Package: agrmt 1.42.14

Didier Ruedin

agrmt: Calculate Concentration and Dispersion in Ordered Rating Scales

Calculates concentration and dispersion in ordered rating scales. It implements various measures of concentration and dispersion to describe what researchers variably call agreement, concentration, consensus, dispersion, or polarization among respondents in ordered data. It also implements other related measures to classify distributions. In addition to a generic city-block based concentration measure and a generic dispersion measure, the package implements various measures, including van der Eijk's (2001) <doi:10.1023/A:1010374114305> measure of agreement A, measures of concentration by Leik, Tatsle and Wierman, Blair and Lacy, Kvalseth, Berry and Mielke, Reardon, and Garcia-Montalvo and Reynal-Querol. Furthermore, the package provides an implementation of Galtungs AJUS-system to classify distributions, as well as a function to identify the position of multiple modes.

Authors:Didier Ruedin [aut, cre] Clem Aeppli [ctb]

agrmt_1.42.14.tar.gz
agrmt_1.42.14.zip(r-4.5)agrmt_1.42.14.zip(r-4.4)agrmt_1.42.14.zip(r-4.3)
agrmt_1.42.14.tgz(r-4.4-any)agrmt_1.42.14.tgz(r-4.3-any)
agrmt_1.42.14.tar.gz(r-4.5-noble)agrmt_1.42.14.tar.gz(r-4.4-noble)
agrmt_1.42.14.tgz(r-4.4-emscripten)agrmt_1.42.14.tgz(r-4.3-emscripten)
agrmt.pdf |agrmt.html
agrmt/json (API)
NEWS

# Install 'agrmt' in R:
install.packages('agrmt', repos = c('https://r-forge.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://r-forge.r-project.org/projects/agrmt

On CRAN:

3.52 score 33 scripts 660 downloads 1 mentions 38 exports 0 dependencies

Last updated 11 months agofrom:caa4bcb5ef. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 30 2024
R-4.5-winOKNov 30 2024
R-4.5-linuxOKNov 30 2024
R-4.4-winOKNov 30 2024
R-4.4-macOKNov 30 2024
R-4.3-winOKNov 30 2024
R-4.3-macOKNov 30 2024

Exports:agreementagreementErrorajusajusCheckajusPlotBerryMielkeBlairLacycensorcollapsecompareAgreementcompareValuesconcentrationconsensusconsensus.varianceD.variancedisperdispersiondsquaredentropyexpandisdKvalsethl.varianceLeiklsquaredlsquared.varianceminnzmodesMRQpatternAgreementpatternVectorpolarizationReardonreduceVectorsd.variancesecondModestruncatevectorvar.variance

Dependencies:

Calculate Concentration and Dispersion in Ordered Rating Scales

Rendered fromagrmt.Rnwusingutils::Sweaveon Nov 30 2024.

Last update: 2020-07-07
Started: 2012-11-01

Readme and manuals

Help Manual

Help pageTopics
Calculate Concentration and Dispersion in Ordered Rating Scalesagrmt-package agrmt
Calculate van der Eijk's measure of agreement Aagreement
Simulated coding error for agreement AagreementError
Classify distributionsajus
Sensitivity test for AJUSajusCheck
Plot vector with AJUS typeajusPlot
Calculate IOVBerryMielke
Calculate lBlairLacy
Censor helper functioncensor
Reduces a vector to a frequency vectorcollapse
Compare agreement A with and without simulated coding errorcompareAgreement
Compares two valuescompareValues
Measures concentrationconcentration
Calculate Tastle and Wierman's measure of consensusconsensus
Approximate variance of consensusconsensus.variance
Approximate variance of Leik's DD.variance
Measures distancedisper
Measures dispersiondispersion
Calculate d-squareddsquared
Calculate Shannon entropyentropy
Expands a frequency vector to a vectorexpand
Classify changes over timeisd
Calculate Kvalseth's COVKvalseth
Approximate variance of Blair and Lacy's ll.variance
Calculate ordinal dispersionLeik
Calculate l-squaredlsquared
Approximate variance of Blair and Lacy's lsquaredlsquared.variance
Non-zero minimumminnz
Identify multiple modesmodes
Calculates MRQ polarization indexMRQ
Calculates patterns agreementpatternAgreement
Creates pattern vectorpatternVector
Calculate polarizationpolarization
Reardon's entropyReardon
Remove zeros and repeated valuesreduceVector
Approximate variance of the categorical standard deviationsd.variance
Most common and second most common valuessecondModes
Truncate helper functiontruncatevector
Approximate variance of the consensus (Cns) estimatorvar.variance