Package: surveillance 1.24.1.9000

Sebastian Meyer

surveillance: Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomena

Statistical methods for the modeling and monitoring of time series of counts, proportions and categorical data, as well as for the modeling of continuous-time point processes of epidemic phenomena. The monitoring methods focus on aberration detection in count data time series from public health surveillance of communicable diseases, but applications could just as well originate from environmetrics, reliability engineering, econometrics, or social sciences. The package implements many typical outbreak detection procedures such as the (improved) Farrington algorithm, or the negative binomial GLR-CUSUM method of Hoehle and Paul (2008) <doi:10.1016/j.csda.2008.02.015>. A novel CUSUM approach combining logistic and multinomial logistic modeling is also included. The package contains several real-world data sets, the ability to simulate outbreak data, and to visualize the results of the monitoring in a temporal, spatial or spatio-temporal fashion. A recent overview of the available monitoring procedures is given by Salmon et al. (2016) <doi:10.18637/jss.v070.i10>. For the retrospective analysis of epidemic spread, the package provides three endemic-epidemic modeling frameworks with tools for visualization, likelihood inference, and simulation. hhh4() estimates models for (multivariate) count time series following Paul and Held (2011) <doi:10.1002/sim.4177> and Meyer and Held (2014) <doi:10.1214/14-AOAS743>. twinSIR() models the susceptible-infectious-recovered (SIR) event history of a fixed population, e.g, epidemics across farms or networks, as a multivariate point process as proposed by Hoehle (2009) <doi:10.1002/bimj.200900050>. twinstim() estimates self-exciting point process models for a spatio-temporal point pattern of infective events, e.g., time-stamped geo-referenced surveillance data, as proposed by Meyer et al. (2012) <doi:10.1111/j.1541-0420.2011.01684.x>. A recent overview of the implemented space-time modeling frameworks for epidemic phenomena is given by Meyer et al. (2017) <doi:10.18637/jss.v077.i11>.

Authors:Michael Hoehle [aut, ths], Sebastian Meyer [aut, cre], Michaela Paul [aut], Leonhard Held [ctb, ths], Howard Burkom [ctb], Thais Correa [ctb], Mathias Hofmann [ctb], Christian Lang [ctb], Juliane Manitz [ctb], Sophie Reichert [ctb], Andrea Riebler [ctb], Daniel Sabanes Bove [ctb], Maelle Salmon [ctb], Dirk Schumacher [ctb], Stefan Steiner [ctb], Mikko Virtanen [ctb], Wei Wei [ctb], Valentin Wimmer [ctb], R Core Team [ctb]

surveillance_1.24.1.9000.tar.gz
surveillance_1.24.1.9000.zip(r-4.5)surveillance_1.24.1.9000.zip(r-4.4)surveillance_1.24.1.9000.zip(r-4.3)
surveillance_1.24.1.9000.tgz(r-4.4-x86_64)surveillance_1.24.1.9000.tgz(r-4.4-arm64)surveillance_1.24.1.9000.tgz(r-4.3-x86_64)surveillance_1.24.1.9000.tgz(r-4.3-arm64)
surveillance_1.24.1.9000.tar.gz(r-4.5-noble)surveillance_1.24.1.9000.tar.gz(r-4.4-noble)
surveillance_1.24.1.9000.tgz(r-4.4-emscripten)surveillance_1.24.1.9000.tgz(r-4.3-emscripten)
surveillance.pdf |surveillance.html
surveillance/json (API)
NEWS

# Install 'surveillance' in R:
install.packages('surveillance', repos = c('https://r-forge.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://r-forge.r-project.org/projects/surveillance

