorize()d version of pntP94.1().

pnt3150(), pnt3150.1():

Simple inefficient but hopefully correct version of pntP94..() This is really a direct implementation of formula (31.50), p.532 of Johnson, Kotz and Balakrishnan (1995)

pntLrg():

provides the pnorm() approximation (to the non-central tt) from Abramowitz and Stegun (26.7.10), p.949; which should be employed only for large df and/or ncp.

pntJW39.0():

use the Jennett & Welch (1939) approximation see Johnson et al. (1995), p. 520, after (31.26a). This is still fast for huge ncp but has wrong asymptotic tail for t|t| \to \infty. Crucially needs b=b=b_chi(df).

pntJW39():

is an improved version of pntJW39.0(), using 1b=1-b =b_chi(df, one.minus=TRUE) to avoid cancellation when computing 1b21 - b^2.

pntGST23_T6():

(and pntGST23_T6.1() for informational purposes only) use the Gil et al.(2023)'s approximation of their Theorem 6.

pntGST23_1():

implements Gil et al.(2023)'s direct pbeta() based formula (1), which is very close to Lenth's algorithm.

pntVW13():

use MM's R translation of Viktor Witkowský (2013)'s matlab implementation.

Value

a number for pntJKBf1() and .pntJKBch1().

a numeric vector of the same length as the maximum of the lengths of x, df, ncp for pntJKBf() and .pntJKBch().

Author(s)

Martin Maechler

References

Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions Vol~2, 2nd ed.; Wiley; chapter 31, Section 5 Distribution Function, p.514 ff

Lenth, R. V. (1989). Algorithm AS 243 — Cumulative distribution function of the non-central tt distribution, JRSS C (Applied Statistics) 38, 185–189.

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover; formula (26.7.10), p.949

Posten, Harry O. (1994) A new algorithm for the noncentral t distribution function, Journal of Statistical Computation and Simulation 51, 79–87; doi:10.1080/00949659408811623.

– not yet implemented –
Chattamvelli, R. and Shanmugam, R. (1994) An enhanced algorithm for noncentral t-distribution, Journal of Statistical Computation and Simulation 49, 77–83. doi:10.1080/00949659408811561

– not yet implemented –
Akahira, Masafumi. (1995). A higher order approximation to a percentage point of the noncentral t distribution, Communications in Statistics - Simulation and Computation 24:3, 595–605; doi:10.1080/03610919508813261

Michael Perakis and Evdokia Xekalaki (2003) On a Comparison of the Efficacy of Various Approximations of the Critical Values for Tests on the Process Capability Indices CPL, CPU, and Cpk, Communications in Statistics - Simulation and Computation 32, 1249–1264; doi:10.1081/SAC-120023888

Witkovský, Viktor (2013) A Note on Computing Extreme Tail Probabilities of the Noncentral T Distribution with Large Noncentrality Parameter, Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, Mathematica 52(2), 131–143.

Gil A., Segura J., and Temme N.M. (2023) New asymptotic representations of the noncentral t-distribution, Stud Appl Math. 151, 857–882; doi:10.1111/sapm.12609 ; acronym “GST23”.

See Also

pt, for R's version of non-central t probabilities.

Examples

tt <- seq(0, 10, len = 21)
ncp <- seq(0, 6, len = 31)
pt3R   <- outer(tt, ncp, pt, , df = 3)
pt3JKB <- outer(tt, ncp, pntR, df = 3)# currently verbose
stopifnot(all.equal(pt3R, pt3JKB, tolerance = 4e-15))# 64-bit Lnx: 2.78e-16


## Gil et al.(2023) -- Table 1 p.869
str(GST23_tab1 <- read.table(header=TRUE, text = "
 x     pnt_x_delta              Rel.accuracy   l_y   j_max
 5     0.7890745035061528e-20    0.20e-13    0.29178   254
 8     0.1902963697413609e-07    0.40e-12    0.13863   294
11     0.4649258368179092e-03    0.12e-09    0.07845   310
14     0.2912746016055676e-01    0.11e-07    0.04993   317
17     0.1858422833307925e-00    0.41e-06    0.03441   321
20     0.4434882973203470e-00    0.82e-05    0.02510   323"))

x1 <- c(5,8,11,14,17,20)
(p1  <- pt  (x1, df=10.3, ncp=20))
(p1R <- pntR(x1, df=10.3, ncp=20)) # verbose=TRUE  is default
all.equal(p1, p1R, tolerance=0) # 4.355452e-15 {on x86_64} as have *no* LDOUBLE on R level
stopifnot(all.equal(p1, p1R))
## NB: According to Gil et al., the first value (x=5) is really wrong
## p1.23 <- .. Gil et al., Table 1:
p1.23.11 <- pntGST23_T6(x1, df=10.3, ncp=20, Mterms = 11)
p1.23.20 <- pntGST23_T6(x1, df=10.3, ncp=20, Mterms = 20, verbose=TRUE)
                                        # ==> Mterms = 11 is good only for x=5
p1.23.50 <- pntGST23_T6(x1, df=10.3, ncp=20, Mterms = 50, verbose=TRUE)

x <- 4:40 ; df <- 10.3
ncp <- 20
p1     <- pt        (x, df=df, ncp=ncp)
pG1    <- pntGST23_1(x, df=df, ncp=ncp)
pG1.bR <- pntGST23_1(x, df=df, ncp=ncp,
                     IxpqFUN = \(x, l_x=.5-x+.5, p, q) Ixpq(x,l_x, p,q))
pG1.BR <- pntGST23_1(x, df=df, ncp=ncp,
                     IxpqFUN = \(x, l_x, p, q)   pbeta(x, p,q))
cbind(x, p1, pG1, pG1.bR, pG1.BR)
all.equal(pG1, p1,     tolerance=0) # 1.034 e-12
all.equal(pG1, pG1.bR, tolerance=0) # 2.497031 e-13
all.equal(pG1, pG1.BR, tolerance=0) # 2.924698 e-13
all.equal(pG1.BR,pG1.bR,tolerance=0)# 1.68644  e-13
stopifnot(exprs = {
    all.equal(pG1, p1,     tolerance = 4e-12)
    all.equal(pG1, pG1.bR, tolerance = 1e-12)
    all.equal(pG1, pG1.BR, tolerance = 1e-12)
  })

ncp <- 40 ## is  > 37.62 = "critical" for Lenth' algorithm

### --------- pntVW13() --------------------------------------------------
## length 1 arguments:
str(rr <- pntVW13(t = 1, df = 2, ncp = 3, verbose=TRUE, keepS=TRUE))
all.equal(rr$cdf, pt(1,2,3), tol = 0)#  "Mean relative difference: 4.956769e-12"
stopifnot( all.equal(rr$cdf, pt(1,2,3)) )

str(rr <- pntVW13(t = 1:19, df = 2,    ncp = 3,    verbose=TRUE, keepS=TRUE))
str(r2 <- pntVW13(t = 1,    df = 2:20, ncp = 3,    verbose=TRUE, keepS=TRUE))
str(r3 <- pntVW13(t = 1,    df = 2:20, ncp = 3:21, verbose=TRUE, keepS=TRUE))

pt1.10.5_T <- 4.34725285650591657e-5 # Ex. 7 of Witkovsky(2013)
pt1.10.5 <- pntVW13(1, 10, 5)
all.equal(pt1.10.5_T, pt1.10.5, tol = 0)# TRUE! (Lnx Fedora 40; 2024-07-04);
			# 3.117e-16 (Macbuilder R 4.4.0, macOS Ventura 13.3.1)
stopifnot(exprs = {
    identical(rr$cdf, r1 <- pntVW13(t = 1:19, df = 2, ncp = 3))
    identical(r1[1], pntVW13(1, 2, 3))
    identical(r1[7], pntVW13(7, 2, 3))
    all.equal(pt1.10.5_T, pt1.10.5, tol = 9e-16)# NB even tol=0 (64 Lnx)
})
## However, R' pt() is only equal for the very first
cbind(t = 1:19, pntVW = r1, pt = pt(1:19, 2,3))

X to Power of Y – R C API R_pow()

Description

pow(x,y) calls R C API ‘Rmathlib’'s R_pow(x,y) function to compute x^y or when try.int.y is true (as by default), and y is integer valued and fits into integer range, R_pow_di(x,y).

pow_di(x,y) with integer y calls R mathlib's R_pow_di(x,y).

Usage

pow   (x, y, try.int.y = TRUE)
pow_di(x, y)
.pow  (x, y)

Arguments

x

a numeric vector.

y

a numeric or in the case of pow_di() integer vector.

try.int.y

logical indicating if pow() should check if y is integer valued and fits into integer range, and in that case call pow_di() automatically.

Details

In January 2024, I found (e.g., in ‘tests/pow-tst.R’) that the accuracy of pow_di(), i.e., also the C function R_pow_di() in R's API is of much lower precision than R's x^y or (equivalently) R_pow(x,y) in R's API, notably on Linux and macOS, using glib etc, sometimes as soon as y6y \ge 6 or so.

.pow(x,y) is identical to pow(x,y, try.int.y = FALSE)

Value

a numeric vector like x or y which are recycled to common length, of course.

Author(s)

Martin Maechler

See Also

Base R's ^ “operator”.

Examples

set.seed(27)
x <- rnorm(100)
y <- 0:9
stopifnot(exprs = {
    all.equal(x^y, pow(x,y))
    all.equal(x^y, pow(x,y, FALSE))
    all.equal(x^y, pow_di(x,y))
})

Accurate (1+x)y(1+x)^y, notably for small x|x|

Description

Compute (1+x)y(1+x)^y accurately, notably also for small x|x|, where the naive formula suffers from cancellation, returning 1, often.

Usage

pow1p(x, y,
      pow = ((x + 1) - 1) == x || abs(x) > 0.5 || is.na(x))

Arguments

x, y

numeric or number-like; in the latter case, arithmetic incl. ^, comparison, exp, log1p, abs, and is.na methods must work.

pow

logical indicating if the “naive” / direct computation (1 + x)^y should be used (unless y is in 0:4, where the binomial is used, see ‘Details’). The current default is the one used in R's C-level function (but beware of compiler optimization there!).

Details

A pure R-implementation of R 4.4.0's new C-level pow1p() function which was introduced for more accurate dbinom_raw() computations.

Currently, we use the “exact” (nested) polynomial formula for y{0,1,2,3,4}y \in \{0,1,2,3,4\}.

MM is conjecturing that the default pow=FALSE for (most) x12x \le \frac 1 2 is sub-optimal.

Value

numeric or number-like, as x + y.

Author(s)

Originally proposed by Morten Welinder, see PR#18642; tweaked, notably for small integer y, by Martin Maechler.

See Also

^, log1p, dbinom_raw.

Examples

x <- 2^-(1:50)
y <- 99
f1 <- (1+x)^99
f2 <- exp(y * log1p(x))
fp <- pow1p(x, 99)
matplot(x, cbind(f1, f2, fp), type = "l", col = 2:4)
legend("top", legend = expression((1+x)^99, exp(99 * log1p(x)), pow1p(x, 99)),
       bty="n", col=2:4, lwd=2)
cbind(x, f1, f2, sfsmisc::relErrV(f2, f1))

Direct Computation of 'ppois()' Poisson Distribution Probabilities

Description

Direct computation and errors of ppois Poisson distribution probabilities.

Usage

ppoisD(q, lambda, all.from.0 = TRUE, verbose = 0L)
ppoisErr (lambda, ppFUN = ppoisD, iP = 1e-15,
          xM = qpois(iP, lambda=lambda, lower.tail=FALSE),
          verbose = FALSE)

Arguments

q

numeric vector of non-negative integer values, “quantiles” at which to evaluate ppois(q, la) and ppFUN(q, la).

lambda

positive parameter of the Poisson distribution, lambda=λ=E[X]=Var[X]= \lambda = E[X] = Var[X] where XPois(λ)X \sim Pois(\lambda).

all.from.0

logical indicating if q is positive integer, and the probabilities should computed for all quantile values of 0:q.

ppFUN

alternative ppois evaluation, by default the direct summation of dpois(k, lambda).

iP

small number, iP << 1, used to construct the abscissa values x at which to evaluate and compare ppois() and ppFUN(), see xM:

xM

(specified instead of iP: ) the maximal x-value to be used, i.e., the values used will be x <- 0:iM. The default, qpois(1-iP, lambda = lambda) is the upper tail iP-quantile of Poi(lambda).

verbose

integer (0\ge 0) or logical indicating if extra information should be printed.

Value

ppoisD() contains the poisson probabilities along q, i.e., is a numeric vector of length length(q).

re <- ppoisErr() returns the relative “error” of ppois(x0, lambda) where ppFUN(x0, lambda) is assumed to be the truth and x0 the “worst case”, i.e., the value (among x) with the largest such difference.

Additionally, attr(re, "x0") contains that value x0.

Author(s)

Martin Maechler, March 2004; 2019 ff

See Also

ppois

Examples

(lams <- outer(c(1,2,5), 10^(0:3)))# 10^4 is already slow!
system.time(e1 <- sapply(lams, ppoisErr))
e1 / .Machine$double.eps

## Try another 'ppFUN' :---------------------------------
## this relies on the fact that it's *only* used on an 'x' of the form  0:M :
ppD0 <- function(x, lambda, all.from.0=TRUE)
            cumsum(dpois(if(all.from.0) 0:x else x, lambda=lambda))
## and test it:
p0 <- ppD0 (  1000, lambda=10)
p1 <- ppois(0:1000, lambda=10)
stopifnot(all.equal(p0,p1, tol=8*.Machine$double.eps))

system.time(p0.slow <- ppoisD(0:1000, lambda=10, all.from.0=FALSE))# not very slow, here
p0.1 <- ppoisD(1000, lambda=10)
if(requireNamespace("Rmpfr")) {
 ppoisMpfr <- function(x, lambda) cumsum(Rmpfr::dpois(x, lambda=lambda))
 p0.best <- ppoisMpfr(0:1000, lambda = Rmpfr::mpfr(10, precBits = 256))
 AllEq. <- Rmpfr::all.equal
 AllEq <- function(target, current, ...)
    AllEq.(target, current, ...,
           formatFUN = function(x, ...) Rmpfr::format(x, digits = 9))
 print(AllEq(p0.best, p0,      tol = 0)) # 2.06e-18
 print(AllEq(p0.best, p0.slow, tol = 0)) # the "worst" (4.44e-17)
 print(AllEq(p0.best, p0.1,    tol = 0)) # 1.08e-18
}

## Now (with 'all.from.0 = TRUE',  it is fast too):
p15    <- ppoisErr(2^13)
p15.0. <- ppoisErr(2^13, ppFUN = ppD0)
c(p15, p15.0.) / .Machine$double.eps # on Lnx 64b, see (-10  2.5), then (-2 -2)

## lapply(), so you see "x0" values :
str(e0. <- lapply(lams, ppoisErr, ppFUN = ppD0))

## The first version [called 'err.lambd0()' for years] used simple  cumsum(dpois(..))
## NOTE: It is *stil* much faster, as it relies on special  x == 0:M  relation
## Author: Martin Maechler, Date:  1 Mar 2004, 17:40
##
e0 <- sapply(lams, function(lamb) ppoisErr(lamb, ppFUN = ppD0))
all.equal(e1, e0) # typically TRUE,  though small "random" differences:
cbind(e1, e0) * 2^53 # on Lnx 64b, seeing integer values in {-24, .., 33}

Viktor Witosky's Table_1 pt() Examples

Description

A data frame with 17 pt() examples from Witosky (2013)'s ‘Table 1’. We provide the results for the FOSS Softwares, additionally including octave's, running the original 2013 matlab code, and the corrected one from 2022.

Usage

data(pt_Witkovsky_Tab1)

Format

A data frame with 17 observations on the following numeric variables.

x

the abscissa, called q in pt().

nu

the positive degrees of freedom, called df in pt().

delta

the noncentrality parameter, called ncp in pt().

true_pnt

“true” values (computed via higher precision, see Witkovsky(2013)).

NCTCDFVW

the pt() values computed with Witkovsky's matlab implementation. Confirmed by using octave (on Fedora 40 Linux). These correspond to our R (package DPQ) pntVW13() values.

Boost

computed via the Boost C++ library; reported by Witkovsky.

R_3.3.0

computed by R version 3.3.0; confirmed to be identical using R 4.4.1

NCT2013_octave_7.3.0

values computed using Witkovsky's original matlab code, by octave 7.3.0

NCT2022_octave_8.4.0

values computed using Witkovsky's 2022 corrected matlab code, by octave 8.4.0

Source

The table was extracted (by MM) from the result of pdftotext --layout <*>.pdf from the publication. The NCT2013_octave_7.3.0 column was computed from the 2013 code, using GPL octave 7.3.0 on Linux Fedora 38, whereas NCT2013_octave_8.4..0 from the 2022 code, using GPL octave 8.4.0 on Linux Fedora 40.

Note that the ‘arXiv’ pre-publication has very slightly differing numbers in its ⁠R⁠ column, e.g., first entry ending in 00200 instead of 00111.

References

Witkovský, Viktor (2013) A Note on Computing Extreme Tail Probabilities of the Noncentral T Distribution with Large Noncentrality Parameter, Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, Mathematica 52(2), 131–143.

Examples

data(pt_Witkovsky_Tab1)
stopifnot(is.data.frame(d.W <- pt_Witkovsky_Tab1), # shorter
          nrow(d.W) >= 17)
mW <- as.matrix(d.W); row.names(mW) <- NULL # more efficient
colnames(mW)[1:3] #  "x" "nu" "delta"
## use 'R pt() - compatible' names:
(n3 <- names(formals(pt)[1:3]))# "q" "df" "ncp"
colnames(mW)[1:3] <- n3
ptR <- apply(mW[, 1:3], 1, \(a3) unname(do.call(pt, as.list(a3))))
cNm <- paste0("R_", with(R.version, paste(major, minor, sep=".")))
mW <- cbind(mW, `colnames<-`(cbind(ptR), cNm),
            relErr = sfsmisc::relErrV(mW[,"true_pnt"], ptR))
mW
## is current R better than R 3.3.0?  -- or even "the same"?
all.equal(ptR, mW[,"R_3.3.0"])                    # still true in R 4.4.1
all.equal(ptR, mW[,"R_3.3.0"], tolerance = 1e-14) # (ditto)
table(ptR == mW[,"R_3.3.0"]) # {see only 4 (out of 17) *exactly* equal ??}

## How close to published NCTCDFVW is octave's run of the 2022 code?
with(d.W, all.equal(NCTCDFVW, NCT2022_octave_8.4.0, tolerance = 0)) # 3.977e-16

pVW <- apply(unname(mW[, 1:3]), 1, \(a3) unname(do.call(pntVW13, as.list(a3))))
all.equal(pVW, d.W$NCT2013_oct, tolerance = 0)# 2013-based pntVW13() --> 5.6443e-16
all.equal(pVW, d.W$NCT2022_oct, tolerance = 0)

Compute (Approximate) Quantiles of the Beta Distribution

Description

Compute quantiles (inverse distribution values) of the beta distribution, using diverse approximations.

Usage

qbetaAppr.1(a, p, q, lower.tail=TRUE, log.p=FALSE,
            y = qnormUappr(a, lower.tail=lower.tail, log.p=log.p))

qbetaAppr.2(a, p, q, lower.tail=TRUE, log.p=FALSE, logbeta = lbeta(p,q))
qbetaAppr.3(a, p, q, lower.tail=TRUE, log.p=FALSE, logbeta = lbeta(p,q))
qbetaAppr.4(a, p, q, lower.tail=TRUE, log.p=FALSE,
            y = qnormUappr(a, lower.tail=lower.tail, log.p=log.p),
            verbose = getOption("verbose"))

qbetaAppr  (a, p, q, lower.tail=TRUE, log.p=FALSE,
            y = qnormUappr(a, lower.tail=lower.tail, log.p=log.p),
            logbeta = lbeta(p,q),
            verbose = getOption("verbose") && length(a) == 1)

qbeta.R    (alpha, p, q,
            lower.tail = TRUE, log.p = FALSE,
	    logbeta = lbeta(p,q),
	    low.bnd = 3e-308, up.bnd = 1-2.22e-16,
            method = c("AS109", "Newton-log"),
            tol.outer = 1e-15,
	    f.acu = function(a,p,q) max(1e-300, 10^(-13- 2.5/pp^2 - .5/a^2)),
	    fpu = .Machine$ double.xmin,
	    qnormU.fun = function(u, lu) qnormUappr(p=u, lp=lu)
          , R.pre.2014 = FALSE
	  , verbose = getOption("verbose")
          , non.finite.report = verbose
           )

Arguments

a, alpha

vector of probabilities (otherwise, e.g., in qbeta(), called p).

p, q

the two shape parameters of the beta distribution; otherwise, e.g., in qbeta(), called shape1 and shape2.

y

an approximation to Φ1(1α)\Phi^{-1}(1-\alpha) (aka z1αz_{1-\alpha}) where Φ(x)\Phi(x) is the standard normal cumulative probability function and Φ1(x)\Phi{-1}(x) its inverse, i.e., R's qnorm(x).

lower.tail, log.p

logical, see, e.g., qchisq(); must have length 1.

logbeta

must be lbeta(p,q); mainly an option to pass a value already computed.

verbose

logical or integer indicating if and how much “monitoring” information should be produced by the algorithm.

low.bnd, up.bnd

lower and upper bounds for ...TODO...

method

a string specifying the approximation method to be used.

tol.outer

the “outer loop” convergence tolerance; the default 1e-15 has been hardwired in R's qbeta().

f.acu

a function with arguments (a,p,q) ...TODO...

fpu

a very small positive number.

qnormU.fun

a function with arguments (u,lu) to compute “the same” as qnormUappr(), the upper standard normal quantile.

R.pre.2014

a logical ... TODO ...

non.finite.report

logical indicating if during the “outer loop” refining iterations, if y becomes non finite and the iterations have to stop, it should be reported (before the current best value is returned).

Value

...

Author(s)

The R Core Team for the C version of qbeta in R's sources; Martin Maechler for the R port, and the approximations.

See Also

qbeta.

Examples

qbeta.R(0.6, 2, 3) # 0.4445
 qbeta.R(0.6, 2, 3) - qbeta(0.6, 2,3) # almost 0

 qbetaRV <- Vectorize(qbeta.R, "alpha") # now can use
 curve(qbetaRV(x, 1.5, 2.5))
 curve(qbeta  (x, 1.5, 2.5), add=TRUE, lwd = 3, col = adjustcolor("red", 1/2))

 ## an example of disagreement (and doubt, as borderline, close to underflow):
 qbeta.R(0.5078, .01, 5) # ->  2.77558e-15    # but
 qbeta  (0.5078, .01, 5) # now gives 4.651188e-31  -- correctly!
 qbeta  (0.5078, .01, 5, ncp=0)# ditto
 ## which is because qbeta() now works in log-x scale here:
 curve(pbeta(x, .01, 5), 1e-40, 1, n=10001, log="x", xaxt="n")
 sfsmisc::eaxis(1); abline(h=.5078, lty=3); abline(v=4.651188e-31,col=2)

Pure R Implementation of R's qbinom() with Tuning Parameters

Description

A pure R implementation, including many tuning parameter arguments, of R's own Rmathlib C code algorithm, but with more flexibility.