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • MMRcoverageDE - MMR coverage levels in the 16 states of Germany
  • abattoir - Abattoir Data
  • campyDE - Campylobacteriosis and Absolute Humidity in Germany 2002-2011
  • deleval - Surgical Failures Data
  • fluBYBW - Influenza in Southern Germany
  • h1_nrwrp - RKI SurvStat Data
  • ha - Hepatitis A in Berlin
  • ha.sts - Hepatitis A in Berlin
  • hagelloch - 1861 Measles Epidemic in the City of Hagelloch, Germany
  • hagelloch.df - 1861 Measles Epidemic in the City of Hagelloch, Germany
  • hepatitisA - Hepatitis A in Germany
  • husO104Hosp - Hospitalization date for HUS cases of the STEC outbreak in Germany, 2011
  • imdepi - Occurrence of Invasive Meningococcal Disease in Germany
  • imdepifit - Example 'twinstim' Fit for the 'imdepi' Data
  • influMen - Influenza and meningococcal infections in Germany, 2001-2006
  • k1 - RKI SurvStat Data
  • m1 - RKI SurvStat Data
  • m2 - RKI SurvStat Data
  • m3 - RKI SurvStat Data
  • m4 - RKI SurvStat Data
  • m5 - RKI SurvStat Data
  • measles.weser - Measles in the Weser-Ems region of Lower Saxony, Germany, 2001-2002
  • measlesDE - Measles in the 16 states of Germany
  • measlesWeserEms - Measles in the Weser-Ems region of Lower Saxony, Germany, 2001-2002
  • meningo.age - Meningococcal infections in France 1985-1997
  • momo - Danish 1994-2008 all-cause mortality data for eight age groups
  • n1 - RKI SurvStat Data
  • n2 - RKI SurvStat Data
  • q1_nrwh - RKI SurvStat Data
  • q2 - RKI SurvStat Data
  • rotaBB - Rotavirus cases in Brandenburg, Germany, during 2002-2013 stratified by 5 age categories
  • s1 - RKI SurvStat Data
  • s2 - RKI SurvStat Data
  • s3 - RKI SurvStat Data
  • salmAllOnset - Salmonella cases in Germany 2001-2014 by data of symptoms onset
  • salmHospitalized - Hospitalized Salmonella cases in Germany 2004-2014
  • salmNewport - Salmonella Newport cases in Germany 2004-2013
  • salmonella.agona - Salmonella Agona cases in the UK 1990-1995
  • shadar - Salmonella Hadar cases in Germany 2001-2006
  • stsNewport - Salmonella Newport cases in Germany 2001-2015

On CRAN:

cpp

10.56 score 2 stars 3 packages 438 scripts 1.7k downloads 9 mentions 222 exports 13 dependencies

Last updated 11 days agofrom:b28844c23d. Checks:8 OK, 1 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 09 2025
R-4.5-win-x86_64OKJan 09 2025
R-4.5-linux-x86_64OKJan 09 2025
R-4.4-win-x86_64OKJan 09 2025
R-4.4-mac-x86_64OKJan 09 2025
R-4.4-mac-aarch64OKJan 09 2025
R-4.3-win-x86_64NOTEJan 09 2025
R-4.3-mac-x86_64OKJan 09 2025
R-4.3-mac-aarch64OKJan 09 2025