It is using Vectorize(qbinomR1, *) where the hidden qbinomR1 works for numbers (aka ‘scalar’, length one) arguments only, the same as the C code.

Usage

qbinomR(p, size, prob, lower.tail = TRUE, log.p = FALSE,
        yLarge = 4096, # was hard wired to 1e5
        incF = 1/64,   # was hard wired to .001
        iShrink = 8,   # was hard wired to 100
        relTol = 1e-15,# was hard wired to 1e-15
        pfEps.n = 8,   # was hard wired to 64: "fuzz to ensure left continuity"
        pfEps.L = 2,   # was hard wired to 64:   "   "   ..
        fpf = 4, # *MUST* be >= 1 (did not exist previously)
        trace = 0)

Arguments

p, size, prob, lower.tail, log.p

qbinom() standard argument, see its help page.

yLarge

when y>=yL,yL=y >= y_L, y_L = yLarge, the binary root finding search is made “cleverer”, taking larger increments, determined by incF and iShrink:

incF

a positive “increment factor” (originally hardwired to 0.001), used only when y >= yLarge; defines the initial increment in the search algorithm as incr <- floor(incF * y).

iShrink

a positive increment shrinking factor, used only when y >= yLarge to define the new increment from the old one as incr <- max(1, floor(incr/iShrink)) where the LHS was hardired original to (incr/100).

relTol

relative tolerance, >0> 0; the search terminates when the (integer!) increment is less than relTol * y or the previous increment was not larger than 1.

pfEps.n

fuzz factor to ensure left continuity in the normal case log.p=FALSE; used to be hardwired to 64 (in R up to 2021-05-08).

pfEps.L

fuzz factor to ensure left continuity in case log.p=TRUE; used to be hardwired to 64 (in R up to 2021-05-08).

fpf

factor f1f \ge 1 for the normal upper tail case (log.p=FALSE, lower.tail=FALSE): p is only “fuzz-corrected”, i.e., multiplied by 1+e1+e when 1 - p > fpf*e for e <- pfEps.n * c_e and ce=252c_e = 2^{-52}, the .Machine$double_epsilon.

trace

logical (or integer) specifying if (and how much) output should be produced from the algorithm.

Details

as mentioned on qbinom help page, qbinom uses the Cornish–Fisher Expansion to include a skewness correction to a normal approximation, thus defining y := Fn(p, size, prob, ..).

The following (root finding) binary search is tweaked by the yLarge, ..., fpf arguments.

Value

a numeric vector like p recycled to the common lengths of p, size, and prob.

Author(s)

Martin Maechler

See Also

qbinom, qpois.

Examples

set.seed(12)
pr <- (0:16)/16 # supposedly recycled
x10 <- rbinom(500, prob=pr, size =  10); p10 <- pbinom(x10, prob=pr, size= 10)
x1c <- rbinom(500, prob=pr, size = 100); p1c <- pbinom(x1c, prob=pr, size=100)
## stopifnot(exprs = {
table( x10  == (qp10  <- qbinom (p10, prob=pr, size= 10) ))
table( qp10 == (qp10R <- qbinomR(p10, prob=pr, size= 10) )); summary(warnings()) # 30 x NaN
table( x1c  == (qp1c  <- qbinom (p1c, prob=pr, size=100) ))
table( qp1c == (qp1cR <- qbinomR(p1c, prob=pr, size=100) )); summary(warnings()) # 30 x NaN
## })

Compute Approximate Quantiles of the Chi-Squared Distribution

Description

Compute quantiles (inverse distribution values) for the chi-squared distribution. using Johnson,Kotz,.. ............TODO.......

Usage

qchisqKG    (p, df, lower.tail = TRUE, log.p = FALSE)
qchisqWH    (p, df, lower.tail = TRUE, log.p = FALSE)
qchisqAppr  (p, df, lower.tail = TRUE, log.p = FALSE, tol = 5e-7)
qchisqAppr.R(p, df, lower.tail = TRUE, log.p = FALSE, tol = 5e-07,
             maxit = 1000, verbose = getOption("verbose"), kind = NULL)

Arguments

p

vector of probabilities.

df

degrees of freedom >0> 0, maybe non-integer; must have length 1.

lower.tail, log.p

logical, see, e.g., qchisq(); must have length 1.

tol

non-negative number, the convergence tolerance

maxit

the maximal number of iterations

verbose

logical indicating if the algorithm should produce “monitoring” information.

kind

the kind of approximation; if NULL, the default, the approximation chosen depends on the arguments; notably it is chosen separately for each p. Otherwise, it must be a character string. The main approximations are Wilson-Hilferty versions, when the string contains "WH". More specifically, it must be one of the strings

"chi.small"

particularly useful for small chi-squared values p;... ...

"WH"

... ...

"p1WH"

... ...

"WHchk"

... ...

"df.small"

particularly useful for small degrees of freedom df... ...

Value

...

Author(s)

Martin Maechler

See Also

qchisq. Further, our approximations to the non-central chi-squared quantiles, qnchisqAppr

Examples

## TODO

Compute (Approximate) Quantiles of the Gamma Distribution

Description

Compute approximations to the quantile (i.e., inverse cumulative) function of the Gamma distribution.

Usage

qgammaAppr(p, shape, lower.tail = TRUE, log.p = FALSE,
           tol = 5e-07)
qgamma.R  (p, alpha, scale = 1, lower.tail = TRUE, log.p = FALSE,
           EPS1 = 0.01, EPS2 = 5e-07, epsN = 1e-15, maxit = 1000,
           pMin = 1e-100, pMax = (1 - 1e-14),
           verbose = getOption("verbose"))

qgammaApprKG(p, shape, lower.tail = TRUE, log.p = FALSE)
 

qgammaApprSmallP(p, shape, lower.tail = TRUE, log.p = FALSE)

Arguments

p

numeric vector (possibly log tranformed) probabilities.

shape, alpha

shape parameter, non-negative.

scale

scale parameter, non-negative, see qgamma.

lower.tail, log.p

logical, see, e.g., qgamma(); must have length 1.

tol

tolerance of maximal approximation error.

EPS1

small positive number. ...

EPS2

small positive number. ...

epsN

small positive number. ...

maxit

maximal number of iterations. ...

pMin, pMax

boundaries for p. ...

verbose

logical indicating if the algorithm should produce “monitoring” information.

Details

qgammaApprSmallP(p, a) should be a good approximation in the following situation when both p and shape =α=:a= \alpha =: a are small :

If we look at Abramowitz&Stegun gamma(a,x)=xaP(a,x)gamma*(a,x) = x^-a * P(a,x) and its series g(a,x)=1/gamma(a)(1/a1/(a+1)x+...)g*(a,x) = 1/gamma(a) * (1/a - 1/(a+1) * x + ...),

then the first order approximation P(a,x)=xag(a,x) =xa/gamma(a+1)P(a,x) = x^a * g*(a,x) ~= x^a/gamma(a+1) and hence its inverse x=qgamma(p,a) =(pgamma(a+1))(1/a)x = qgamma(p, a) ~= (p * gamma(a+1)) ^ (1/a) should be good as soon as 1/a>>1/(a+1)x1/a >> 1/(a+1) * x

<==> x << (a+1)/a = (1 + 1/a)

<==> x < eps *(a+1)/a

<==> log(x) < log(eps) + log( (a+1)/a ) = log(eps) + log((a+1)/a) ~ -36 - log(a) where log(x) ~= log(p * gamma(a+1)) / a = (log(p) + lgamma1p(a))/a

such that the above

<==> (log(p) + lgamma1p(a))/a < log(eps) + log((a+1)/a)

<==> log(p) + lgamma1p(a) < a*(-log(a)+ log(eps) + log1p(a))

<==> log(p) < a*(-log(a)+ log(eps) + log1p(a)) - lgamma1p(a) =: bnd(a)

Note that qgammaApprSmallP() indeed also builds on lgamma1p().

.qgammaApprBnd(a) provides this bound bnd(a)bnd(a); it is simply a*(logEps + log1p(a) - log(a)) - lgamma1p(a), where logEps is log(ϵ)\log(\epsilon) = log(eps) where eps <- .Machine$double.eps, i.e. typically (always?) logEps=logϵ=52log(2)=36.04365= \log \epsilon = -52 * \log(2) = -36.04365.

Value

numeric

Author(s)

Martin Maechler

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain.

See Also

qgamma for R's Gamma distribution functions.

Examples

## TODO :  Move some of the curve()s from ../tests/qgamma-ex.R !!

Pure R Implementation of R's qnbinom() with Tuning Parameters

Description

A pure R implementation, including many tuning parameter arguments, of R's own Rmathlib C code algorithm, but with more flexibility.

It is using Vectorize(qnbinomR1, *) where the hidden qnbinomR1 works for numbers (aka ‘scalar’, length one) arguments only, the same as the C code.

Usage

qnbinomR(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE,
         yLarge = 4096, # was hard wired to 1e5
         incF = 1/64,   # was hard wired to .001
         iShrink = 8,   # was hard wired to 100
         relTol = 1e-15,# was hard wired to 1e-15
         pfEps.n = 8,   # was hard wired to 64: "fuzz to ensure left continuity"
         pfEps.L = 2,   # was hard wired to 64:   "   "   ..
         fpf = 4, # *MUST* be >= 1 (did not exist previously)
         trace = 0)

Arguments

p, size, prob, mu, lower.tail, log.p

qnbinom() standard argument, see its help page.

yLarge, incF, iShrink, relTol, pfEps.n, pfEps.L, fpf

numeric arguments tweaking the “root finding” search after the initial Cornish-Fisher approximation, see qbinomR, for details. The defaults should be more reliable (but also a bit more “expensive”) than R's (original) qnbinom() hard wired values.

trace

logical (or integer) specifying if (and how much) output should be produced from the algorithm.

Value

a numeric vector like p recycled to the common lengths of p, size, and either prob or mu.

Author(s)

Martin Maechler

See Also

qnbinom, qpois.

Examples

set.seed(12)
x10 <- rnbinom(500, mu = 4,       size = 10) ; p10 <- pnbinom(x10, mu=4,       size=10)
x1c <- rnbinom(500, prob = 31/32, size = 100); p1c <- pnbinom(x1c, prob=31/32, size=100)
stopifnot(exprs = {
    x10 == qnbinom (p10, mu=4, size=10)
    x10 == qnbinomR(p10, mu=4, size=10)
    x1c == qnbinom (p1c, prob=31/32, size=100)
    x1c == qnbinomR(p1c, prob=31/32, size=100)
})

Compute Approximate Quantiles of Noncentral Chi-Squared Distribution

Description

Compute quantiles (inverse distribution values) for the non-central chi-squared distribution.

....... using Johnson,Kotz, and other approximations ..............

Usage

qchisqAppr.0 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisqAppr.1 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisqAppr.2 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisqAppr.3 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisqApprCF1(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisqApprCF2(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)

qchisqCappr.2 (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qchisqN       (p, df, ncp = 0, qIni = qchisqAppr.0, ...)

qnchisqAbdelAty  (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qnchisqBolKuz    (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qnchisqPatnaik   (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qnchisqPearson   (p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qnchisqSankaran_d(p, df, ncp = 0, lower.tail = TRUE, log.p = FALSE)

Arguments

p

vector of probabilities.

df

degrees of freedom >0> 0, maybe non-integer.

ncp

non-centrality parameter δ\delta; ....

lower.tail, log.p

logical, see, e.g., qchisq().

qIni

a function that computes an approximate noncentral chi-squared quantile as starting value x0 for the Newton algorithm newton().

...

further arguments to newton(), notably eps or maxiter.

Details

Compute (approximate) quantiles, using approximations analogous to those for the probabilities, see pnchisqPearson.

qchisqAppr.0():

...TODO...

qchisqAppr.1():

...TODO...

qchisqAppr.2():

...TODO...

qchisqAppr.3():

...TODO...

qchisqApprCF1():

...TODO...

qchisqApprCF2():

...TODO...

qchisqCappr.2():

...TODO...

qchisqN():

Uses Newton iterations with pchisq() and dchisq() to determine qchisq(.) values.

qnchisqAbdelAty():

...TODO...

qnchisqBolKuz():

...TODO...

qnchisqPatnaik():

...TODO...

qnchisqPearson():

...TODO...

qnchisqSankaran_d():

...TODO...

Value

numeric vectors of (noncentral) chi-squared quantiles, corresponding to probabilities p.

Author(s)

Martin Maechler, from May 1999; starting from a post to the S-news mailing list by Ranjan Maitra (@ math.umbc.edu) who showed a version of our qchisqAppr.0() thanking Jim Stapleton for providing it.

References

Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions Vol 2, 2nd ed.; Wiley; chapter 29 Noncentral χ2\chi^2-Distributions; notably Section 8 Approximations, p.461 ff.

See Also

qchisq.

Examples

pp <- c(.001, .005, .01, .05, (1:9)/10, .95, .99, .995, .999)
 pkg <- "package:DPQ"
 qnchNms <- c(paste0("qchisqAppr.",0:3), paste0("qchisqApprCF",1:2),
              "qchisqN", "qchisqCappr.2", ls(pkg, pattern = "^qnchisq"))
 qnchF <- sapply(qnchNms, get, envir = as.environment(pkg))
 for(ncp in c(0, 1/8, 1/2)) {
   cat("\n~~~~~~~~~~~~~\nncp: ", ncp,"\n=======\n")
   print(sapply(qnchF, function(F) Vectorize(F, "p")(pp, df = 3, ncp=ncp)))
 }

## Bug: qnchisqSankaran_d() has numeric overflow problems for large df:
qnchisqSankaran_d(pp, df=1e200, ncp = 100)

## One current (2019-08) R bug: Noncentral chi-squared quantiles on *LOG SCALE*

## a)  left/lower tail : -------------------------------------------------------
qs <- 2^seq(0,11, by=1/16)
pqL <- pchisq(qs, df=5, ncp=1, log.p=TRUE)
plot(qs, -pqL, type="l", log="xy") # + expected warning on log(0) -- all fine
qpqL <- qchisq(pqL, df=5, ncp=1, log.p=TRUE) # severe overflow :
qm <- cbind(qs, pqL, qchisq=qpqL
	, qchA.0 = qchisqAppr.0 (pqL, df=5, ncp=1, log.p=TRUE)
	, qchA.1 = qchisqAppr.1 (pqL, df=5, ncp=1, log.p=TRUE)
	, qchA.2 = qchisqAppr.2 (pqL, df=5, ncp=1, log.p=TRUE)
	, qchA.3 = qchisqAppr.3 (pqL, df=5, ncp=1, log.p=TRUE)
	, qchACF1= qchisqApprCF1(pqL, df=5, ncp=1, log.p=TRUE)
	, qchACF2= qchisqApprCF2(pqL, df=5, ncp=1, log.p=TRUE)
	, qchCa.2= qchisqCappr.2(pqL, df=5, ncp=1, log.p=TRUE)
	, qnPatnaik   = qnchisqPatnaik   (pqL, df=5, ncp=1, log.p=TRUE)
	, qnAbdelAty  = qnchisqAbdelAty  (pqL, df=5, ncp=1, log.p=TRUE)
	, qnBolKuz    = qnchisqBolKuz    (pqL, df=5, ncp=1, log.p=TRUE)
	, qnPearson   = qnchisqPearson   (pqL, df=5, ncp=1, log.p=TRUE)
	, qnSankaran_d= qnchisqSankaran_d(pqL, df=5, ncp=1, log.p=TRUE)
)

round(qm[ qs %in% 2^(0:11) , -2])
#=> Approximations don't overflow but are not good enough

## b)  right/upper tail , larger ncp -------------------------------------------
qS <- 2^seq(-3, 3, by=1/8)
pqLu <- pchisq(qS, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
## using "the alternative" (here is currently identical):
identical(pqLu, (pqLu.<- log1p(-pchisq(qS, df=5, ncp=100)))) # here TRUE
plot (qS, -pqLu, type="l", log="xy") # fine
qpqLu <- qchisq(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
cbind(qS, pqLu, pqLu, qpqLu)# # severe underflow
qchMat <- cbind(qchisq = qpqLu
	, qchA.0 = qchisqAppr.0 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
	, qchA.1 = qchisqAppr.1 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
	, qchA.2 = qchisqAppr.2 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
	, qchA.3 = qchisqAppr.3 (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
	, qchACF1= qchisqApprCF1(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
	, qchACF2= qchisqApprCF2(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
	, qchCa.2= qchisqCappr.2(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
	, qnPatnaik   = qnchisqPatnaik   (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
	, qnAbdelAty  = qnchisqAbdelAty  (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
	, qnBolKuz    = qnchisqBolKuz    (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
	, qnPearson   = qnchisqPearson   (pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
	, qnSankaran_d= qnchisqSankaran_d(pqLu, df=5, ncp=100, log.p=TRUE, lower.tail=FALSE)
	)
cbind(L2err <- sort(sqrt(colSums((qchMat - qS)^2))))
##--> "Sankaran_d", "CF1" and "CF2" are good here

plot (qS, qpqLu, type = "b", log="x", lwd=2)
lines(qS, qS, col="gray", lty=2, lwd=3)
top3 <- names(L2err)[1:3]
use <- c("qchisq", top3)
matlines(qS, qchMat[, use]) # 3 of the approximations are "somewhat ok"
legend("topleft", c(use,"True"), bty="n", col=c(palette()[1:4], "gray"),
                  lty = c(1:4,2), lwd = c(2, 1,1,1, 3))

Approximations to 'qnorm()', i.e., zαz_\alpha

Description

Approximations to the standard normal (aka “Gaussian”) quantiles, i.e., the inverse of the normal cumulative probability function.

The qnormUappr*() are relatively simple approximations from Abramowitz and Stegun, computed by Hastings(1955): qnormUappr() is the 4-coefficient approximation to (the upper tail) standard normal quantiles, qnorm(), used in some qbeta() computations.

qnormUappr6() is the “traditional” 6-coefficient approximation to qnorm(), see in ‘Details’.

Usage

qnormUappr(p, lp = .DT_Clog(p, lower.tail=lower.tail, log.p=log.p),
           lower.tail = FALSE, log.p = missing(p),
           tLarge = 1e10)
qnormUappr6(p,
            lp = .DT_Clog(p, lower.tail=lower.tail, log.p=log.p),
               # ~= log(1-p) -- independent of lower.tail, log.p
            lower.tail = FALSE, log.p = missing(p),
            tLarge = 1e10)

qnormCappr(p, k = 1) ## *implicit* lower.tail=TRUE, log.p=FALSE  >>> TODO: add! <<

qnormAppr(p) # << deprecated; use qnormUappr(..) instead!

Arguments

p

numeric vector of probabilities, possibly transformed, depending on log.p. Does not need to be specified, if lp is instead.

lp

log(1 - p*), assuming pp* is the lower.tail=TRUE, log.p=FALSE version of p. If passed as argument, it can be much more accurate than when computed from p by default.

lower.tail

logical; if TRUE (not the default here!), probabilities are P[Xx]P[X \le x], otherwise (by default) upper tail probabilities, P[X>x]P[X > x].

log.p

logical; if TRUE, probabilities pp are given as log(p)\log(p) in argument p. Note that it is not used, when missing(p) and lp is specified.

tLarge

a large number t0t0; if t>=t0t >= t0, where t:=sqrt(2lp)t := sqrt(-2 * lp), the result will be =t= t.

k

positive integer, specifying the iterative plugin ‘order’.

Details

This is now deprecated; use qnormUappr() instead! qnormAppr(p) uses the simple 4 coefficient rational approximation to qnorm(p), provided by Abramowitz and Stegun (26.2.22), p.933, to be used only for p>1/2p > 1/2 and typically qbeta() computations, e.g., qbeta.R.
The relative error of this approximation is quite asymmetric: It is mainly < 0.

qnormUappr(p) uses the same rational approximation directly for the Upper tail where it is relatively good, and for the lower tail via “swapping the tails”, so it is good there as well.

qnormUappr6(p, *) uses the 6 coefficient rational approximation to qnorm(p, *), from Abramowitz and Stegun (26.2.23), again mostly useful in the outer tails.

qnormCappr(p, k) inverts formula (26.2.24) of Abramowitz and Stegun, and for k2k \ge 2 improves it, by iterative recursive plug-in, using A.&S. (26.2.25).

Value

numeric vector of (approximate) normal quantiles corresponding to probabilities p

Author(s)

Martin Maechler

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover. https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain.

Hastings jr., Cecil (1955) Approximations for Digital Computers. Princeton Univ. Press.

See Also

qnorm (in base R package stats), and importantly, qnormR and qnormAsymp() in this package (DPQ).

Examples

pp <- c(.001, .005, .01, .05, (1:9)/10, .95, .99, .995, .999)
z_p <- qnorm(pp)
assertDeprecation <- function(expr, verbose=TRUE)
  tools::assertCondition(expr, verbose=verbose, "deprecatedWarning")
assertDeprecation(qA <- qnormAppr(pp))
(R <- cbind(pp, z_p, qA,
            qUA = qnormUappr(pp, lower.tail= TRUE),
            qA6 = qnormUappr6(pp, lower.tail=TRUE)))
## Errors, absolute and relative:
relEr <- function(targ, curr) { ## simplistic "smart" rel.error
    E <- curr - targ
    r <- E/targ  # simple, but fix 0/0:
    r[targ == 0 & E == 0] <- 0
    r
}
mER <- cbind(pp,
             errA  = z_p - R[,"qA" ],
             errUA = z_p - R[,"qUA"],
             rE.A  = relEr(z_p, R[,"qA" ]),
             rE.UA = relEr(z_p, R[,"qUA"]),
             rE.A6 = relEr(z_p, R[,"qA6"]))
signif(mER)

lp <- -c(1000, 500, 200, 100, 50, 20:10, seq(9.75, 0, by = -1/8))
signif(digits=5, cbind(lp # 'p' need not be specified if 'lp' is !
    , p.  = -expm1(lp)
    , qnU = qnormUappr (lp=lp)
    , qnU6= qnormUappr6(lp=lp)
    , qnA1= qnormAsymp(lp=lp, lower.tail=FALSE, order=1)
    , qnA5= qnormAsymp(lp=lp, lower.tail=FALSE, order=5)
    , qn  = qnorm(lp, log.p=TRUE)
      )) ## oops! shows *BUG* for last values where qnorm() > 0 !

curve(qnorm(x, lower.tail=FALSE), n=1001)
curve(qnormUappr(x), add=TRUE,    n=1001, col = adjustcolor("red", 1/2))