Exports:addFormattedXAxisaddSeason2formulaaggregatealarmsalarms<-algo.bayesalgo.bayes1algo.bayes2algo.bayes3algo.bayesLatestTimepointalgo.callalgo.cdcalgo.cdcLatestTimepointalgo.comparealgo.cusumalgo.farringtonalgo.farrington.assign.weightsalgo.farrington.fitGLMalgo.farrington.fitGLM.fastalgo.farrington.fitGLM.populationOffsetalgo.farrington.thresholdalgo.glrnbalgo.glrpoisalgo.hmmalgo.outbreakPalgo.qualityalgo.rkialgo.rki1algo.rki2algo.rki3algo.rkiLatestTimepointalgo.rogersonalgo.summaryanimateanimate_nowcastsanimate.epidataCSanscombe.residualsarlCusumas.data.frameas.epidataas.epidata.data.frameas.epidata.defaultas.epidata.epidataCSas.epidataCSas.hhh4simslistas.xts.stsat2ndChangeatChangeatMedianautoplot.stsbackprojNPbayesbestCombinationbodabodaDelaycalibrationTestcalibrationTest.defaultcategoricalCUSUMcheckResidualProcessclapplycoeflistcoefWcontrolcontrol<-coxcreate.disProgcusumdecompose.hhh4delayCDFdiscpolydisProg2stsdssearsCepidataCS2stsepidataCSplot_spaceepidataCSplot_timeepitestepochepoch<-epochInYearestimateGLRNbHookfanplotfarringtonfarringtonFlexiblefind.khfindHfindKfixefformatDateformatPvalfrequencygetMaxEVgetMaxEV_seasongetNEweightsgetSourceDistsglm_epidataCSglrnbglrpoishhh4hValuesiafplotintensity.twinstimintensityplotintensityplot.simEpidataintensityplot.simEpidataCSintensityplot.twinSIRintensityplot.twinstimintersectPolyCircleintersperseisoWeekYearknoxks.plot.uniflayout.labelslayout.scalebarlinelist2stslogsLRCUSUM.runlengthmagic.dimmakeControlmarksmarks.epidataCSmeanHHHmultinomialTSmultinomialTS<-multiplicitynbOrderneighbourhoodneighbourhood<-nowcastobservedobserved<-oneStepAheadoutbreakPpairedbinCUSUMpairedbinCUSUM.runlengthpermutationTestpermute.epidataCSpitpit.defaultplapplyplotplotHHH4_fittedplotHHH4_fitted1plotHHH4_mapsplotHHH4_maxEVplotHHH4_neweightsplotHHH4_riplotHHH4_seasonplotHHH4sims_fanplotHHH4sims_sizeplotHHH4sims_timepoly2adjmatpolyAtBorderpopulationpopulation<-predintprimeFactorsR0ranefrefvalIdxByDatereportingTrianglereset.surveillance.optionsrkirpsscorescoressessiafsiaf.constantsiaf.exponentialsiaf.gaussiansiaf.powerlawsiaf.powerlaw1siaf.powerlawLsiaf.stepsiaf.studentsim.pointSourcesim.seasonalNoisesimEndemicEventssimEpidatasimEpidataCSsimpleR0simulate.twinSIRsimulate.twinstimsizeHHHstartstateplotstcdstepComponentstKteststssts_creationsts_observationsts2disProgstsplot_alarmstsplot_spacestsplot_spacetimestsplot_timestsplot_time1summary.twinstimsurveillance.optionstiaftiaf.constanttiaf.exponentialtiaf.steptidy.ststoLatextwinSIRtwinstimunionSpatialPolygonsuntieupdate.epidataCSupdate.hhh4update.twinstimupperboundupperbound<-W_npW_powerlawwrap.algoxtable.summary.twinstimyearzetaweights

Dependencies:deldirlatticeMASSMatrixnlmepolyclippolyCubspspatstat.dataspatstat.geomspatstat.univarspatstat.utilsxtable

algo.glrnb: Count data regression charts using the generalized likelihood ratio statistic

Rendered fromglrnb.Rnwusingutils::Sweaveon Jan 09 2025.

Last update: 2023-03-19
Started: 2012-07-25

Getting started with outbreak detection

Rendered fromsurveillance.Rnwusingutils::Sweaveon Jan 09 2025.

Last update: 2024-11-05
Started: 2012-07-24

hhh4 (spatio-temporal): Endemic-epidemic modeling of areal count time series

Rendered fromhhh4_spacetime.Rnwusingknitr::knitron Jan 09 2025.

Last update: 2024-09-09
Started: 2016-03-29

hhh4: An endemic-epidemic modelling framework for infectious disease counts

Rendered fromhhh4.Rnwusingutils::Sweaveon Jan 09 2025.

Last update: 2024-09-09
Started: 2012-07-25

Monitoring count time series in R: Aberration detection in public health surveillance

Rendered frommonitoringCounts.Rnwusingknitr::knitron Jan 09 2025.

Last update: 2024-11-05
Started: 2016-05-14

twinSIR: Individual-level epidemic modeling for a fixed population with known distances

Rendered fromtwinSIR.Rnwusingknitr::knitron Jan 09 2025.