## Error curve:
curve(qnormUappr(x) - qnorm(x, lower.tail=FALSE), n=1001,
      main = "Absolute Error of  qnormUappr(x)")
abline(h=0, v=1/2, lty=2, col="gray")

curve(qnormUappr(x) / qnorm(x, lower.tail=FALSE) - 1, n=1001,
      main = "Relative Error of  qnormUappr(x)")
 abline(h=0, v=1/2, lty=2, col="gray")

curve(qnormUappr(lp=x) / qnorm(x, log.p=TRUE) - 1, -200, -1, n=1001,
      main = "Relative Error of  qnormUappr(lp=x)"); mtext(" & qnormUappr6()  [log.p scale]", col=2)
curve(qnormUappr6(lp=x) / qnorm(x, log.p=TRUE) - 1, add=TRUE, col=2, n=1001)
abline(h=0, lty=2, col="gray")

curve(qnormUappr(lp=x) / qnorm(x, log.p=TRUE) - 1,
      -2000, -.1, ylim = c(-2e-4, 1e-4), n=1001,
      main = "Relative Error of  qnormUappr(lp=x)"); mtext(" & qnormUappr6()  [log.p scale]", col=2)
curve(qnormUappr6(lp=x) / qnorm(x, log.p=TRUE) - 1, add=TRUE, col=2, n=1001)
abline(h=0, lty=2, col="gray")

## zoom out much more - switch x-axis {use '-x'} and log-scale:
curve(qnormUappr6(lp=-x) / qnorm(-x, log.p=TRUE) - 1,
      .1, 1.1e10, log = "x", ylim = 2.2e-4*c(-2,1), n=2048,
      main = "Relative Error of  qnormUappr6(lp = -x)  [log.p scale]") -> xy.q
abline(h=0, lty=2, col="gray")

## 2023-02: qnormUappr6() can be complemented with
## an approximation around center p=1/2: qnormCappr()
p <- seq(0,1, by=2^-10)
M <- cbind(p, qn=(qn <- qnorm(p)),
           reC1 = relEr(qn, qnormCappr(p)),
           reC2 = relEr(qn, qnormCappr(p, k=2)),
           reC3 = relEr(qn, qnormCappr(p, k=3)),
           reU6 = relEr(qn, qnormUappr6(p,lower.tail=TRUE)))
matplot(M[,"p"], M[,-(1:2)], type="l", col=2:7, lty=1, lwd=2,
        ylim = c(-.004, +1e-4), xlab=quote(p), ylab = "relErr")
abline(h=0, col="gray", lty=2)
oo <- options(width=99)
summary(    M[,-(1:2)])
summary(abs(M[,-(1:2)]))
options(oo)

Asymptotic Approximation to Outer Tail of qnorm()

Description

Implementing new asymptotic tail approximations of normal quantiles, i.e., the R function qnorm(), mostly useful when log.p=TRUE and log-scale p is relatively large negative, i.e., p1p \ll -1.

Usage

qnormAsymp(p,
           lp = .DT_Clog(p, lower.tail = lower.tail, log.p = log.p),
           order, lower.tail = TRUE, log.p = missing(p))

Arguments

p

numeric vector of probabilities, possibly transformed, depending on log.p. Does not need to be specified, if lp is used instead.

lp

numeric (vector) of log(1-p) values; if not specified, computed from p, depending on lower.tail and log.p.

order

an integer in {0,1,,5}\{0,1,\dots,5\}, specifying the approximation order.

lower.tail

logical; if true, probabilities are P[Xx]P[X \le x], otherwise upper tail probabilities, P[X>x]P[X > x].

log.p

logical; if TRUE (as typical here!), probabilities pp are given as log(p)\log(p) in argument p.

Details

These asymptotic approximations have been derived by Maechler (2022) via iterative plug-in to the well known asymptotic approximations of Q(x)=1Φ(x)Q(x) = 1 - \Phi(x) from Abramowitz and Stegun (26.2.13), p.932, which are provided in our package DPQ as pnormAsymp(). They will be used in R >= 4.3.0's qnorm() to provide very accurate quantiles in the extreme tails.

Value

a numeric vector like p or lp if that was specified instead.

The simplemost (for extreme tails) is order = 0, where the asymptotic approximation is simply 2s\sqrt{-2s} and ss is -lp.

Author(s)

Martin Maechler

References

Martin Maechler (2022). Asymptotic Tail Formulas For Gaussian Quantiles; DPQ vignette, see https://CRAN.R-project.org/package=DPQ/vignettes/qnorm-asymp.pdf.

See Also

The upper tail approximations in Abramowitz & Stegun, in DPQ available as qnormUappr() and qnormUappr6(), are less accurate than our order >= 1 formulas in the tails.

Examples

lp <- -c(head(c(outer(c(5,2,1), 10^(18:1))), -2), 20:10, seq(9.75, 2, by = -1/8))
qnU6 <- qnormUappr6(lp=lp) # 'p' need not be specified if 'lp' is
qnAsy <- sapply(0:5, function(ord) qnormAsymp(lp=lp, lower.tail=FALSE, order=ord))
matplot(-lp, cbind(qnU6, qnAsy), type = "b", log = "x", pch=1:7)# all "the same"
legend("center", c("qnormUappr6()",
                paste0("qnormAsymp(*, order=",0:5,")")),
       bty="n", col=1:6, lty=1:5, pch=1:7) # as in matplot()

p.ver <- function() mtext(R.version.string, cex=3/4, adj=1)
matplot(-lp, cbind(qnU6, qnAsy) - qnorm(lp, lower.tail=TRUE, log.p=TRUE),
        pch=1:7, cex = .5, xaxt = "n", # and use eaxis() instead
        main = "absolute Error of qnorm() approximations", type = "b", log = "x")
sfsmisc::eaxis(1, sub10=2); p.ver()
legend("bottom", c("qnormUappr6()",
                paste0("qnormAsymp(*, order=",0:5,")")),
       bty="n", col=1:6, lty=1:5, pch=1:7, pt.cex=.5)

## If you look at the numbers, in versions of R <= 4.2.x,
## qnorm() is *worse* for large -lp than the higher order approximations
## ---> using qnormR() here:
absP <- function(re) pmax(abs(re), 2e-17) # not zero, so log-scale "shows" it
qnT <- qnormR(lp, lower.tail=TRUE, log.p=TRUE, version="2022") # ~= TRUE qnorm()
matplot(-lp, absP(cbind(qnU6, qnAsy) / qnT - 1),
        ylim = c(2e-17, .01), xaxt = "n", yaxt = "n", col=1:7, lty=1:7,
        main = "relative |Error| of qnorm() approximations", type = "l", log = "xy")
abline(h = .Machine$double.eps * c(1/2, 1, 2), col=adjustcolor("bisque",3/4),
       lty=c(5,2,5), lwd=c(1,3,1))
sfsmisc::eaxis(1, sub10 = 2, nintLog=20)
sfsmisc::eaxis(2, sub10 = c(-3, 2), nintLog=16)
mtext("qnT <- qnormR(*, version=\"2022\")", cex=0.9, adj=1)# ; p.ver()
legend("topright", c("qnormUappr6()",
                paste0("qnormAsymp(*, order=",0:5,")")),
       bty="n", col=1:7, lty=1:7, cex = 0.8)


###=== Optimal cut points / regions for different approximation orders k =================

## Zoom into each each cut-point region :
p.qnormAsy2 <- function(r0, k, # use k-1 and k in region around r0
                        n = 2048, verbose=TRUE, ylim = c(-1,1) * 2.5e-16,
                        rr = seq(r0 * 0.5, r0 * 1.25, length = n), ...)
{
  stopifnot(is.numeric(rr), !is.unsorted(rr), # the initial 'r'
            length(k) == 1L, is.numeric(k), k == as.integer(k), k >= 1)
  k.s <- (k-1L):k; nks <- paste0("k=", k.s)
  if(missing(r0)) r0 <- quantile(rr, 2/3)# allow specifying rr instead of r0
  if(verbose) cat("Around r0 =", r0,";  k =", deparse(k.s), "\n")
  lp <- (-rr^2) # = -r^2 = -s  <==> rr = sqrt(- lp)
  q. <- qnormR(lp, lower.tail=FALSE, log.p=TRUE, version="2022-08")# *not* depending on R ver!
  pq <- pnorm(q., lower.tail=FALSE, log.p=TRUE) # ~= lp
  ## the arg of pnorm() is the true qnorm(pq, ..) == q.  by construction
  ## cbind(rr, lp, q., pq)
  r <- sqrt(- pq)
  stopifnot(all.equal(rr, r, tol=1e-15))
  qnAsy <- sapply(setNames(k.s, nks), function(ord)
                  qnormAsymp(pq, lower.tail=FALSE, log.p=TRUE, order=ord))
  relE <- qnAsy / q. - 1
  m <- cbind(r, pq, relE)
  if(verbose) {
    print(head(m, 9)); for(j in 1:2) cat(" ..........\n")
    print(tail(m, 4))
  }
  ## matplot(r, relE, type = "b", main = paste("around r0 = ", r0))
  matplot(r, relE, type = "l", ylim = ylim,
     main = paste("Relative error of qnormAsymp(*, k) around r0 = ", r0,
                  "for  k =", deparse(k.s)),
     xlab = quote(r == sqrt(-log(p))), ...)
  legend("topleft", nks, col=1:2, lty=1:2, bty="n", lwd=2)
  for(j in seq_along(k.s))
    lines(smooth.spline(r, relE[,j]), col=adjustcolor(j, 2/3), lwd=4, lty=2)
  cc <- "blue2"; lab <- substitute(r[0] == R, list(R = r0))
  abline(v  = r0, lty=2, lwd=2, col=cc)
  axis(3, at= r0, labels=lab, col=cc, col.axis=cc, line=-1)
  abline(h = (-1:1)*.Machine$double.eps, lty=c(3,1,3),
         col=c("green3", "gray", "tan2"))
  invisible(cbind(r = r, qn = q., relE))
}

r0 <- c(27, 55, 109, 840, 36000, 6.4e8) # <--> in ../R/norm_f.R {and R's qnorm.c eventually}
## use k =   5   4    3    2      1       0    e.g.  k = 0  good for r >= 6.4e8
for(ir in 2:length(r0)) {
  p.qnormAsy2(r0[ir], k = 5 +2-ir) # k = 5, 4, ..
  if(interactive() && ir < length(r0)) {
       cat("[Enter] to continue: "); cat(readLines(stdin(), n=1), "\n") }
}

Pure R version of R's qnorm() with Diagnostics and Tuning Parameters

Description

Computes R level implementations of R's qnorm() as implemented in C code (in R's ‘Rmathlib’), historically and present.

Usage

qnormR1(p, mu = 0, sd = 1, lower.tail = TRUE, log.p = FALSE, trace = 0, version = )
qnormR (p, mu = 0, sd = 1, lower.tail = TRUE, log.p = FALSE, trace = 0,
        version = c("4.0.x", "1.0.x", "1.0_noN", "2020-10-17", "2022-08-04"))

Arguments

p

probability pp, 1p1-p, or log(p)\log(p), log(1p)\log(1-p), depending on lower.tail and log.p.

mu

mean of the normal distribution.

sd

standard deviation of the normal distribution.

lower.tail, log.p

logical, see, e.g., qnorm().

trace

logical or integer; if positive or TRUE, diagnostic output is printed to the console during the computations.

version

a character string specifying which version or variant is used. The current default, "4.0.x" is the one used in R versions up to 4.0.x. The two "1.0*" versions are as used up to R 1.0.1, based on Algorithm AS 111, improved by a branch for extreme tails by Wichura, and a final Newton step which is only sensible when log.p=FALSE. That final stepped is skipped for version = "1.0_noN", “noN” := “no Newton”. "2020-10-17" is the one committed to the R development sources on 2020-10-17, which prevents the worst for very large p|p| when log.p=TRUE. "2022-08-04" uses very accurate asymptotic formulas found on that date and provides full double precision accuracy also for extreme tails.