Last update: 2023-05-16
Started: 2016-03-24

twinstim: An endemic-epidemic modeling framework for spatio-temporal point patterns

Rendered fromtwinstim.Rnwusingknitr::knitron Jan 09 2025.

Last update: 2024-09-19
Started: 2016-03-04

Readme and manuals

Help Manual

Help pageTopics
'surveillance': Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomenasurveillance-package surveillance
Abattoir Dataabattoir
Formatted Time Axis for '"sts"' ObjectsaddFormattedXAxis at2ndChange atChange atMedian
Add Harmonics to an Existing FormulaaddSeason2formula
Aggregate an '"sts"' Object Over Time or Across Unitsaggregate,sts-method aggregate.sts
The Bayes Systemalgo.bayes algo.bayes1 algo.bayes2 algo.bayes3 algo.bayesLatestTimepoint
Query Transmission to Specified Surveillance Algorithmalgo.call
The CDC Algorithmalgo.cdc algo.cdcLatestTimepoint
Comparison of Specified Surveillance Systems using Quality Valuesalgo.compare
CUSUM methodalgo.cusum
Surveillance for Count Time Series Using the Classic Farrington Methodalgo.farrington farrington
Assign weights to base countsalgo.farrington.assign.weights
Fit Poisson GLM of the Farrington procedure for a single time pointalgo.farrington.fitGLM algo.farrington.fitGLM.fast algo.farrington.fitGLM.populationOffset
Compute prediction interval for a new observationalgo.farrington.threshold
Count Data Regression Chartsalgo.glrnb algo.glrpois
Hidden Markov Model (HMM) methodalgo.hmm
Semiparametric surveillance of outbreaksalgo.outbreakP calc.outbreakP.statistic
Computation of Quality Values for a Surveillance System Resultalgo.quality xtable.algoQV
The system used at the RKIalgo.rki algo.rki1 algo.rki2 algo.rki3 algo.rkiLatestTimepoint
Modified CUSUM method as proposed by Rogerson and Yamada (2004)algo.rogerson
Summary Table Generation for Several Disease Chainsalgo.summary
Test if Two Model Fits are (Nearly) Equalall.equal.hhh4 all.equal.twinstim
Generic animation of spatio-temporal objectsanimate
Compute Anscombe Residualsanscombe.residuals
Calculation of Average Run Length for discrete CUSUM schemesarlCusum
Non-parametric back-projection of incidence cases to exposure cases using a known incubation time as in Becker et al (1991)backprojNP
Partition of a number into two factorsbestCombination
Bayesian Outbreak Detection Algorithm (BODA)boda
Bayesian Outbreak Detection in the Presence of Reporting DelaysbodaDelay
Calibration Tests for Poisson or Negative Binomial PredictionscalibrationTest calibrationTest.default
Campylobacteriosis and Absolute Humidity in Germany 2002-2011campyDE
CUSUM detector for time-varying categorical time seriescatcusum.LLRcompute categoricalCUSUM
Check the residual process of a fitted 'twinSIR' or 'twinstim'checkResidualProcess
Conditional 'lapply'clapply
List Coefficients by Model Componentcoeflist coeflist.default
Surgical Failures Datadeleval
Polygonal Approximation of a Disc/Circlediscpoly
Convert disProg object to sts and vice versadisProg2sts sts2disProg
Surveillance for a count data time series using the EARS C1, C2 or C3 method and its extensionsearsC
Continuous-Time SIR Event History of a Fixed Populationas.epidata as.epidata.data.frame as.epidata.default epidata print.epidata update.epidata [.epidata
Spatio-Temporal Animation of an Epidemicanimate.epidata animate.summary.epidata
Impute Blocks for Extra Stops in '"epidata"' Objectsintersperse
Plotting the Evolution of an Epidemicplot.epidata plot.summary.epidata stateplot
Summarizing an Epidemicprint.summary.epidata summary.epidata
Continuous Space-Time Marked Point Patterns with Grid-Based Covariatesas.epidataCS as.stepfun.epidataCS coerce,epidataCS,SpatialPointsDataFrame-method epidataCS getSourceDists head.epidataCS marks.epidataCS nobs.epidataCS print.epidataCS print.summary.epidataCS subset.epidataCS summary.epidataCS tail.epidataCS [.epidataCS
Conversion (aggregation) of '"epidataCS"' to '"epidata"' or '"sts"'as.epidata.epidataCS epidataCS2sts
Spatio-Temporal Animation of a Continuous-Time Continuous-Space Epidemicanimate.epidataCS
Randomly Permute Time Points or Locations of '"epidataCS"'permute.epidataCS
Plotting the Events of an Epidemic over Time and SpaceepidataCSplot_space epidataCSplot_time plot.epidataCS
Update method for '"epidataCS"'update.epidataCS
Fan Plot of Forecast Distributionsfanplot
Surveillance for Univariate Count Time Series Using an Improved Farrington MethodfarringtonFlexible
Determine the k and h values in a standard normal settingfind.kh
Find decision interval for given in-control ARL and reference valuefindH hValues
Find Reference ValuefindK
Influenza in Southern GermanyfluBYBW
Convert Dates to Character (Including Quarter Strings)formatDate
Pretty p-Value FormattingformatPval
Fit an Endemic-Only 'twinstim' as a Poisson-'glm'glm_epidataCS
Hepatitis A in Berlinha ha.sts
1861 Measles Epidemic in the City of Hagelloch, Germanyhagelloch hagelloch.df
Hepatitis A in GermanyhepatitisA
Fitting HHH Models with Random Effects and Neighbourhood Structurehhh4
Specify Formulae in a Random Effects HHH Modelfe ri
Print, Summary and other Standard Methods for '"hhh4"' Objectscoef.hhh4 coeflist.hhh4 confint.hhh4 fixef.hhh4 formula.hhh4 logLik.hhh4 nobs.hhh4 print.hhh4 ranef.hhh4 residuals.hhh4 summary.hhh4 vcov.hhh4
Plots for Fitted 'hhh4'-modelsgetMaxEV getMaxEV_season plot.hhh4 plotHHH4_fitted plotHHH4_fitted1 plotHHH4_maps plotHHH4_maxEV plotHHH4_neweights plotHHH4_ri plotHHH4_season
Predictions from a 'hhh4' Modelpredict.hhh4
Simulate '"hhh4"' Count Time Seriessimulate.hhh4
Plot Simulations from '"hhh4"' Modelsaggregate.hhh4sims aggregate.hhh4simslist as.hhh4simslist plot.hhh4sims plot.hhh4simslist plotHHH4sims_fan plotHHH4sims_size plotHHH4sims_time
Proper Scoring Rules for Simulations from 'hhh4' Modelsscores.hhh4sims scores.hhh4simslist
'update' a fitted '"hhh4"' modelupdate.hhh4
Predictive Model Assessment for 'hhh4' ModelscalibrationTest.hhh4 calibrationTest.oneStepAhead confint.oneStepAhead oneStepAhead pit.hhh4 pit.oneStepAhead plot.oneStepAhead quantile.oneStepAhead scores.hhh4 scores.oneStepAhead
Power-Law and Nonparametric Neighbourhood Weights for 'hhh4'-ModelsW_np W_powerlaw
Extract Neighbourhood Weights from a Fitted 'hhh4' ModelcoefW getNEweights
Hospitalization date for HUS cases of the STEC outbreak in Germany, 2011husO104Hosp
Occurrence of Invasive Meningococcal Disease in Germanyimdepi
Example 'twinstim' Fit for the 'imdepi' Dataimdepifit
Influenza and meningococcal infections in Germany, 2001-2006influMen
Plot Paths of Point Process Intensitiesintensityplot
Intersection of a Polygonal and a Circular DomainintersectPolyCircle intersectPolyCircle.owin
Find ISO Week and Year of Date ObjectsisoWeekYear
Knox Test for Space-Time Interactionknox plot.knox toLatex.knox
Plot the ECDF of a uniform sample with Kolmogorov-Smirnov boundsks.plot.unif
Layout Items for 'spplot'layout.labels layout.scalebar