Details

For qnormR1(p, ..), p must be of length one, whereas qnormR(p, m, s, ..) works vectorized in p, mu, and sd. In the DPQ package source, qnormR is simply the result of Vectorize(qnormR1, ...).

Value

a numeric vector like the input q.

Author(s)

Martin Maechler

References

For versions "1.0.x" and "1.0_noN":
Beasley, J.D. and Springer, S.G. (1977) Algorithm AS 111: The Percentage Points of the Normal Distribution. JRSS C (Appied Statistics) 26, 118–121; doi:10.2307/2346889.

For the asymptotic approximations used in versions newer than "4.0.x", i.e., "2020-10-17" and later, see the reference(s) on qnormAsymp's help page.

See Also

qnorm, qnormAsymp.

Examples

qR <- curve(qnormR, n = 2^11)
abline(h=0, v=0:1, lty=3, col=adjustcolor(1, 1/2))
with(qR, all.equal(y, qnorm(x), tol=0)) # currently shows TRUE
with(qR, all.equal(pnorm(y), x, tol=0)) # currently: mean rel. diff.: 2e-16
stopifnot(with(qR, all.equal(pnorm(y), x, tol = 1e-14)))

(ver.qn <- eval(formals(qnormR)$version)) # the possible versions
(doExtras <- DPQ:::doExtras()) # TRUE e.g. if interactive()
lp <- - 4^(1:30) # effect of  'trace = *' :
qpAll <- sapply(ver.qn, function (V)
    qnormR(lp, log.p=TRUE, trace=doExtras, version = V))
head(qpAll) # the "1.0" versions underflow quickly ..

cAdj <- adjustcolor(palette(), 1/2)
matplot(-lp, -qpAll, log="xy", type="l", lwd=3, col=cAdj, axes=FALSE,
        main = "- qnormR(lp, log.p=TRUE, version = * )")
sfsmisc::eaxis(1, nintLog=15, sub=2); sfsmisc::eaxis(2)
lines(-lp, sqrt(-2*lp), col=cAdj[ncol(qpAll)+1])
leg <- as.expression(c(paste("version=", ver.qn), quote(sqrt(-2 %.% lp))))
matlines(-lp, -qpAll[,2:3], lwd=6, col=cAdj[2:3])
legend("top", leg, bty='n', col=cAdj, lty=1:3, lwd=2)

## Showing why/where R's qnorm() was poor up to 2020: log.p=TRUE extreme tail
##% MM: more TODO? --> ~/R/MM/NUMERICS/dpq-functions/qnorm-extreme-bad.R
qs <- 2^seq(0, 155, by=1/8)
lp <- pnorm(qs, lower.tail=FALSE, log.p=TRUE)
## The inverse of pnorm() fails BADLY for extreme tails:
## this is identical to qnorm(..) in R <= 4.0.x:
qp <- qnormR(lp, lower.tail=FALSE, log.p=TRUE, version="4.0.x")
## asymptotically correct approximation :
qpA <- sqrt(- 2* lp)
##^
col2 <- c("black", adjustcolor(2, 0.6))
col3 <- c(col2, adjustcolor(4, 0.6))
## instead of going toward infinity, it converges at  9.834030e+07 :
matplot(-lp, cbind(qs, qp, qpA), type="l", log="xy", lwd = c(1,1,3), col=col3,
        main = "Poorness of qnorm(lp, lower.tail=FALSE, log.p=TRUE)",
        ylab = "qnorm(lp, ..)", axes=FALSE)
sfsmisc::eaxis(1); sfsmisc::eaxis(2)
legend("top", c("truth", "qnorm(.) = qnormR(., \"4.0.x\")", "asymp. approx"),
       lwd=c(1,1,3), lty=1:3, col=col3, bty="n")

rM <- cbind(lp, qs, 1 - cbind(relE.qnorm=qp, relE.approx=qpA)/qs)
rM[ which(1:nrow(rM) %% 20 == 1) ,]

Pure R Implementation of R's qt() / qnt()

Description

A pure R implementation of R's C API (‘Mathlib’ specifically) qnt() function which computes (non-central) t quantiles.

The simple inversion (of pnt()) scheme has seen to be deficient, even in cases where pnt(), i.e., R's pt(.., ncp=*) does not loose accuracy.

Usage

qntR1(p, df, ncp, lower.tail = TRUE, log.p = FALSE,
      pnt = stats::pt, accu = 1e-13, eps = 1e-11)
qntR (p, df, ncp, lower.tail = TRUE, log.p = FALSE,
      pnt = stats::pt, accu = 1e-13, eps = 1e-11)

Arguments

p, df, ncp

vectors of probabilities, degrees of freedom, and non-centrality parameter; see qt.

lower.tail, log.p

logical; see qt.

pnt

a function for computing the CDF of the (non-central) t-distribution.

accu

a non-negative number, the “accu”racy desired in the "root finding" loop.

eps

a non-negative number, used for determining the start interval for the root finding.

Value

numeric vector of t quantiles, properly recycled in (p, df, ncp).

Author(s)

Martin Maechler

See Also

Our qtU() and qtAppr(); non-central density and probability approximations in dntJKBf, and e.g., pntR. Further, R's qt.

Examples

## example where qt() and qntR() "fail" {warnings; --> Inf}
lp <- seq(-30, -24, by=1/4)
summary(p <- exp(lp))
(qp <- qntR( p, df=35, ncp=-7, lower.tail=FALSE))
qp2 <- qntR(lp, df=35, ncp=-7, lower.tail = FALSE, log.p=TRUE)
all.equal(qp, qp2)## same warnings, same values

Pure R Implementation of R's qpois() with Tuning Parameters

Description

A pure R implementation, including many tuning parameter arguments, of R's own Rmathlib C code algorithm, but with more flexibility.

It is using Vectorize(qpoisR1, *) where the hidden qpoisR1 works for numbers (aka ‘scalar’, length one) arguments only, the same as the C code.

Usage

qpoisR(p, lambda, lower.tail = TRUE, log.p = FALSE,
       yLarge = 4096, # was hard wired to 1e5
       incF = 1/64,   # was hard wired to .001
       iShrink = 8,   # was hard wired to 100
       relTol = 1e-15,# was hard wired to 1e-15
       pfEps.n = 8,   # was hard wired to 64: "fuzz to ensure left continuity"
       pfEps.L = 2,   # was hard wired to 64:   "   "   ..
       fpf = 4, # *MUST* be >= 1 (did not exist previously)
       trace = 0)

Arguments

p, lambda, lower.tail, log.p

qpois() standard argument, see its help page.

yLarge

a positive number; in R up to 2021, was internally hardwired to yLarge = 1e5: Uses more careful search for yyLy \ge y_L, where yy is the initial approximate result, derived from a Cornish-Fisher expansiion.

incF

a positive “increment factor” (originally hardwired to 0.001), used only when y >= yLarge; defines the initial increment in the search algorithm as incr <- floor(incF * y).

iShrink

a positive increment shrinking factor, used only when y >= yLarge to define the new increment from the old one as incr <- max(1, floor(incr/iShrink)) where the LHS was hardired original to (incr/100).

relTol

originally hard wired to 1e-15, defines the convergence tolerance for the search iterations when y >= yLarge; the iterations stop when (new) incr <= y * relTol.

pfEps.n, pfEps.L

positive factors defining “fuzz to ensure left continuity”, both originally hardwired to 64, the fuzz adjustment was

p <- p * (1 - 64 *.Machine$double.eps)

Now, pfEps.L is used if(log.p) is true and pfEps.n is used otherwise ("n"ormal case), and the adjustments also depend on lower.tail, and also on fpf :

fpf

a number larger than 1, together with pfEps.n determines the fuzz-adjustment to p in the case (lower=tail=FALSE, log.p=FALSE): with e <- pfEps.n * .Machine$double.eps, the adjustment p <- p * (1 + e) is made iff 1 - p > fpf*e.

trace

logical (or integer) specifying if (and how much) output should be produced from the algorithm.

Details

The defaults and exact meaning of the algorithmic tuning arguments from yLarge to fpf were experimentally determined are subject to change.

Value

a numeric vector like p recycled to the common lengths of p and lambda.

Author(s)

Martin Maechler

See Also

qpois.

Examples

x <- 10*(15:25)
Pp <- ppois(x, lambda = 100, lower.tail = FALSE)  # no cancellation
qPp <- qpois(Pp, lambda = 100, lower.tail=FALSE)
table(x == qPp) # all TRUE ?
## future: if(getRversion() >= "4.2") stopifnot(x == qPp) # R-devel
qpRp <- qpoisR(Pp, lambda = 100, lower.tail=FALSE)
all.equal(x, qpRp, tol = 0)
stopifnot(all.equal(x, qpRp, tol = 1e-15))

Compute Approximate Quantiles of the (Non-Central) t-Distribution

Description

Compute quantiles (inverse distribution values) for the non-central t distribution. using Johnson,Kotz,.. p.521, formula (31.26 a) (31.26 b) & (31.26 c)

Note that qt(.., ncp=*) did not exist yet in 1999, when MM implemented qtAppr().

qtNappr() approximates t-quantiles for large df, i.e., when close to the Gaussian / normal distribution, using up to 4 asymptotic terms from Abramowitz & Stegun 26.7.5 (p.949).

Usage

qtAppr (p, df, ncp, lower.tail = TRUE, log.p = FALSE, method = c("a", "b", "c"))
qtNappr(p, df,      lower.tail = TRUE, log.p=FALSE, k)

Arguments

p

vector of probabilities.

df

degrees of freedom >0> 0, maybe non-integer.

ncp

non-centrality parameter δ\delta; ....

lower.tail, log.p

logical, see, e.g., qt().

method

a string specifying the approximation method to be used.

k

an integer in {0,1,2,3,4}, choosing the number of terms in qtNappr().

Value

numeric vector of length length(p + df + ncp) with approximate t-quantiles.

References

Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions Vol~2, 2nd ed.; Wiley; chapter 31, Section 6 Approximation, p.519 ff

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover; formula (26.7.5), p.949; https://en.wikipedia.org/wiki/Abramowitz_and_Stegun provides links to the full text which is in public domain.

See Also

Our qtU(); several non-central density and probability approximations in dntJKBf, and e.g., pntR. Further, R's qt.

Examples

qts <- function(p, df) {
    cbind(qt = qt(p, df=df)
        , qtN0 = qtNappr(p, df=df, k=0)
        , qtN1 = qtNappr(p, df=df, k=1)
        , qtN2 = qtNappr(p, df=df, k=2)
        , qtN3 = qtNappr(p, df=df, k=3)
        , qtN4 = qtNappr(p, df=df, k=4)
          )
}
p <- (0:100)/100
ii <- 2:100 # drop p=0 & p=1  where q*(p, .) == +/- Inf

df <- 100 # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
qsp1c <- qts(p, df = df)
matplot(p, qsp1c, type="l") # "all on top"
(dq <- (qsp1c[,-1] - qsp1c[,1])[ii,])
matplot(p[ii], dq, type="l", col=2:6,
        main = paste0("difference qtNappr(p,df) - qt(p,df), df=",df), xlab=quote(p))
matplot(p[ii], pmax(abs(dq), 1e-17), log="y", type="l", col=2:6,
        main = paste0("abs. difference |qtNappr(p,df) - qt(p,df)|, df=",df), xlab=quote(p))
legend("bottomright", paste0("k=",0:4), col=2:6, lty=1:5, bty="n")
matplot(p[ii], abs(dq/qsp1c[ii,"qt"]), log="y", type="l", col=2:6,
        main = sprintf("rel.error qtNappr(p, df=%g, k=*)",df), xlab=quote(p))
legend("left", paste0("k=",0:4), col=2:6, lty=1:5, bty="n")

df <- 2000 # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
qsp1c <- qts(p, df=df)
(dq <- (qsp1c[,-1] - qsp1c[,1])[ii,])
matplot(p[ii], dq, type="l", col=2:6,
        main = paste0("difference qtNappr(p,df) - qt(p,df), df=",df), xlab=quote(p))
legend("top", paste0("k=",0:4), col=2:6, lty=1:5)
matplot(p[ii], pmax(abs(dq), 1e-17), log="y", type="l", col=2:6,
        main = paste0("abs.diff. |qtNappr(p,df) - qt(p,df)|, df=",df), xlab=quote(p))
legend("right", paste0("k=",0:4), col=2:6, lty=1:5, bty="n")

matplot(p[ii], abs(dq/qsp1c[ii,"qt"]), log="y", type="l", col=2:6,
        main = sprintf("rel.error qtNappr(p, df=%g, k=*)",df), xlab=quote(p))
legend("left", paste0("k=",0:4), col=2:6, lty=1:5, bty="n")

Pure R Implementation of R's C-level t-Distribution Quantiles qt()

Description

A pure R implementation of R's Mathlib own C-level qt() function.
qtR() is simply defined as

qtR <- Vectorize(qtR1, c("p","df"))

where in qtR1(p, df, *) both p and df must be of length one.