Convert Dates of Individual Case Reports into a Time Series of Countslinelist2sts
Run length computation of a CUSUM detectorLRCUSUM.runlength
RKI SurvStat Datah1_nrwrp k1 m1 m2 m3 m4 m5 n1 n2 q1_nrwh q2 s1 s2 s3
Compute Suitable k1 x k2 Layout for Plottingmagic.dim
Generate 'control' Settings for an 'hhh4' ModelmakeControl
Import from package 'spatstat.geom'marks
Measles in the Weser-Ems region of Lower Saxony, Germany, 2001-2002measles.weser measlesWeserEms
Measles in the 16 states of GermanymeaslesDE
Meningococcal infections in France 1985-1997meningo.age
MMR coverage levels in the 16 states of GermanyMMRcoverageDE
Danish 1994-2008 all-cause mortality data for eight age groupsmomo
Import from package 'spatstat.geom'multiplicity
Count Number of Instances of Pointsmultiplicity.Spatial
Determine Neighbourhood Order Matrix from Binary Adjacency MatrixnbOrder
Adjust a univariate time series of counts for observed but-not-yet-reported eventsnowcast
Paired binary CUSUM and its run-length computationpairedbinCUSUM pairedbinCUSUM.LLRcompute pairedbinCUSUM.runlength
Monte Carlo Permutation Test for Paired Individual ScorespermutationTest
Non-Randomized Version of the PIT Histogram (for Count Data)pit pit.default
Verbose and Parallel 'lapply'plapply
Derive Adjacency Structure of '"SpatialPolygons"'poly2adjmat
Indicate Polygons at the BorderpolyAtBorder
Prime Number FactorizationprimeFactors
Print Quality Value Objectprint.algoQV
Computes reproduction numbers from fitted modelsR0 R0.simEpidataCS R0.twinstim simpleR0
Import from package 'nlme'fixef ranef
Compute indices of reference value using Date classrefvalIdxByDate
Extract Cox-Snell-like Residuals of a Fitted Point Processresiduals.simEpidataCS residuals.twinSIR residuals.twinstim
Rotavirus cases in Brandenburg, Germany, during 2002-2013 stratified by 5 age categoriesrotaBB
Salmonella cases in Germany 2001-2014 by data of symptoms onsetsalmAllOnset
Hospitalized Salmonella cases in Germany 2004-2014salmHospitalized
Salmonella Newport cases in Germany 2004-2013salmNewport
Salmonella Agona cases in the UK 1990-1995salmonella.agona
Proper Scoring Rules for Poisson or Negative Binomial Predictionsdss logs rps scores scores.default ses
Salmonella Hadar cases in Germany 2001-2006shadar
Simulate Point-Source Epidemicssim.pointSource
Generation of Background Noise for Simulated Timeseriessim.seasonalNoise
Spatio-temporal cluster detectionstcd
Diggle et al (1995) K-function test for space-time clusteringplot.stKtest stKtest
Animated Maps and Time Series of Disease Counts or Incidenceanimate.sts
Simulate Count Time Series with Outbreakssts_creation
Time-Series Plots for '"sts"' Objects Using 'ggplot2'autoplot.sts
Create an 'sts' object with a given observation datests_observation
Class '"sts"' - surveillance time seriesalarms,sts-method alarms<-,sts-method as.data.frame,sts-method as.data.frame.sts as.ts.sts as.xts.sts coerce,sts,ts-method coerce,ts,sts-method control,sts-method control<-,sts-method dim,sts-method dimnames,sts-method epoch,sts-method epoch<-,sts-method epochInYear epochInYear,sts-method frequency,sts-method multinomialTS,sts-method multinomialTS<-,sts-method neighbourhood,sts-method neighbourhood<-,sts-method observed,sts-method observed<-,sts-method population,sts-method population<-,sts-method start,sts-method sts sts-class upperbound,sts-method upperbound<-,sts-method year year,sts-method
Class "stsBP" - a class inheriting from class 'sts' which allows the user to store the results of back-projecting or nowcasting surveillance time seriescoerce,sts,stsBP-method stsBP-class
Class "stsNC" - a class inheriting from class 'sts' which allows the user to store the results of back-projecting surveillance time seriescoerce,sts,stsNC-method delayCDF delayCDF,stsNC-method predint predint,stsNC-method reportingTriangle reportingTriangle,stsNC-method score score,stsNC-method stsNC-class
Animate a Sequence of Nowcastsanimate_nowcasts stsNClist_animate
Salmonella Newport cases in Germany 2001-2015stsNewport
Plot Methods for Surveillance Time-Series Objectsplot,sts,missing-method plot,stsNC,missing-method plot.sts stsplot
Map of Disease Counts/Incidence accumulated over a Given Periodstsplot_space
Time-Series Plots for '"sts"' Objectsstsplot_alarm stsplot_time stsplot_time1
Generic Functions to Access '"sts"' Slotsalarms alarms<- control control<- epoch epoch<- multinomialTS multinomialTS<- neighbourhood neighbourhood<- observed observed<- population population<- upperbound upperbound<-
Subsetting '"sts"' Objects[,sts,ANY,ANY,ANY-method [,sts-method
Options of the 'surveillance' Packagereset.surveillance.options surveillance.options
Convert an '"sts"' Object to a Data Frame in Long (Tidy) Formattidy.sts
'toLatex'-Method for '"sts"' ObjectstoLatex,sts-method toLatex.sts
Fit an Additive-Multiplicative Intensity Model for SIR DatatwinSIR
Plotting Paths of Infection Intensities for 'twinSIR' Modelsintensityplot.simEpidata intensityplot.twinSIR plot.twinSIR
Print, Summary and Extraction Methods for '"twinSIR"' ObjectsAIC.twinSIR extractAIC.twinSIR logLik.twinSIR print.summary.twinSIR print.twinSIR summary.twinSIR vcov.twinSIR
Profile Likelihood Computation and Confidence Intervalsplot.profile.twinSIR profile.twinSIR
Simulation of Epidemic DatasimEpidata simulate.twinSIR
Fit a Two-Component Spatio-Temporal Point Process Modeltwinstim
Permutation Test for Space-Time Interaction in '"twinstim"'coef.epitest epitest plot.epitest
Temporal and Spatial Interaction Functions for 'twinstim'siaf.constant siaf.exponential siaf.gaussian siaf.powerlaw siaf.powerlaw1 siaf.powerlawL siaf.step siaf.student tiaf.constant tiaf.exponential tiaf.step
Plot the Spatial or Temporal Interaction Function of a 'twimstim'iafplot
Plotting Intensities of Infection over Time or Spaceintensity.twinstim intensityplot.simEpidataCS intensityplot.twinstim
Print, Summary and Extraction Methods for '"twinstim"' Objectscoeflist.twinstim logLik.twinstim nobs.twinstim print.summary.twinstim print.twinstim summary.twinstim toLatex.summary.twinstim vcov.twinstim xtable.summary.twinstim xtable.twinstim
Plot methods for fitted 'twinstim''splot.twinstim
Profile Likelihood Computation and Confidence Intervals for 'twinstim' objectsprofile.twinstim
Spatial Interaction Function Objectssiaf
Quick Simulation from an Endemic-Only 'twinstim'simEndemicEvents
Simulation of a Self-Exciting Spatio-Temporal Point ProcesssimEpidataCS simulate.twinstim
Stepwise Model Selection by AICadd1.twinstim drop1.twinstim stepComponent
Temporal Interaction Function Objectstiaf
'update'-method for '"twinstim"'update.twinstim
Compute the Unary Union of '"SpatialPolygons"'unionSpatialPolygons
Randomly Break Ties in Datauntie untie.default untie.epidataCS untie.matrix
Multivariate Surveillance through independent univariate algorithmsbayes cusum glrnb glrpois outbreakP rki wrap.algo
Power-Law Weights According to Neighbourhood Orderzetaweights