Usage

qtR1(p, df, lower.tail = TRUE, log.p = FALSE,
     eps = 1e-12, d1_accu = 1e-13, d1_eps = 1e-11,
     itNewt = 10L, epsNewt = 1e-14, logNewton = log.p,
     verbose = FALSE)
qtR (p, df, lower.tail = TRUE, log.p = FALSE,
     eps = 1e-12, d1_accu = 1e-13, d1_eps = 1e-11,
     itNewt = 10L, epsNewt = 1e-14, logNewton = log.p,
     verbose = FALSE)

Arguments

p, df

vectors of probabilities and degrees of freedom, see qt.

lower.tail, log.p

logical; see qt.

eps

non-negative tolerance for checking if df is “very close” to 1 or 2, respectively (when a special branch will be chosen).

d1_accu, d1_eps

non-negative tolerances only for the df < 1 cases.

itNewt

integer, the maximal number of final Newton(-Raphson) steps.

epsNewt

non-negative convergence tolerance for the final Newton steps.

logNewton

logical, in case of log.p=TRUE indicating if final Newton steps should happen in log-scale.

verbose

logical indicating if diagnostic console output should be produced.

Value

numeric vector of t quantiles, properly recycled in (p, df).

Author(s)

Martin Maechler

See Also

qtU and R's qt.

Examples

## Inspired from Bugzilla PR#16380
pxy <- curve(pt(-x, df = 1.09, log.p = TRUE), 4e152, 1e156, log="x", n=501)
qxy <- curve(-qt(x, df = 1.09, log.p = TRUE), -392, -385, n=501, log="y", col=4, lwd=2)
lines(x ~ y, data=pxy, col = adjustcolor(2, 1/2), lwd=5, lty=3)
## now our "pure R" version:

qRy <- -qtR(qxy$x, df = 1.09, log.p = TRUE)
all.equal(qRy, qxy$y) # "'is.NA' value mismatch: 14 in current 0 in target" for R <= 4.2.1
cbind(as.data.frame(qxy), qRy, D = qxy$y - qRy)
plot((y - qRy) ~ x, data = qxy, type="o", cex=1/4)

qtR1(.1, .1, verbose=TRUE)
pt(qtR(-390.5, df=1.10, log.p=TRUE, verbose=TRUE, itNewt = 100), df=1.10, log.p=TRUE)/-390.5 - 1
## qt(p=     -390.5, df=        1.1, *) -- general case
##  -> P=2.55861e-170, neg=TRUE, is_neg_lower=TRUE; -> final P=5.11723e-170
## usual 'df' case:  P_ok:= P_ok1 = TRUE, y=3.19063e-308, P..., !P_ok: log.p2=-390.5, y=3.19063e-308
## !P_ok && x < -36.04: q=5.87162e+153
## P_ok1: log-scale Taylor (iterated):
## it= 1, .. d{q}1=exp(lF - dt(q,df,log=T))*(lF - log(P/2)) = -5.03644e+152; n.q=5.36798e+153
## it= 2, .. d{q}1=exp(lF - dt(q,df,log=T))*(lF - log(P/2)) =  2.09548e+151; n.q=5.38893e+153
## it= 3, .. d{q}1=exp(lF - dt(q,df,log=T))*(lF - log(P/2)) =  4.09533e+148; n.q=5.38897e+153
## it= 4, .. d{q}1=exp(lF - dt(q,df,log=T))*(lF - log(P/2)) =   1.5567e+143; n.q=5.38897e+153
## [1] 0
##    === perfect!
pt(qtR(-391, df=1.10, log.p=TRUE, verbose=TRUE),
   df=1.10, log.p=TRUE)/-391 - 1 # now perfect

'uniroot()'-based Computing of t-Distribution Quantiles

Description

Currently, R's own qt() (aka qnt() in the non-central case) uses simple inversion of pt to compute quantiles in the case where ncp is specified.
That simple inversion (of pnt()) has seen to be deficient, even in cases where pnt(), i.e., R's pt(.., ncp=*) does not loose accuracy.

This uniroot()-based inversion does not suffer from these deficits in some cases.
qtU() is simply defined as

qtU <- Vectorize(qtU1, c("p","df","ncp"))

where in qtU1(p, df, ncp, *) each of (p, df, ncp) must be of length one.

Usage

qtU1(p, df, ncp, lower.tail = TRUE, log.p = FALSE, interval = c(-10, 10),
     tol = 1e-05, verbose = FALSE, ...)
qtU (p, df, ncp, lower.tail = TRUE, log.p = FALSE, interval = c(-10, 10),
     tol = 1e-05, verbose = FALSE, ...)

Arguments

p, df, ncp

vectors of probabilities, degrees of freedom, and non-centrality parameter; see qt. As there, ncp may be missing which amounts to being zero.

lower.tail, log.p

logical; see qt.

interval

the interval in which quantiles should be searched; passed to uniroot(); the current default is arbitrary and suboptimal; when pt(q,*) is accurate enough and hence montone (increasing iff lower.tail), this interval is automatically correctly extended by uniroot().

tol

non-negative convergence tolerance passed to uniroot().

verbose

logical indicating if every call of the objective function should produce a line of console output.

...

optional further arguments passed to uniroot().

Value

numeric vector of t quantiles, properly recycled in (p, df, ncp).

Author(s)

Martin Maechler

See Also

uniroot and pt are the simple R level building blocks. The length-1 argument version qtU1() is short and simple to understand.

Examples

qtU1 # simple definition {with extras only for  'verbose = TRUE'}

## An example, seen to be deficient
## Stephen Berman to R-help, 13 June 2022,
## "Why does qt() return Inf with certain negative ncp values?"
q2 <- seq(-3/4, -1/4, by=1/128)
pq2 <- pt(q2, 35, ncp=-7, lower.tail=FALSE)
### ==> via qtU(), a simple uniroot() - based inversion of pt()
qpqU  <- qtU(pq2, 35, ncp=-7, lower.tail=FALSE, tol=1e-10)
stopifnot(all.equal(q2, qpqU, tol=1e-9)) # perfect!

## These two currently (2022-06-14) give Inf  whereas qtU() works fine
qt  (9e-12, df=35, ncp=-7, lower.tail=FALSE) # warnings; --> Inf
qntR(9e-12, df=35, ncp=-7, lower.tail=FALSE) #  (ditto)
## verbose = TRUE  shows all calls to pt():
qtU1(9e-12, df=35, ncp=-7, lower.tail=FALSE, verbose=TRUE)

Compute Relative Size of i-th term of Poisson Distribution Series

Description

Compute

rλ(i):=(λi/i!)/ei1(λ),r_\lambda(i) := (\lambda^i / i!) / e_{i-1}(\lambda),

where λ=\lambda =lambda, and

en(x):=1+x+x2/2!+....+xn/n!e_n(x) := 1 + x + x^2/2! + .... + x^n/n!

is the nn-th partial sum of exp(x)=ex\exp(x) = e^x.

Questions: As function of ii

  • Can this be put in a simple formula, or at least be well approximated for large λ\lambda and/or large ii?

  • For which ii (:=im(λ):= i_m(\lambda)) is it maximal?

  • When does rλ(i)r_{\lambda}(i) become smaller than (f+2i-x)/x = a + b*i ?

NB: This is relevant in computations for non-central chi-squared (and similar non-central distribution functions) defined as weighted sum with “Poisson weights”.

Usage

r_pois(i, lambda)
r_pois_expr  # the R expression() for the asymptotic branch of r_pois()

plRpois(lambda, iset = 1:(2*lambda), do.main = TRUE,
        log = 'xy', type = "o", cex = 0.4, col = c("red","blue"),
        do.eaxis = TRUE, sub10 = "10")

Arguments

i

integer ..

lambda

non-negative number ...

iset

.....

do.main

logical specifying if a main title should be drawn via (main = r_pois_expr).

type

type of (line) plot, see lines.

log

string specifying if (and where) logarithmic scales should be used, see plot.default().

cex

character expansion factor.

col

colors for the two curves.

do.eaxis

logical specifying if eaxis() (package sfsmisc) should be used.

sub10

argument for eaxis() (with a different default than the original).

Details

r_pois() is related to our series expansions and approximations for the non-central chi-squared; in particular ...........

plRpois() simply produces a “nice” plot of r_pois(ii, *) vs ii.

Value

r_pois()

returns a numeric vector rλ(i)r_\lambda(i) values.

r_pois_expr()

an expression.

Author(s)

Martin Maechler, 20 Jan 2004

See Also

dpois().

Examples

plRpois(12)
plRpois(120)

TOMS 708 Approximation REXP(x) of expm1(x) = exp(x) - 1

Description

Originally REXP(), now rexpm1() is a numeric (double precision) approximation of exp(x)1exp(x) - 1, notably for small x1|x| \ll 1 where direct evaluation looses accuracy through cancellation.

Fully accurate computations of exp(x)1exp(x) - 1 are now known as expm1(x) and have been provided by math libraries (for C, C++, ..) and R, (and are typically more accurate than rexp1()).

The rexpm1() approximation was developed by Didonato & Morris (1986) and uses a minimax rational approximation for x<=0.15|x| <= 0.15; the authors say “accurate to within 2 units of the 14th significant digit” (top of p.379).

Usage

rexpm1(x)

Arguments

x

a numeric vector.

Value

a numeric vector (or array) as x,

Author(s)

Martin Maechler, for the C to R *vectorized* translation.

References

Didonato, A.R. and Morris, A.H. (1986) Computation of the Incomplete Gamma Function Ratios and their Inverse. ACM Trans. on Math. Softw. 12, 377–393, doi:10.1145/22721.23109; The above is the “flesh” of ‘TOMS 654’:

Didonato, A.R. and Morris, A.H. (1987) Algorithm 654: FORTRAN subroutines for Compute the Incomplete Gamma Function Ratios and their Inverse. ACM Transactions on Mathematical Software 13, 318–319, doi:10.1145/29380.214348.

See Also

pbeta, where the C version of rexpm1() has been used in several places, notably in the original TOMS 708 algorithm.

Examples

x <- seq(-3/4, 3/4, by=1/1024)
plot(x,     rexpm1(x)/expm1(x) - 1, type="l", main = "Error wrt expm1()")
abline(h = (-8:8)*2^-53, lty=1:2, col=adjustcolor("gray", 1/2))
cb2 <- adjustcolor("blue", 1/2)
do.15 <- function(col = cb2) {
    abline(v = 0.15*(-1:1), lty=3, lwd=c(3,1,3), col=col)
    axis(1, at=c(-.15, .15), col=cb2, col.axis=cb2)
}
do.15()

 op <- par(mar = par("mar") + c(0,0,0,2))
plot(x, abs(rexpm1(x)/expm1(x) - 1),type="l", log = 'y',
     main = "*Relative* Error wrt expm1() [log scale]")#, yaxt="n"
abline(h = (1:9)*2^-53, lty=2, col=adjustcolor("gray", 1/2))
axis(4, at = (1:9)*2^-53, las = 1, labels =
     expression(2^-53, 2^-52, 3 %*% 2^-53, 2^-51, 5 %*% 2^-53,
                6 %*% 2^-53, 7 %*% 2^-53, 2^-50, 9 %*% 2^-53))
do.15()
 par(op)

## "True" Accuracy comparison of  rexpm1() with [OS mathlib based] expm1():
if(require("Rmpfr")) withAutoprint({
  xM <- mpfr(x, 128); Xexpm1 <- expm1(xM)
  REr1 <- asNumeric(rexpm1(x)/Xexpm1 - 1)
  REe1 <- asNumeric(expm1(x) /Xexpm1 - 1)
  absC <- function(E) pmax(2^-55, abs(E))

  plot(x, absC(REr1), type= "l", log="y",
       main = "|rel.Error|  of exp(x)-1 computations wrt 128-bit MPFR ")
  lines(x, absC(REe1), col = (c2 <- adjustcolor(2, 3/4)))
  abline(h = (1:9)*2^-53, lty=2, col=adjustcolor("gray60", 1/2))
  do.15()
  axis(4, mgp=c(2,1/4,0),tcl=-1/8, at=2^-(53:51), labels=expression(2^-53, 2^-52, 2^-51), las=1)
  legend("topleft", c("rexpm1(x)", " expm1(x)"), lwd=2, col=c("black", c2),
         bg = "gray90", box.lwd=.1)

})

Stirling's Error Function - Auxiliary for Gamma, Beta, etc

Description

Stirling's approximation (to the factorial or Γ\Gamma function) error in log\log scale is the difference of the left and right hand side of Stirling's approximation to n!n!, n!(ne)n2πn,n! \approx \bigl(\frac{n}{e}\bigr)^n \sqrt{2\pi n}, i.e., stirlerr(n) := δ(n)\delta(n), where

δ(n)=logΓ(n+1)nlog(n)+nlog(2πn)/2.\delta(n) = \log\Gamma(n + 1) - n\log(n) + n - \log(2 \pi n)/2.

Partly, pure R transcriptions of the C code utility functions for dgamma(), dbinom(), dpois(), dt(), and similar “base” density functions by Catherine Loader.

These DPQ versions typically have extra arguments with defaults that correspond to R's Mathlib C code hardwired cutoffs and tolerances.

lgammacor(x) is “the same” as stirlerr(x), both computing delta(x)delta(x) accurately, however is only defined for x10x \ge 10, and has been crucially used for R's own lgamma() and lbeta() computations.

Note that the example below suggests that R's hardwired default of nalgm = 5 is unnecessarily losing more than one digit accuracy, nalgm = 6 seems much better.

Usage

stirlerr(n, scheme = c("R3", "R4.4_0"),
         cutoffs = switch(scheme
                        , R3     = c(15, 35, 80, 500)
                        , R4.4_0 = c(5.25, rep(6.5, 4), 7.1, 7.6, 8.25, 8.8, 9.5, 11,
                                     14, 19,   25, 36, 81, 200, 3700, 17.4e6)
                        
                        
                        
                        
                          ),
         use.halves = missing(cutoffs),
         direct.ver = c("R3", "lgamma1p", "MM2", "n0"),
         order = NA,
         verbose = FALSE)

stirlerrC(n, version = c("R3", "R4..1", "R4.4_0"))

stirlerr_simpl(n, version = c("R3", "lgamma1p", "MM2", "n0"), minPrec = 128L)

lgammacor(x, nalgm = 5, xbig = 2^26.5)

Arguments

x, n

numeric (or number-alike such as "mpfr").

verbose

logical indicating if some information about the computations are to be printed.

version

a character string specifying the version of stirlerr_simpl() or stirlerrC().

scheme

a character string specifying the cutoffs scheme for stirlerr().

cutoffs

an increasing numeric vector, required to start with with cutoffs[1] <= 15 specifying the cutoffs to switch from 2 to 3 to ..., up to 10 term approximations for non-small n, where the direct formula loses precision. When missing (as by default), scheme is used, where scheme = "R3" chooses (15, 35, 80, 500), the cutoffs in use in R versions up to (and including) 4.3.z.

use.halves

logical indicating if the full-accuracy prestored values should be use when 2n{0,1,,30}2n \in \{0,1,\dots,30\}, i.e., n15n \le 15 and n is integer or integer + 12\frac{1}{2}. Turn this off to judge the underlying approximation accuracy by comparison with MPFR. However, keep the default TRUE for back-compatibility.

direct.ver

a character string specifying the version of stirlerr_simpl() to be used for the “direct” case in stirlerr(n).

order

approximation order, 1 <= order <= 20 or NA for stirlerr(). If not NA, it specifies the number of terms to be used in the Stirling series which will be used for all n, i.e., scheme, cutoffs, use.halves, and direct.ver are irrelevant.

minPrec

a positive integer; for stirlerr_simpl the minimal accuracy or precision in bits when mpfr numbers are used.

nalgm

number of terms to use for Chebyshev polynomial approximation in lgammacor(). The default, 5, is the value hard wired in R's C Mathlib.

xbig

a large positive number; if x >= xbig, the simple asymptotic approximation lgammacor(x) := 1/(12*x) is used. The default, 226.5=94906265.62^{26.5} = 94906265.6, is the value hard wired in R's C Mathlib.

Details

stirlerr():

Stirling's error, stirlerr(n):= δ(n)\delta(n) has asymptotic (nn \to\infty) expansion

δ(n)=112n1360n3+11260n5±O(n7),\delta(n) = \frac 1{12 n} - \frac 1{360 n^3} + \frac 1{1260 n^5} \pm O(n^{-7}),

and this expansion is used up to remainder O(n35)O(n^{-35}) in current (package DPQ) stirlerr(n); different numbers of terms between different cutoffs for nn, and using the direct formula for n<=c1n <= c_1, where c1c_1 is the first cutoff, cutoff[1].

Note that (new in 2024-01) stirlerr(n, order = k) will not use cutoffs nor the direct formula (with its direct.ver), nor halves (use.halves=TRUE), and allows k20k \le 20. Tests seem to indicate that for current double precision arithmetic, only k17k \le 17 seem to make sense.

Value

a numeric vector “like” x; in some cases may also be an (high accuracy) "mpfr"-number vector, using CRAN package Rmpfr.

lgammacor(x) originally returned NaN for all x<10|x| < 10, as its Chebyshev polynomial approximation has been constructed for x[10,xbig]x \in [10, xbig], specifically for u[1,1]u \in [-1,1] where t:=10/x[1/xB,1]t := 10/x \in [1/x_B, 1] and u:=2t21[1+ϵB,1]u := 2t^2 -1 \in [-1 + \epsilon_B, 1].

Author(s)

Martin Maechler

References

C. Loader (2000), see dbinom's documentation.

Our package vignette log1pmx, bd0, stirlerr - Probability Computations in R.

See Also

dgamma, dpois. High precision versions stirlerrM(n) and stirlerrSer(n,k) in package DPQmpfr (via the Rmpfr and gmp packages).

Examples

n <- seq(1, 50, by=1/4)
st.n <- stirlerr(n) # now vectorized
stopifnot(identical(st.n, sapply(n, stirlerr)))
st3. <- stirlerr(n, "R3", direct.ver = "R3") # previous default
st3  <- stirlerr(n, "R3", direct.ver = "lgamma1p") # new? default
## for these n, there is *NO* difference:
stopifnot(st3 == st3.)
plot(n, st.n, type = "b", log="xy", ylab = "stirlerr(n)")
st4 <- stirlerr(n, "R4.4_0", verbose = TRUE) # verbose: give info on cases
## order = k = 1:20  terms in series approx:
k <- 1:20
stirlOrd <- sapply(k, function(k) stirlerr(n, order = k))
matlines(n, stirlOrd)
matplot(n, stirlOrd - st.n, type = "b", cex=1/2, ylim = c(-1,1)/10, log = "x",
        main = substitute(list(stirlerr(n, order=k) ~~"error", k == 1:mK),  list(mK = max(k))))

matplot(n, abs(stirlOrd - st.n), type = "b", cex=1/2, log = "xy",
        main = "| stirlerr(n, order=k) error |")
mtext(paste("k =", deparse(k))) ; abline(h = 2^-(53:51), lty=3, lwd=1/2)
colnames(stirlOrd) <- paste0("k=", k)

stCn <- stirlerrC(n)
all.equal(st.n, stCn, tolerance = 0)  # see 6.7447e-14
stopifnot(all.equal(st.n, stCn, tolerance = 1e-12))
stC2 <- stirlerrC(n, version = "R4..1")
stC4 <- stirlerrC(n, version = "R4.4_0")


## lgammacor(n) : only defined for n >= 10
lgcor <- lgammacor(n)
lgcor6 <- lgammacor(n, nalgm = 6) # more accurate?

all.equal(lgcor[n >= 10], st.n[n >= 10], tolerance=0)# .. rel.diff.: 4.687e-14
stopifnot(identical(is.na(lgcor), n < 10),
          all.equal(lgcor[n >= 10],
                    st.n [n >= 10], tolerance = 1e-12))

## look at *relative* errors -- need "Rmpfr" for "truth" % Rmpfr / DPQmpfr in 'Suggests'
if(requireNamespace("Rmpfr") && requireNamespace("DPQmpfr")) {
    ## stirlerr(n) uses DPQmpfr::stirlerrM()  automagically when n is <mpfr>
    relErrV <- sfsmisc::relErrV; eaxis <- sfsmisc::eaxis
    mpfr <- Rmpfr::mpfr;     asNumeric <- Rmpfr::asNumeric
    stM <- stirlerr(mpfr(n, 512))
    relE <- asNumeric(relErrV(stM, cbind(st3, st4, stCn, stC4,
                                         lgcor, lgcor6, stirlOrd)))

    matplot(n, pmax(abs(relE),1e-20), type="o", cex=1/2, log="xy", ylim =c(8e-17, 0.1),
            xaxt="n", yaxt="n", main = quote(abs(relErr(stirlerr(n)))))
    ## mark "lgcor*" -- lgammacor() particularly !
    col.lgc <- adjustcolor(c(2,4), 2/3)
    matlines(n, abs(relE[,c("lgcor","lgcor6")]), col=col.lgc, lwd=3)
    lines(n, abs(relE[,"lgcor6"]), col=adjustcolor(4, 2/3), lwd=3)
    eaxis(1, sub10=2); eaxis(2); abline(h = 2^-(53:51), lty=3, col=adjustcolor(1, 1/2))
    axis(1, at=15, col=NA, line=-1); abline(v=c(10,15), lty=2, col=adjustcolor(1, 1/4))
    legend("topright", legend=colnames(relE), cex = 3/4,
           col=1:6, lty=1:5, pch= c(1L:9L, 0L, letters)[seq_len(ncol(relE))])
    legend("topright", legend=colnames(relE)[1:6], cex = 3/4, lty=1:5, lwd=3,
           col=c(rep(NA,4), col.lgc), bty="n")
    ## Note that lgammacor(x) {default, n=5} is clearly inferior,
    ## but lgammacor(x, 6) is really good {in [10, 50] at least}
}# end if( <Rmpfr> )